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Abstract The source of infection has always been considered as an important factor in epidemiol-

ogy and mostly linked to environmental source such as surface water, soil, plants and also animals.

The activity of the opportunistic pathogens associated with plant root, their adaptation and survival

under hostile environmental condition is poorly understood. In this study the salt tolerance ability

of Methylobacterium mesophilicum and its colonization in the root and shoot of plants under severe

drought and salt stress conditions were investigated. The colonization of plant by M. mesophilicum

was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial

strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal

and salt stress condition and reached up to 6.4 · 104 and 2.6 · 104 CFU/g root. The strain was resis-

tant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin

and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in

enabling persistent colonization of the plant surface by M. mesophilicum strains. In conclusion, this

study provides background information on the behaviour of opportunistic pathogen M. mesophili-

cum on plants and their survival in harsh environmental conditions.
ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The incidence of microbes with a potential risk to human
health in the soil, plant and water resources has been reported

previously (Berg et al., 2005; Park et al., 2005; Egamberdieva
et al., 2008; Lai et al., 2011). The pink-pigmented, and
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facultative methylotrophic bacteria Methylobacterium are
commonly found within the natural environment such as soils,
plants, lake sediments and also in association with humans

(Corpe and Rheem, 1989; Green, 2001; Omer et al., 2004).
Several species of Methylobacterium have been reported as
causing infections in humans, such as persistent bacteremia

in a child with lymphoma (Fernandez et al., 1997; Lai et al.,
2011), bloodstream infections (Lai et al., 2011), peritonitis,
and pneumonia (Sanders et al., 2000; Kovaleva et al., 2014).

The frequent persistence of Methylobacterium genus in the
clinical surroundings has been explained by their ability to toler-
ate stress factors and antimicrobials (Yano et al., 2013;
Kovaleva et al., 2014). The source of infection has always been

considered as an important factor in epidemiology and mostly
linked to environmental source such as surface water, soil, plants
and also animals (Lederberg, 1997). There are several reports on

theMethylobacterium spp. isolated fromvarious natural environ-
ments i.e., plant leaves, roots (Green, 2001;Omer et al., 2004), and
nodules (Sy et al., 2001). Ivanova et al. (2001) found

Methylobacterium spp. on plant phyllosphere and in plant rhizo-
sphere. The endophyticMethylobacterium mesophilicum was iso-
lated from citrus plants (Gai et al., 2009), Methylobacterium

nodulans from the rhizosphere of crotalaria podocarpa and
Methylobacterium oryzae from rice stem and leaf (Yim et al.,
2010). The improved plant growth, yield, and nodulation of legu-
minousplantsbyMethylobacterium species havebeen reportedby

several authors (Sy et al., 2001; Radha et al., 2009). However,
there are few studies available on the biology of the opportunistic
pathogens associated with plant root, their adaptation and sur-

vival under hostile environmental conditions. In the present study
we investigated the tolerance ofM.mesophilicum strain to salinity
stress and their colonization abilities in the rhizosphere and phyl-

losphere of cucumber, tomato and paprika grown under severe
drought and salt stress conditions.
2. Material and methods

2.1. Bacterial strain and growth characters

The strain M. mesophilicum previously isolated from the root
of wheat was obtained from the National Culture Collection
of Uzbekistan. The strain was grown on ammonia mineral salt

(AMS) medium which contains methanol as a sole carbon
source at 28 �C (Whittenbury et al., 1970).

2.2. Characterization of strain

Carbon utilization of bacterial strain was tested in nutrient
broth containing 1% of D-glucose, D-sucrose, D-Xylose, L-

Arabinose, Fructose, D-mannitol, maltose, glycerol, and
methanol (Cowan, 1974). The method of Castric (1975) was
used to determine the HCN production by bacterial strain,

lipase activity was investigated by Howe and Ward (1976)
using Tween lipase indicator assay, and protease activity by
methods of Brown and Foster (1970). The production of glu-
canase was determined using glucan substrate lichenan

(Walsh et al., 1995), whereas cellulase activity using substrate
carboxymethylcellulose (Hankin and Anagnostakis, 1977).
The salt tolerance of bacterial strain was tested in Luria–

Bertani (LB) medium supplemented with 0–6% of NaCl.
2.3. Antibiotic resistance patterns

Antibiotic resistance of M. mesophilicum strain against the
antibiotics of human and veterinary significance was analysed
using a modified Kirby–Bauer disc-diffusion method (Bauer

et al., 1966).
In vitro susceptibilities of M. mesophilicum to Ampicillin

(AMP, 10 lg), Amoxicillin/Clavulanic acid (AMC/20 +
10 lg), Penicillin (PEN, 10 lg), Chloramphenicol

(CLR/30 lg), Cefotaxime (CTX/30), Tetracycline
(TET/30 lg), Streptomycin (STR/100 lg), Erythromycin
(ERY/15 lg), Neomycin (NEOM/100 lg), and Gentamicin

(GEN/10 lg) were determined using the Neo-Sensitab (Rosco
Diagnostica A/S) antibiotic discs. The Mueller–Hinton broth
(Difco Laboratories, Detroit, MI) used to culture bacteria for

24 h and 100 ll of cell suspension plated on agar plate. The
antibiotic discs (6 mmdiameter)were placed on the agar surface.
Antibiotic effectiveness against bacteria was determined after

two days of incubation at 28 �C by measuring the zones of inhi-
bition around the discs. The resistance to antibiotics was anal-
ysed according to the National Committee for Clinical
Laboratory Standards guidelines (NCCLS, 2001).

2.4. Plant associated traits

The antagonistic potential of experimental bacterial strain was

carried out using the triple layer agar method (Herr, 1959)
against some plant pathogenic fungi (Fusarium oxysporum
Schlecht. ex Fr., F. solani [Mart.] Sacc., Gaeumannomyces gra-

minis var. tritici, Pythium ultimum var. ultimum, Alternaria
alternata [Fr.] Keissler, Botrytis cinerea Pers). The production
of indole 3-acetic acid (IAA) was determined spectrophoto-
metrically according to the method of Bano and Musarrat

(2003).

2.5. Colonization in the rhizosphere

The colonization abilities of bacterial strain in the rhizosphere of
cucumber (Cucumis sativus), tomato (Solanum lycopersicum)
and paprika (Capsicum annuum) were studied in gnotobiotic

sand tubes (25 mm in diameter, 200 mm in length) as described
by Simons et al. (1996), containing sand and vermiculite (1:1)
soaked with diluted nitrogen-free Jensen nutrient solution sup-

plemented with 100 mM NaCl. The seeds of cucumber, tomato
and paprika were sterilized and treated with the overnight cul-
tured bacterial strain (108 cells/ml) suspension and were planted
into sterile glass tubes, one seed per tube with ten replicates. The

seedlings were grown in a climate controlled plant growth cham-
ber with a 16-h light period at 22 �C and an 8-h dark period at
16 �C.After 15 days, 1 cm root tip was cut, vortexed and diluted

suspension (10�3 and 10�4) was spread on agar plates. After
three days bacterial colonies were counted and colony forming
units (CFU per 1 cm of root tip) were enumerated.

2.6. Survival in the plant and soil

The bacterial strain of M. mesophilicum plated on LB agar

medium amended with 200 lg/ml rifampicin for obtaining
antibiotic resistance mutants. The sterilized seeds of tomato,
cucumber and paprika were inoculated with bacterial
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suspension (108 CFU ml�1) and sown in pots filled with saline
soil. Plants were grown under greenhouse conditions for
2 months. Then, plants were harvested and root and shoots

were separated. One gram root and macerated shoot were sha-
ken with 9 ml PBS (20 mM sodium phosphate, 150 mM NaCl)
with cycloheximide (100 lg/ml, Sigma, St. Louis, USA) for

30 min and plated on LB agar supplemented with 200 lg/ml
rifampicin. The plates were incubated for three days and CFU
of rifampicin resistant mutants were enumerated

(Egamberdiyeva and Hoflich, 2002).

2.7. Statistical analyzes

Data were tested for statistical significance using the analysis
of variance package included in Microsoft Excel 2007 and
mean comparisons were conducted using a least significant dif-
ference (LSD) test (P = 0.05). The standard deviations (SD)

were also calculated.

3. Results

M. mesophilicum strain was able to utilize several carbon
sources such as D-glucose, D-sucrose, D-Xylose, L-Arabinose,

D-mannitol, glycerol, and methanol. The maltose and fructose

were not utilized as a carbon source by bacterial strain.
The strain M. mesophilicum can withstand NaCl concentra-

tions up to 6% (Fig. 1), and showed resistance to higher tem-
perature up to 40 �C. The strain was negative for lipase,
protease, glucanase, and cellulase activities and did not

produce HCN. The strain was resistant to Gentamicin,
Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neo-
mycin, penicillin, but not to erythromycin, chloramphenicol,

tetracycline, and streptomycin.
The strain did not show antagonistic activity towards the

phytopathogenic fungi F. oxysporum, F. solani, G. graminis
pv. tritici, P. ultimum, A. alternata and B. cinerea. The IAA

production of bacterial strain showed that M. mesophilicum
produces IAA in media contained up to 4% NaCl and trypto-
phan addition induced auxin production (Fig. 2).

The colonization of M. mesophilicum in the rhizosphere of
cucumber, tomato and paprika was also tested in the
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Figure 1 Survival of Methylobacterium mesophilicum after 10 h

of incubation at various NaCl concentrations (0–6%).
gnotobiotic sand system under growth cabinet conditions.
The bacterial strain was able to colonize in the rhizosphere
of plants grown under both normal and salinated conditions

(100 mM NaCl). The salinity inhibited their colonization abil-
ity in the rhizosphere up to 50%. The root colonization in the
rhizosphere was 64.1 � 24.2 · 103 (CFU per 1 cm of root tip)

for tomato, 35.8 � 14.9 · 103 (CFU per 1 cm of root tip) for
cucumber, and 15.8 � 5.6 · 103 (CFU per 1 cm of root tip)
for paprika grown under normal and salinated condition

respectively (Fig. 3a–c).
Rifampicin-resistant isolates derived from M. mesophilicum

were tested for their ability to colonize cucumber, tomato and
paprika roots, leaves and soil during the vegetation time up to

2 months after sowing.M. mesophilicum was able to establish a
population in the soil of the root zone of all tested plants
grown under salt affected soil. The level of colonization varied

between the plants, where the colonization of introduced bac-
terial strain was lower in the rhizosphere and phyllosphere of
paprika (Table 1).

4. Discussion

The plants are colonized by various bacterial species including

beneficial, parasitic, and pathogenic bacteria such as
Arthrobacter, Bacillus, Enterobacter, Mycobacterium,
Pseudomonas, Stenotrophomonas, and Staphylococcus

(Sessitsch et al., 2004; Egamberdiyeva, 2005; Egamberdieva,
2012; Egamberdieva et al., 2008). Plants are also attractive
host for opportunistic human pathogenic bacteria (Berg
et al., 2010). We showed here that the opportunistic pathogen

M. mesophilicum is able to colonize rhizosphere of cucumber,
tomato and paprika grown in both normal and salinity condi-
tions. Poonguzhali et al. (2008) reported that

Methylobacterium suomiense CBMB120 was able to colonize
in the rhizoplane and in the phylloplane of tomato. In other
report Methylobacterium sp. strain NPFM-SB3, isolated from

Sesbania rostrata stem nodules was able to colonize in the rhi-
zosphere of rice (Senthilkumar et al., 2009).

We have also determined salt stress tolerance of M. meso-

philicum and its survival after inoculation onto plants. The
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Figure 3 (A–C) The root tip colonization ability of

Methylobacterium mesophilicum in a gnotobiotic sand system

under normal and salt stress condition (plants were grown for

15 days under gnotobiotic sand system, (A) cucumber; (B) tomato;

(C) paprika, error bars show SD from the mean).

Table 1 Colonization of Methylobacterium mesophilicum in

the soil of the root zone, rhizosphere and phyllosphere of plants

(pot experiments with salinated soil, values in 103 CFU/g soil,

root, leaves and they represent the mean of six plants per

treatment). Numbers in the same line marked with the same

letter do not show significant differences (P < 0.05).

Plants Soil Rhizosphere Phyllosphere

Cucumber 182.5 a 1460.0 b 48.0 a

Tomato 265.0 b 2130.0 c 110.0 b

Paprika 124.4 a 987.0 a 24.0 a
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strains M. mesophilicum demonstrated a high tolerance to salt
stress up to 6%, and survive in soil, root and leaves regardless
of the plant type. The rhizosphere of tomato and cucumber

was more colonized by introduced strain compared to paprika
grown in saline soil. The stress tolerance of bacterial strains
has been shown to play an important role in adaptation of

strains to the ecological stressed factors (McArthur and
Tuckfield, 2000; Kummerer, 2004). According to Bouma and
Lenski (1988) bacterial resistances to antibiotics are one of
the key factors regulating tolerance to harsh environmental

conditions. The plant roots, which are rich in nutrients also
attract pathogens (Roberts et al., 2000; Ji and Wilson, 2002),
where they may enrich and compete with the indigenous

microflora for available carbon sources (Gilbert et al., 1993;
Jablasone et al., 2005). We found that M. mesophilicum strain

utilizes various carbon sources such as glucose, sucrose, xylose,
arabinose, mannitol, glycerol, and methanol. The strain
showed multidrug resistance to Gentamicin, Ampicillin,

Amoxicillin plus Clavulanic acid, Cefotaxime, Neomycin,
Penicillin. The persistence of antibiotic resistance bacteria in
ground water, soil, and plants is a growing public health con-

cern, because of possible further increase in their incidence rate
into the environments (McKeon et al., 1995).

The opportunistic pathogenic bacteria can function also as
a plant beneficial microbe, through their production of biolog-

ical active compounds.M. mesophilicum was shown to produce
IAA and several fungal cell wall degrading enzymes, which
might explain the capacity of this strain to stimulate plant

growth and protect them from various fungal pathogens.
Some Methylobacterium isolates are able to synthesize plant
growth regulators like zeatins, cytokinins and auxins

(Ivanova et al., 2000,2001; Lidstrom and Chistoserdova, 2002).

5. Conclusion

This study provides background information on the behaviour
of opportunistic pathogenM. mesophilicum on plants and their
survival in harsh environmental conditions. The salt tolerance

and antibiotic resistance abilities of the strain allow competing
with the indigenous microbes and persisting in the rhizosphere
and phyllosphere of plants.
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