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Hypothermia and brain inflammation 
after cardiac arrest
Pouya Tahsili-Fahadan1,2, Salia Farrokh3, Romergryko G. Geocadin2,4

Abstract:
The cessation (ischemia) and restoration (reperfusion) of cerebral blood flow after cardiac arrest (CA) 
induce inflammatory processes that can result in additional brain injury. Therapeutic hypothermia (TH) 
has been proven as a brain protective strategy after CA. In this article, the underlying pathophysiology 
of ischemia‑reperfusion brain injury with emphasis on the role of inflammatory mechanisms is 
reviewed. Potential targets for immunomodulatory treatments and relevant effects of TH are also 
discussed. Further studies are needed to delineate the complex pathophysiology and interactions 
among different components of immune response after CA and identify appropriate targets for clinical 
investigations.
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Introduction

Despite  major  improvements  in 
resuscitation, neurological injury after 

cardiac arrest (CA) has remained a major 
cause of morbidity and mortality among 
survivors.[1,2] Brain injury occurs not only 
during the CA (“no-flow” injury) and 
resuscitation (“partial‑flow” injury) but also 
after reestablishment of brain reperfusion 
(“reperfusion” injury). Inflammatory processes 
after ischemia-reperfusion (I/R) induced 
by CA play a pivotal role in neurological 
damage. So far, no pharmacological treatment 
has been approved for neuroprotection after 
CA. Therapeutic hypothermia (TH) is the 
only proven treatment to date to decrease 
the burden of neurological injury.[3] Better 
understanding of the underlying mechanism 
for I/R brain injury after CA is essential for 
the development of new therapeutic targets 
and neuroprotective strategies. Here, we 
review the inflammatory processes involved 
in I/R after CA. We also review the potential 
neuroprotective effects of TH in regard to 
brain inflammation.

Pathophysiology of Brain Injury 
after Cardiac Arrest

Central nervous system receives almost 
a third of the cardiac output. Brain 
injury after CA occurs through several 
phases. Cerebral blood flow stops with 
CA (“no-flow” period). Global brain 
ischemia continues throughout mechanical 
cardiopulmonary resuscitation that can only 
provide 25%–40% of baseline cerebral blood 
flow (“partial‑flow” period).[4] Successful 
return of spontaneous circulation (ROSC) 
will result in additional processes that may 
also lead to brain damage (“reperfusion” 
injury).

Excitotoxicity has been recognized as the 
main pathological basis of brain injury 
in the acute phase (minutes to hours 
after CA). Decreased cerebral blood flow 
and delivery of oxygen and glucose will 
enhance anaerobic metabolism within 
minutes of CA. This will result in lactate 
production and tissue acidosis.[4] Following 
ROSC, a transient rise in endogenous and 
exogenous catecholamines will reduce 
capillary blood flow that will further 
enhance lactate acidosis.[5] In addition, 
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depletion of adenosine triphosphate (ATP) and 
inhibition of Na+/K+-ATPase will result in neuronal 
depolarization that in turn leads to increased intracellular 
shift of calcium and hence extracellular glutamate 
release.[6,7] Increased glutamate will augment membrane 
depolarization and further intracellular calcium influx.[8] 
This will activate a cascade of several calcium-dependent 
enzymatic pathways such as lipases, proteases, and 
nucleases that will subsequently lead to disintegration 
of the cell membrane and tissue necrosis.[9] An increase 
in the expression of immediate early genes, microRNAs, 
and heat shock proteins is seen during the acute phase 
and may contribute to brain injury after CA.[10,11] 
Accumulating evidence shows that enhanced release 
of excitatory amino acids (such as glutamate) will also 
increase permeability of mitochondrial membrane and 
thereby mitochondrial swelling and dysfunction.[11]

Brain ischemia and excitotoxicity initiated in the 
acute phase will induce neuronal loss in the subacute 
phase (hours to days after CA) by the activation of 
apoptotic pathways.[8,12] Activation of cell membrane 
death receptors (such as FAS receptor by FAS 
ligand [FASL]) triggers a death-inducing signaling 
complex that will in turn activate caspases and 
programmed cell death.[13] Mitochondrial damage 
will increase the expression of pro-apoptotic BCL-2 
family members (such as BCL-2 associated X [BAX]).[14] 
Cytochrome c released by apoptotic signaling from 
damaged mitochondria will form an apoptosome that 
will also activate caspase.[15] In addition, damage to 
mitochondria activates pro-apoptotic members of protein 
kinase C (PKC) family such as PKCδ.[16,17] Damage to 
mitochondria can also result in apoptosis independent of 
caspase activation.[18] In addition, reperfusion of ischemic 
brain will lead to massive generation of free radicals such 
as reactive oxygen species (ROS).[19,20] Ischemia-induced 
mitochondrial damage and oversaturation of the cellular 
scavenging systems will decrease clearance of ROS and 
result in their accumulation.[21]

Therapeutic considerations
In the acute phase after CA, early resuscitation and 
restoration of cerebral blood flow will prevent rapid 
depletion of brain energy reservoir and hence limit 
anaerobic metabolism and lactic acidosis. This will 
ultimately decrease excitotoxicity and the subsequent 
brain damage. During the subacute phase, inhibition of 
intrinsic and acquired apoptosis by blocking expression 
of pro-apoptotic genes, increased expression of 
anti-apoptotic, and alteration of PKC pathway are the 
potential therapeutic considerations. Brain ischemia 
activates several signaling pathways such as members 
of mitogen-activated protein kinases (MAPKs), nuclear 
factor-kappa B (NF-κB), and toll-like receptors (TLRs) that 
can be targets for therapeutic interventions.[22-26] Different 

members of the MAPK pathway play differential roles in 
brain injury after ischemia. For instance, ERK5 activity 
seems to be protective while ERK1/2, c-Jun N-terminal 
kinase (JNK), and p38 may add to brain damage by 
increasing inflammation.[27-33] Accordingly, inhibition of 
ERK1/2, JNK, and p38 has been shown to decrease brain 
inflammation and improve functional recovery.[34-37] 
Stimulation of ERK1/2 pathway, however, may also 
paradoxically reduce injury by blocking apoptosis and 
release of trophic factors after global brain ischemia.[38] 
Activation of NF-κB family members by ischemia leads to 
gene transcription for several pro‑inflammatory as well 
as some neuroprotective mediators. Therefore, inhibition 
of NF-κB activity has also resulted in contradictory 
results.[39,40] In animal studies, activation of TLRs before 
induced ischemia decreases brain injury by decreasing 
release of tissue necrosis factor (TNF)-α; however, it 
appears that blockage of TLRs is neuroprotective after 
ischemia.[40,41] In addition, strategies aimed toward 
enhanced clearance of ROS and limiting damage to 
blood–brain barrier (BBB) by blockage of proteases 
will be important in the prevention of secondary 
brain damage due to vasogenic edema and elevated 
intracranial pressure.

Brain Inflammation and 
Immunomodulatory Therapies after Cardiac 

Arrest

Immune response and inflammatory processes start 
immediately after onset of ischemia and evolve through 
several phases.[42] Our understanding of inflammation 
after global brain ischemia is partly derived from the 
expanding knowledge on inflammation after focal 
brain ischemia although differences exist.[43] It is very 
important to mention that the immune response 
and cerebral inflammation are not merely consisted 
of deleterious mechanisms that will result in brain 
damage (maladaptive inflammation) but also include 
very important processes required for brain repair and 
recovery (adaptive inflammation).[44,45] This needs to 
be considered in all therapeutic measures designed to 
modulate the immune response to limit maladaptive 
processes and enhance beneficial immune response. 
The balance between these responses will determine the 
ultimate outcomes. Inflammatory processes involved 
in I/R brain injury after and corresponding therapeutic 
considerations are summarized in Table 1.

Therapeutic considerations
Given the pivotal role of inflammatory processes in 
pathogenesis of I/R brain injury, controlled modulation 
of immune response provides a wide range of therapeutic 
opportunities for neuroprotection and neuronal repair 
and thereby improves clinical outcomes. Accordingly, 
various immunomodulating strategies have been 
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investigated in different clinical and animal settings 
with mixed results. Majority of these interventions 
have been studied in ischemic or hemorrhagic strokes 
and studies aiming global brain ischemia after CA are 
mostly lacking. Therefore, in interpretation of animal 
results and extrapolation of findings to clinical trials, one 
should consider the brain injury model and possibility 
of different underlying mechanisms for focal versus 
global ischemia. In addition, immunomodulating 
therapies for brain inflammation after I/R need to 
be approached cautiously and be tailored carefully 
to enhance the beneficial immune response while 
limiting the destructive components. This necessitates 
careful implementation of basic research findings in 
regard to timing, aggressiveness, and selectivity of 
immunomodulatory treatments.[46] Temporal course 
of potential treatments is of the utmost importance 
to limit damaging processes and enhance those 
promoting neuronal repair. Ideally, these treatments 
are provided early and their effects are limited to the 
pro‑inflammatory (acute to early subacute) phase of 
immune response. Of note, systemic inflammatory 
response after CA and brain ischemia can result in a 
temporary immunocompromised state consisted of 
peripheral lymphopenia. This can be mediated by 
overactivation of the hypothalamus–pituitary–adrenal 
gland axis secondary to catecholamine surge and 

apoptosis of lymphocytes.[47-49] While this state can 
potentially limit neuronal damage by immune response, 
it temporarily increases the risk of infections. Although 
the role of preexisting systemic or nervous system 
inflammation is less clear and may affect therapeutic 
options, it is postulated that systemic inflammation 
exacerbates brain injury. Potential strategies include 
blockage of pro-inflammatory and promotion of 
anti‑inflammatory mediators. In addition, modulations 
of immune cells involved in brain inflammation such 
as inhibition of brain intrinsic microglial activation, 
prevention of systemic immune cells transmigration 
into brain parenchyma, and limiting the activity of 
infiltrated immune cells have been proposed. Of note, 
no pharmacological treatment has been approved for 
clinical use till date.

Acute and subacute cerebral inflammation after cardiac 
arrest
Immune response is not antigen specific and is dominated 
by nonspecific pro‑inflammatory mechanisms during 
the acute phase (minutes to hours after CA). This 
involves activation of brain microglia, massive release 
of pro-inflammatory mediators, and infiltration of 
peripheral immune cells, leading to brain inflammation. 
A vicious cycle of inflammation can evolve in the next 
several hours to days (subacute phase) triggered by 

Table 1: Pathophysiology of ischemia‑reperfusion injury and effects of therapeutic hypothermia
Time course Pathophysiology Effect of therapeutic hypothermia
Acute (min–h) Reduced cerebral blood flow and delivery of O2 and 

glucose
Promotion of anaerobic metabolism and lactic acidosis
ATPase failure, cellular depolarization, increased 
intracellular calcium influx
Release of excitatory amino acids and 
glutamate (excitotoxicity)
Increased expression of immediate early genes and 
stress signaling
Membrane and mitochondrial damage and dysfunction

Decreases metabolic demand, energy preservation
Decreases anaerobic metabolism and lactic acidosis
Decreases intracellular calcium influx
Increased expression of glutamate receptor subunit 
2 of the AMPA receptor and limits excitotoxicity
Decreased expression of immediate early genes

Subacute (h–days) Activation of NF‑κB and MAPK pathways; Expression of 
adhesion molecules
Production of reactive oxygen species
Increased apoptosis (increased BAX, PKCδ, FAS/FASL, 
and caspase activation)
Microglia activation (M1) and Infiltration of neutrophils 
and monocytes into the brain
Release of pro‑inflammatory mediators (IL‑1, IFN‑γ, 
TNF‑α, nitric oxide, ROS, etc.,)
Blood–brain barrier and endothelial damage by increased 
proteolytic enzyme activity (elastase, MMP, etc.,)
Increased expression of aquaporin‑4 and vasogenic 
edema

Inhibits NK‑κB and MAPK signaling pathways, limits 
expression of adhesion molecules
Decreases reactive oxygen species
Inhibits apoptosis (increases BCL‑2, PKCε)
Limits microglial activation (M2)
Decreases infiltration of peripheral immune cells
Decreases pro‑inflammatory mediators (IL‑1 β TNFα, 
MCP‑1, and MIP3α)
Decreases activity of MMPs and preserves pericytes 
and blood‑brain‑barrier
Decreases expression of aquaporin‑4 and vasogenic 
edema

Chronic (days–weeks) Release of trophic factors IGF‑1, BDNF, GDNF, etc.,
Stem cell activation
Neurogenesis, angiogenesis, synaptogenesis

Increases release of neurotrophic factors and 
expression of genes involved in neurogenesis, 
angiogenesis, and synapse formation

MAPK: Mitogen‑activated protein kinases, PKC: Protein kinase C, IFN: Interferon, TNF: Tissue necrosis factor, ROS: Reactive oxygen species, MMP: Matrix 
metalloproteinases, IGF: Insulin‑like growth factor, GDNF: Glial cell‑derived neurotrophic factor, BDNF: Brain‑derived neurotrophic factor, NK: Natural killer,  
BAX: Bcl‑2‑associated X protein, FAS: First apoptosis signal, FASL: FAS ligand, MIP: Macrophage inflammatory proteins, BCL: B‑cell lymphoma, MCP: Monocyte 
chemoattractant protein
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additional release of inflammatory mediators from 
activated intrinsic and extrinsic immune cells. Extensive 
neuronal death, damage to BBB, and worsening 
cerebral edema will ensue. Both cellular and humoral 
components of immune response are involved. Our 
understanding of the complex interaction among 
innate and adaptive immune system and the brain 
is still evolving. Enhanced inflammatory response is 
thought to help with the removal of cell debris but 
also contributes to additional injury by both direct cell 
toxicity and release of pro‑inflammatory chemokines and 
cytokines. For instance, while decreased infiltration of the 
brain by immune cells is associated with smaller infarct 
size, it may also lead to higher rates of hemorrhagic 
transformation of ischemic brain.[50,51]

Humoral immune response is mediated by multiple 
immune mediators after I/R injury. Pro‑inflammatory 
mediators include several  cytokines such as 
interleukin (IL)-1α, IL-1 β, and TNF-α.[52,53] Exogenous 
administration of IL-1 β after focal ischemic injury has 
been shown to increase infarct size in animals.[54] Several 
pro‑inflammatory chemokines are also released after 
ischemia including CX3CL1, MCP-1, and MIP-1α that 
will aggravate brain injury by increasing permeability 
of BBB.[55] Other important pro-inflammatory 
mediators released after brain ischemia are matrix 
metalloproteinases (MMPs),[56] especially MMP-9,[57] 
that disrupt BBB and thereby increase brain edema[58] 
and risk of bleeding into infarcted brain tissue.[59,60] On 
the other hand, various anti‑inflammatory mediators are 
also released after brain ischemia.[61] Release of IL-10 by 
T helper 2 (Th2) lymphocytes can inhibit the effects of 
IL-1 and TNF-α.[62,63] For instance, knockout IL-10 mice 
and humans with decreased levels of IL-10 develop 
larger infarcts after focal ischemia.[64-67] Transformation 
growth factor-β (TGF-β)[68-70] and insulin-like growth 
factor 1 (IGF-1)[71,72] are among other anti‑inflammatory 
mediators that exert neuroprotective properties.

Modulation of humoral immunity
Several studies have investigated humoral immunity 
and inflammatory mediators as therapeutic targets. 
Infarct size was reduced in mice knockout for IL-1α/β 
and their receptor IL1-receptor 1.[73-76] Administration 
of IL-1 receptor antagonist, rhlL-1ra, was found to be 
safe and effective in a phase 2 clinical study of ischemic 
stroke.[77] Exogenous recombinant IL-6 has been shown 
to be protective in rats by decreasing inflammation.[78] 
While experimental blockage of TNF-α limits brain 
injury, its expression may also be protective against 
ischemia.[79,80] The paradoxical effects of TNF-α can be 
explained by the activation of different downstream 
receptors that exert toxic versus protective properties 
by activation of caspases[81] versus NF-κB pathway,[82] 
respectively. Inhibition of pro‑inflammatory chemokines 

has been promising in animal models of brain ischemia 
not only by reducing inflammation and limiting damage 
to BBB but also by activation of stem cells.[83] Decreased 
MMP-9 activity has been shown to be protective against 
acute injury.[84-88] However, interventions affecting 
MMPs need to be approached carefully given that their 
activity is presumed to be protective during the recovery 
phase.[89] Anti‑inflammatory mediators have also been 
investigated for treatment of I/R injury. Increased 
levels of IL-10 have been shown to be protective against 
focal brain ischemia in animals, but clinical studies 
are lacking.[90-93] Increased expression of TGF-β and 
IGF-1 suppresses activity of Th1 and Th2 lymphocytes 
and enhances regulatory T-cells (Treg cells) and thereby 
can be neuroprotective after ischemia in animals.[68,72,94-97] 
However, their role in humans and especially after global 
I/R injury is yet to be determined.

Cellular immune reactions are mediated by both 
brain intrinsic microglia and infiltrating peripheral 
leukocytes. Neuronal loss and injury induced by I/R 
will activate dormant brain intrinsic microglia within 
minutes of ischemia by stimulation of their surface 
TLRs.[98,99] Enhanced activity of microglia has been 
shown to last for weeks after the initial insult.[100] 
During the acute phase, activated microglia convert 
into a pro‑inflammatory (M1) phenotype that obtains 
macrophage-like properties (such as antigen presentation) 
and generates several pro‑inflammatory mediators (such 
as IL-1 β, TNF-α, and ROS) and MMPs that can 
disrupt BBB.[101] Inhibition of microglial activation in 
experimental models (for instance, by minocycline)[102,103] 
has been shown to be neuroprotective, but supportive 
data in humans are lacking.[104] Ischemia will also activate 
brain astrocytes that release additional pro‑inflammatory 
mediators such as chemokines, cytokines, nitric oxide, 
and ROS.[105] Additional immune mediators are released 
due to systemic inflammatory response induced by 
systemic ischemia and catecholamine surge after CA. 
These mediators activate the bone marrow hematopoietic 
system that is reflected by a decrease in spleen size after 
brain ischemia and increased release of the immune 
cells into peripheral bloodstream.[106,107] Accordingly, 
splenectomy before brain ischemia in animal studies 
has been shown to decrease infiltration of immune 
cells into the brain tissue.[108] Increased expression of 
several members of selectin family on the surface of 
endothelium (E-selectin), leukocytes (L-selectin), and 
platelets (P-selectin) along with increased expression of 
intracellular and vascular adhesion molecules (ICAM-1 
and VCAM-1) facilitates entry of peripheral immune 
cells into the brain after ischemia through damaged 
endothelium and BBB.[109-111] Accordingly, levels of P- and 
E-selectin and ICAM-1 are correlated with severity 
of stroke.[112-114] Peripheral neutrophils migrate first, 
followed by macrophages and later natural killer (NK) 
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cells and lymphocytes.[115-117] Neutrophils infiltrate 
the brain as soon as 30 min after ischemia and release 
additional pro‑inflammatory cytokines and enzymes 
such elastase, granzyme A, myeloperoxidase, and 
MMPs that will worsen brain inflammation and further 
disrupt BBB.[36-38] In addition, nitric oxide production will 
increase by activation of inducible isoform of nitric oxide 
synthase.[118-120] Macrophages and peripheral monocytes 
contribute to both pro‑ and anti‑inflammatory processes 
after ischemia. Pro-inflammatory monocytes (such 
as Ly-6Chigh/CCR2+ subpopulation) egress into the 
brain and some develop macrophage-like features 
inside the nervous tissue.[121] Infiltrating lymphocytes 
and their subtypes play a complex role in brain 
inflammation after ischemia.[122,123] NK cells and 
CD4+ and CD8+ T-lymphocytes not only cause neuronal 
damage by direct cytotoxicity but also exaggerate 
excitotoxicity by releasing factors such as IL-1 β, IL-17, 
interferon-γ (IFN-γ), TNF-α, and ROS.[116,124,125] Release of 
IFN-γ and granulocyte-macrophage-colony-stimulating 
factor by NK cells will further activate macrophages, 
microglia, and astrocytes and leads to a vicious cycle of 
inflammation in the central nervous system. In addition, 
increased expression of aquaporin-4 that regulates water 
transport along with increased activity of MMP and 
permeability of disrupted BBB and endothelium will lead 
to vasogenic edema and increased risk of hemorrhage 
and thereby increased intracranial pressure that can 
cause additional brain damage.[105,126-128]

Modulation of cellular immunity
Various lines of immune cells are involved in brain injury 
after I/R. Therefore, several animal and human studies 
have investigated cellular immunity as a therapeutic 
target. Decreased entry of peripheral immune cells 
into ischemic brain tissue may result in decreased 
inflammation and better outcomes. Inhibition of adhesion 
molecules such as P- and E-selectin and ICAM-1 has 
been shown to be protective against focal ischemia in 
animals.[129-133] Blocking L-selectin also appears to be 
protective against I/R injury.[134,135] However, results of 
clinical trial in preventing transmigration of peripheral 
immune cells into the nervous system have been 
disappointing. Administration of selective monoclonal 
antibodies against ICAM-1 (enlimomab), CD11b/CD18, 
and recombinant neutrophil inhibitory factor resulted 
in no protection and even worsened outcomes.[77,136] 
Lack of desirable clinical outcomes has been attributed 
to the selection of antibody. Role of interventions 
toward VCAM-1 is unclear, and contradictory results 
have been reported.[137,138] Although administration 
of oral minocycline to modulate early inflammatory 
response was promising in earlier trials, a phase 4 trial 
was terminated due to futility.[139,140] Similarly, despite 
encouraging results of preliminary studies on the 
administration of α4-integrin antibody natalizumab 

after focal ischemia, no significant clinical benefit was 
found in a recent clinical trial.[141] Fingolimod, an S1P 
receptor agonist, has been shown to decrease infiltration 
of lymphocytes into brain and activation of brain 
microglia.[142] Combination of fingolimod and alteplase 
in a pilot trial of ischemic stroke has shown improved 
clinical outcomes.[143]

Chronic cerebral inflammation after cardiac arrest
Inflammatory processes during this phase (days to weeks 
after CA) stimulate pathways involved in neuronal 
repair and play an important role in brain recovery. 
Regulatory mechanism will lead to gradual resolution of 
the immediate inflammatory response. Microglia assume 
an anti‑inflammatory (M2) phenotype, assist with a 
clearance of the cell death products,[144,145] and secrete 
anti‑inflammatory immune mediators (such as IL‑10 and 
TGF-β) that can subside pro‑inflammatory processes and 
exert neuroprotection.[146,147] They also promote neuronal 
repair, prevent premature death of neural stem cells, and 
enhance neurogenesis and neurite growth by secretion of 
growth factors such as IGF-1 and glial cell line-derived 
neurotrophic factor.[148-151] Activated astrocytes play an 
anti‑inflammatory role as well.[152-155] Anti‑inflammatory 
monocytes (such as Ly-6Clow/CCR2-subpopulation and 
Treg cells) also release anti‑inflammatory cytokines such 
as IL-10.[156,157] Ultimately, neurogenesis, angiogenesis, 
and synaptogenesis will result in functional recovery.[158]

Therapeutic Hypothermia and Brain 
Inflammation after Cardiac Arrest

TH is the only approved treatment to date for 
neurological injury after CA. Neuroprotective 
properties of hypothermia have been known for the 
past three decades;[159] however, clinical application 
of TH to protect brain after CA was widely adopted 
after two large prospective clinical trials.[160,161] Several 
factors are to be considered in application of TH as 
a neuroprotective measure.[162] Choosing the optimal 
temperature is of paramount importance to provide 
neuroprotection and avoid undesirable adverse 
effects. It appears that milder reductions in core body 
and brain temperature can be as effective as lower 
temperatures.[163] In clinical settings, targeting core 
temperature of 32°C–34°C was initially recommended 
for comatose patients with out-of-hospital CAs due to 
shockable rhythms. However, more recent evidence 
suggests that targeted temperature management 
and avoidance of hyperthermia may exert the same 
clinical benefits.[164] Early application and sufficient 
maintenance of TH are also important to achieve 
maximum neuroprotection and improve outcomes.[3] 
Here, we review the beneficial and neuroprotective 
effects of TH in regard to cerebral inflammation after 
CA [Table 1].
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Therapeutic hypothermia during acute phase after 
ischemia‑reperfusion injury
In the first several minutes of I/R after CA, early 
implementation of TH will decrease the metabolic 
demand and activity of neurons and thereby extends 
preservation of energy reservoir and prevents shift 
toward anaerobic metabolism and lactic acidosis.[165] In 
addition, TH increases expression of glutamate receptor 
subunit 2 of the AMPA receptor. Upregulation of 
this subunit reduces influx of calcium after I/R. The 
subsequent decrease in intracellular calcium level and 
glutamate release will dampen excitotoxicity.[166,167] 
Hypothermia also reduces expression of immediate 
early genes, stress signals, and microRNAs; however, 
the significance of these changes in neuroprotection 
is not clear.[10,168-170] Neuroprotection by TH can also be 
provided by decreased generation of ROS due to blunting 
cerebral blood flow after reperfusion.[171,172] In addition, 
by reducing activity of neuronal and inducible isoforms 
of nitric oxide synthase, TH decreases production of 
nitric oxide.[173,174]

Therapeutic hypothermia during subacute phase 
after ischemia‑reperfusion injury
The beneficial effects of TH extend beyond the acute 
phase. As described above, I/R leads to neuronal 
apoptosis via multiple pathways. TH, on the other hand, 
can prevent apoptosis via both caspase-dependent and 
caspase-independent pathways.[175] Hypothermia has 
been shown to inhibit translocation of apoptosis-inducing 
factor from mitochondria.[176-178] It also shifts the balance 
toward stimulation of anti-apoptotic mechanisms 
(such as BCL-2 and PKCε) and reducing activity of 
pro-apoptotic processes (such as BAX, PKCδ, and 
FAS/FASL).[179-183] By increasing BCL-2, TH activates 
the serine/threonine protein kinase AKT that is 
involved in cell survival and proliferation.[181,184] Most 
importantly, TH limits the maladaptive inflammatory 
response during subacute phase after CA that leads 
to better outcomes.[185,186] Hypothermia exerts its 
anti-inflammatory properties on multiple immune 
cells and mediators. It decreases activation of microglia 
and recruitment of immune cells into ischemic brain 
tissues.[187] It also inhibits NF-κB and MAPK signaling 
pathways and expression of adhesion molecules involved 
in ischemia‑induced inflammation.[185,188-193] Release of 
various pro‑inflammatory cytokines (such as IL‑1 β and 
TNFα) and chemokines (such as MCP-1 and MIP3α) is 
also reduced by TH.[194-198] However, TH will also reduce 
anti‑inflammatory mediators such IL‑10 and TGF‑β.[195,199] 
As discussed above, disruption of BBB by inflammation 
after I/R injury leads to brain edema and hemorrhagic 
conversion within infarcted tissues that will eventually 
cause secondary damage by elevation of intracranial 
pressure. Hypothermia has been shown to decrease BBB 

disruption in various brain pathologies. The underlying 
mechanism for BBB protection by TH is presumed to be 
decreased proteolytic activity of enzymes such as MMPs 
and release of MMP inhibitors, as well as preservation 
of endothelial cells and pericytes.[200-206] Hypothermia 
can decrease brain edema by decreased expression of 
aquaporin-4 after global brain ischemia.[128,207,208]

Therapeutic hypothermia during chronic phase 
after ischemia‑reperfusion injury
Hypothermia also affects the chronic phase (days 
to weeks) after I/R brain injury. It has been shown 
to increase the level of several neurotrophic factors 
such as brain-derived and glial-derived neurotrophic 
factors that are involved in neuronal recovery.[209-211] 
Despite some conflicting reports, it seems that mild 
hypothermia (as opposed to deep hypothermia with 
temperatures below 30°C) enhances activity of stem cells 
and their differentiation into neurons and glial cells after 
brain ischemia likely by inhibition of apoptosis.[212-217] 
However, the optimal parameters for hypothermia to 
promote neurogenesis and whether this effect applies to 
aged individuals are yet to be determined. Hypothermia 
limits injury to oligodenrocytes and enhances their 
proliferation after brain injury.[213,218] The net effect for 
increased activity and number of astrocytes by TH 
after brain injury are not clear. While generation of new 
astrocytes may be required for brain regeneration, it 
may also lead to formation of glial scars and interfere 
with neurogenesis and synaptogenesis.[219] Hypothermia 
also promotes angiogenesis after brain injury although 
its clinical benefit has not been proven and can even 
impair recovery.[175,220,221] Formation of new neuronal 
connections (synaptogenesis) is an important part of 
recovery after extensive brain damage. Hypothermia 
appears to enhance this process by upregulation of genes 
required for synapse formation.[220,222-224]

Current Perspectives and Future Directions

Despite astounding evidence for the role of inflammation 
in pathogenesis of I/R injury and encouraging animal 
data, TH remains the only proven treatment to date for 
neuroprotection after CA. Several clinical trials based 
on animal findings or preliminary clinical data have 
failed to show benefits and some resulted in worsened 
outcomes. Complex pathophysiology of I/R injury, in 
general, and unknown interactions among different 
components of immune response, in particular, are likely 
to be responsible for poor translation of bench findings 
into meaningful bedside trials. In addition, results of 
animal models from one brain pathology (for instance, 
brain hemorrhage or focal ischemia) shall be cautiously 
generalized to another disease (such as global brain 
ischemia). Even in animal models for global ischemia, 
it appears that some modifications are required to 



Tahsili‑Fahadan, et al.: Hypothermia and brain inflammation

Brain Circulation ‑ Volume 4, Issue 1, January‑March 2018 7

better reflect the complexity and realities of global brain 
ischemia in humans. Aging brain, gender‑specific factors, 
and common comorbidities need to be incorporated 
into animal studies. In regard to immunomodulatory 
treatments including TH, careful timing of therapeutic 
interventions is of critical importance. At times, 
modulation of an immune mediator can result in different 
outcomes based on timing and activated downstream 
pathways. As described above, inflammatory processes 
after brain injury have significant overlap and affecting 
a single component may not be sufficient to overcome 
the redundancy. Combination of different therapeutic 
modalities (such as TH with antibodies against immune 
cells or mediators) to affect multiple mechanisms 
simultaneously may be advantageous. While many of the 
clinical studies targeted blockage of pro‑inflammatory 
mediators and peripheral immune cells, more focus 
on brain intrinsic microglia and enhancement of 
anti-inflammatory mediators may result in better 
outcomes. In addition, application of newer technologies 
such as molecular imaging and advanced multi-modal 
MRI in design and interpretation of clinical studies may 
be helpful.

Conclusions

Inflammation after CA plays a major role in 
pathophysiology of brain I/R injury. Modulation of 
brain inflammation provides a wide range of therapeutic 
options. TH is the only proven treatment to date that 
affects multiple aspects of brain inflammation after 
CA. Further animal and clinical studies are required to 
identify other treatment options.
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