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Abstract
Major depressive disorder (MDD) is associated with increased suicidality, and it’s still challenging to identify suicide in clini-
cal practice. Although suicide attempt (SA) is the most relevant precursor with multiple functional abnormalities reported 
from neuroimaging studies, little is known about how the spontaneous transient activated patterns organize and coordinate 
brain networks underlying SA. Thus, we obtained resting-state magnetoencephalography data for two MDD subgroups of 
44 non-suicide patients and 34 suicide-attempted patients, together with 49 matched health-controls. For the source-space 
signals, Hidden Markov Model (HMM) helped to capture the sub-second dynamic activity via a hidden sequence of finite 
number of states. Temporal parameters and spectral activation were acquired for each state and then compared between 
groups. Here, HMM states characterized the spatiotemporal signatures of eight networks. The activity of suicide attempters 
switches more frequently into the fronto-temporal network, as the time spent occupancy of fronto-temporal state is increased 
and interval time is decreased compared with the non-suicide patients. Moreover, these changes are significantly correlated 
with Nurses’ Global Assessment of Suicide Risk scores. Suicide attempters also exhibit increased state-wise activations in 
the theta band (4-8 Hz) in the posterior default mode network centered on posterior cingulate cortex, which can’t be detected 
in the static spectral analysis. These alternations may disturb the time allocations of cognitive control regulations and cause 
inflexible decision making to SA. As the better sensitivity of dynamic study in reflecting SA diathesis than the static is vali-
dated, dynamic stability could serve as a potential neuronal marker for SA.
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Introduction

Depression is the leading cause of mental health burden 
worldwide, and in extreme cases leads to suicide [1]. A 
meta-analysis provides that suicide attempt (SA) has 31% 
lifetime prevalence in individuals with major depressive dis-
order (MDD) across the world [2]. The topic of depression 
and suicide is unprecedentedly urgent and essential as the 
increased suicidality in the COVID-19 pandemic reported 
from different countries [3–5]. At present, clinical assess-
ments of suicide risk usually rely on retrospective informa-
tion, which are often unsatisfactory [6]. Additionally, nearly 
80% of patients who committed suicide didn’t report suicidal 
ideation in their last communication about this [7]. There-
fore, there is a need to explore the potential mechanism of 
suicidal behavior to find suicidal biomarkers which may 
assist in improving the future clinical evaluation of suicidal 
risk [8, 9]. Identifying brain alterations by neuroimaging 
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may help to understand the neuronal mechanism of suicidal-
ity and develop such markers [10].

Resting brain activity has been linked to higher order 
cognitive processes and previous studies suggested that an 
impairment of cognitive control may underpin the high sui-
cide rates in individuals with MDD [11]. To better under-
stand the neural mechanisms underlying resting-state brain 
functions, there have been a shift in brain mapping from the 
study of discrete functional regions to the identification of 
networks [12]. The existed evidence for resting-state net-
work (RSN) changes in SA comes largely from functional 
magnetic resonance imaging (fMRI) [13–15]. For example, 
suicide attempters with MDD have been demonstrated with 
synchronous alterations in intrinsic activity of the frontal, 
temporal, and parietal areas [16], altered intra- and inter-net-
work connectivity among default mode network and salience 
network, as well as the right frontal-parietal network [17]. 
Furthermore, the decreased functional network connectivity 
between insular–default mode network and insular–cerebel-
lum was associated with the suicide and stress level in the 
suicidal depressed group [18].

Despite the above research progresses, most analysis 
undertaken in a static definition of the whole-time scale usu-
ally ignore the dynamic activity in resting state and erase 
the tiny features in particular time point. Actually, resting 
state has been proved to be underpinned by much richer 
spatiotemporal dynamics then previous studies assumed 
and the network could be better characterized using some 
extra time-varying measures of interactions [19, 20]. But to 
date, dynamic studies on suicide issue of MDD are still lim-
ited and they all focused on suicide ideation (SI). Dynamic 
whole-brain connectomics using a sliding window were 
found with increases in the overall topological properties 
among MDD patients with SI, and the features may correlate 
with the severity of SI [21]. Another dynamic characteriza-
tion of low-frequency fluctuation (dALFF) on resting-state 
fMRI using sliding-window analysis suggested that the SI 
MDD group showed decreased brain dynamics in various 
regions involved in executive and emotional processing [22]. 
Dynamic evidence that SI in patients with MDD may be 
related to an abnormality in habenula was also found by 
sliding-window fMRI analysis [23]. These dynamic studies 
reported their findings on the differential regions of SI, but 
the instability of neuronal networks has not been considered.

In addition, the temporal resolution of sliding window 
approaches is limited, as each window requires relatively 
large amounts of data, typically several seconds in length 
[24]. Due to its limited temporal resolution, fMRI currently 
cannot be used to image dynamic brain activity in the time 
frame in which neuronal processes occur, i.e., in the sub-
second range [25]. But it is likely that the brain supports 
complex thought and behavior by dynamic recruitment of 
whole brain networks across millisecond time-scales [24]. 

The signatures of these dynamics may be observable in elec-
trophysiological recordings, which reveal that there are sub-
second spontaneous states in resting state brain activity [19, 
26–28]. These spontaneous transient states may organize 
and coordinate neural activity in brain networks. Although 
SA is the most important risk factor for subsequent suicide 
behavior, how sub-second transient states of large-scale 
brain networks are altered in SA is still unknown. Therefore, 
we require electrophysiological recordings to have more 
complete understanding measures of the suicidal trajectory 
of networks.

In the current study, we used resting-state magnetoen-
cephalography (MEG) to track the abnormality of brain 
dynamics underlying SA of MDD patients. The major 
advantage of MEG is the ability to capture neuronal electro-
physiological signals with high temporal resolution and rich 
frequency information. The development of analysis meth-
ods that capture dynamics, Hidden Markov Model (HMM), 
opens such an opportunity to explore how dynamics in oscil-
lations across a spectral range supports the electrophysiolog-
ical networks [19, 28]. HMM was developed without a prior 
on dynamic windows to assess network dynamics across the 
brain parcellations [24, 29]. To our knowledge, this HMM 
application is the first dynamic electrophysiological network 
study on SA of MDD, which could characterize the brain 
alternations of SA in a spatially, temporally and spectrally 
defined way. We hypothesized that suicide attempt in MDD 
may be associated with aberrant dynamics involving acti-
vation of the frontal, temporal, parietal and default mode 
networks. Our aim is to provide greater mechanistic insight 
into the brain dysfunctions by exploring the altered brain 
network dynamics underlying SA, and also to yield more 
potential measures to serve as diagnostic neuronal markers 
as a supplement to the clinical suicidal assessments.

Materials and methods

Participants

80 MDD patients were recruited at the Inpatient Depart-
ment of Psychiatry of the Affiliated Brain Hospital of Nan-
jing Medical University, while 50 healthy controls (HCs) 
were enrolled through advertisements in the same region. 
Resting-state MEG scanning was performed on patients at 
the time of hospitalization. All subjects were right-handed 
and fulfilled the conditions to undergo a MEG scan. Among 
them, 2 MDD and 1 HC participants were excluded due to 
excessive head movements and poor image quality. In the 
final analyses, 78 MDD and 49 HC were included. Patients 
were assessed with the MINI-International Neuropsychiat-
ric Interview (M.I.N.I.) [30] in accordance with the crite-
ria of both the Diagnostic and Statistical Manual of Mental 
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Disorders, 4th edition (DSM-IV). The severity of depression 
was evaluated by the 17-item Hamilton Depression Scale 
(HAMD-17).

MDD patients consisted of suicide-attempted (SA) sub-
group including 34 participants and non-suicide (NS) sub-
group including 44 participants. Patients were included in 
the SA subgroup when they had at least one documented 
self-injurious act with the intent to die in the current episode, 
and confirmed by medical records that the HAMD-17 third 
item (suicide) score ≧ 2 [6, 31]. Patients were included in the 
NS subgroup when they were without any suicide attempt 
history during the present or in previous episodes. Patients 
also met with the following inclusion criteria: (1) having a 
depressive episode with a HAMD-17 total score > 17; (2) 
no comorbidity with other DSM-IV axis-1 disorders such 
as schizophrenia, substance abuse, obsessive compulsive 
disorders, and generalized anxiety; (3) no use of psycho-
tropic medication including antidepressants, antipsychotics 
and benzodiazepines for the past 2 weeks; (4) no physical 
therapy such as repetitive transcranial magnetic stimulation 
(rTMS) or electroconvulsive therapy (ECT) during the past 
six months. Participants with the following criteria were 
excluded from the study: (1) serious medical conditions 
such as organic brain disorders and severe somatic diseases; 
(2) history of alcohol and drug abuse; (3) pregnancy. HCs 
were screened for family history of any mental disorders and 
adopted similar exclusion criteria to that of patients.

Table 1 summarized the demographic and clinical char-
acteristics of all participants. There is no group difference 
in gender, age and education years. The difference between 
the NS and SA subgroups in HAMD-17 total scores could 
be eliminated by subtracting the third (suicide) term, which 
implies there is no difference in their other depressive sever-
ity. In addition, the suicide risks in MDD patients were also 

assessed by the Nurses’ Global Assessment of Suicide Risk 
(NGASR) [32], which also reflects difference in suicide level 
between the NS and SA subgroups.

MEG image acquisition

MEG data were recorded in a magnetically shielded room 
using an Omega 2000, 275 channel CTF MEG system (VSM 
Med Tech Inc, Port Coquitlam, Canada). Resting state MEG 
scanning lasted for 4 min with 300 Hz sampling rate. The 
subjects were instructed to lie in the supine position with 
closed eyes and to neither fall asleep nor think of anything 
in particular during the scanning session.

Individual anatomical images were acquired with a 
Siemens Verio 3  T MRI system using a high-resolu-
tion, T1-weighted, 3D gradient-echo pulse sequence 
(TR = 1900  ms, TE = 2.48  ms, FA = 9°, slices num-
ber = 176, slice thickness = 1 mm, voxel size = 1 × 1 × 1  mm3, 
FOV = 250 × 250  mm2). Three fiducial markers, place at the 
nasion, left and right preauricular, enabled offline MRI and 
MEG co-registration.

Preprocessing and source reconstruction

The raw MEG data were preprocessed by the Fieldtrip tool-
box (fieldtrip.fcdonders.nl). All-sensor signals were firstly 
band-stop filtered to remove power-line inference (50 Hz), 
and then band-pass filtered to 1–75 Hz frequency range. 
Within fieldtrip interface, trials and channels deviating in 
the overall distributions were removed. Further step was 
applied using temporal Independent Components Analy-
sis (tICA) across the sensors using the FastICA algorithm. 
Artifacts related to breath, heart beat and muscle movement 
were rejected by visual check in this step. Then a linearly 

Table 1  Demography for all subjects

*Significant differences between groups (p < 0.05)
a  Note here, the third item of HAMD-17 is to evaluate the suicide level from 0 to 4
b  NGASR, Nurses’ Global Assessment of Suicide Risk

MDD patients Healthy controls p values

Non-suicide (NS) Suicide-attempt (SA)

Gender (F/M) 23 M/21F 14 M/20F 25 M/24F 0.577
Age (years) 30.8 ± 8.6 28.1 ± 9.6 30.9 ± 7.2 0.287
Education (years) 13.8 ± 2.8 13.7 ± 3.0 14.7 ± 1.4 0.160
Course of disease (months) 68.8 ± 66.8 73.3 ± 70.6  − 0.429
Number of episodes of depression 3.0 ± 1.8 3.5 ± 2.8  − 0.224
Family history of mental disorder (Y/N) 13/31 10/24  − 0.990
Family history of suicide (Y/N) 2/42 2/32  − 0.791
HAMD-17 total scores 20.5 ± 4.6 23.1 ± 4.2  − 0.015*
HAMD-17 3rd item (suicide) 0.3 ± 0.4 3.1 ± 0.6  − 0.000*
NGASR scores b 6.1 ± 2.1 12.3 ± 1.9  − 0.000*
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constrained minimum variance (LCMV) beamformer was 
utilized to project the resulting pre-processed MEG data 
onto a regular 8 mm grid source space [33].

Parcellation and orthogonalization

The brain was parcellated with a weighted parcellation of 39 
cortical regions, which was identified from a resting-state 
ICA decomposition of fMRI data from the first 200 subjects 
of the Human Connectome Project and had been previously 
used in various MEG studies [24, 34, 35], particularly in 
275-channel CTF MEG data [36]. Single time series as the 
first principal component was acquired to represent each par-
cellation. A multivariate symmetric orthogonalization was 
then adopted to attenuate the spatial leakage effects [36].

The hidden Markov model

The HMM assumes that a time series can be described using 
a hidden sequence of a finite number of states [37]. At each 
time point, only one state is active, the probability of a state 
being active at time point t is modelled to be dependent on 
which state was active at time point t − 1 (i.e. it is order-one 
Markovian) [29]. HMM aims to discover these hidden brain 
states as well as the likely sequence of transitions between 
them. The HMM could be inferred from the source-space 
MEG data using the HMM-MAR toolbox (https:// github. 
com/ OHBA- analy sis/ HMM- MAR). To alleviate overfit-
ting issues, time delay embedded HMM (TDE-HMM) [28, 
29] applies a different variety of the HMM to time courses 
and infers a multivariate Gaussian distribution describing a 
delay-embedding of the source time courses.

HMM inference

The source-reconstructed time courses were embedded 
with time lags varying between -7 and 7. In our dataset 
with 300 Hz sampling rate, it corresponded to windows of 
100 ms and specified a 50 ms lag in both directions. The lags 
resulted in (N parcels × N lags)× N timepoints data matrix 
for each subject. N is referred to 39 parcels here. Afterwards, 
the first dimension of this matrix containing the spatial and 
lag information was reduced by projecting the matrix onto 
the first 4 N× parcels components of a principal component 
analysis. The HMM-MAR uses stochastic inference, which 
is based on taking subsets or batches of subjects at each 
iteration instead of the entire data set [38]. The HMM-MAR 
toolbox uses the alternative to the standard HMM, a stochas-
tic variational inference approach, that can be applied to 
neuroimaging datasets, by greatly reducing its computational 
cost [39]. The batch size was set to use 15 continuous data 
segments at each iteration and number of variational infer-
ence cycles was set to 500. The whole HMM framework 

ran 10 times to ensure the stability of results and the best 
performance with lowest free energy was accepted here.

HMM temporal parameters

After HMM analysis, time series of posterior probabili-
ties was inferred to represent the occurrence probability 
of a state at a time point. After the inference process, the 
Viterbi path was also computed [40]. This is defined as the 
most probable sequence of states representing the mutually 
exclusive state allocations. They were used to calculate the 
temporal parameters of each state, includes Fractional Occu-
pancy (FO), Life Time (LT) and Interval Times (IT). These 
parameters could provide an overview of brain state dynam-
ics captured by HMM [19]. FO refers to the proportion of 
each state time spent in the total time length. LT is the mean 
dwell time of each state on a single visit and IT is the mean 
time between the state visits [12]. In the current step, the 
above temporal parameters of each HMM state were calcu-
lated for each subject individually.

HMM state‑wise spectral analysis

To acquire power for each frequency band and HMM 
state, we made use of a nonparametric estimation, using a 
novel state-wise version of the multi-taper [28]. The state-
wise power across the parcellations were computed from 
the results of HMM in the spectral range of broadband 
(1–30 Hz) for each state. The spectral content and spatial 
maps were acquired for each subject and then averaged 
among all subjects to see the correspondence of HMM states 
to intrinsic brain networks. Afterwards, we factorized the 
spectral information in each subject into different frequency 
modes for ease of group comparison in each frequency band.

Statistical analysis

The overall dynamics of three temporal parameters (FO, LT 
and IT) were preliminarily compared between the whole 
MDD cohort and the HC cohort, and then between the SA 
subgroup and NS subgroup of MDD cohort to find suicidal 
differences. These differences [HC vs. MDD, MDD(SA) vs. 
MDD(NS)] were all found with permutation tests and the 
resulted p values were false discovery rate (FDR) corrected. 
Pearson correlation analysis was then used to study the asso-
ciations among suicide risk measures (NGASR scores) and 
temporal parameters of different states in SA individuals.

Similar to the dynamic parameters, the state-wise power 
in various frequency bands (theta, alpha, beta) were also 
compared between cohorts [HC vs. MDD, MDD(SA) vs. 
MDD(NS)] with permutation test and followed by FDR 
correction.

https://github.com/OHBA-analysis/HMM-MAR
https://github.com/OHBA-analysis/HMM-MAR
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Static spectral analysis

As a comparison to the above dynamic methods, the static 
frequency analysis was calculated with the same multi-taper 
method. Static power spectra were calculated directly from 
the whole-length time courses of all 39 regions without any 
state information. The static power spectra were compared 
between cohorts [HC vs. MDD, MDD(SA) vs. MDD(NS)] 
in the exact same way with the dynamic state-wise spectra.

Results

Eight HMM states were identified by TDE-HMM infer-
ence on all subjects. The mean activation maps and tem-
poral parameters of eight HMM states across all subjects 
are displayed in Supplementary Figure S1. The goal of the 
variational inference in the current HMM analysis is the 
minimization of the so-called free energy. Free energy from 
the model inference provides an approximation to model evi-
dence (accuracy—complexity) [39]. The percentage change 
decreases as the number of states increases and the improve-
ment becomes negligible beyond eight states as shown in 
the supplementary Figure S2. In addition to the objective 
measure, we also followed the approach in [19] to determine 
the final HMM states (K) by testing a range of values for 
K. The corresponding results for mean activation maps are 
shown in supplementary Figure S3. The principle here is not 

to establish the ‘correct’ number of states, but to identify an 
optimal number that provides a reasonable description of 
the dataset for each specific purpose [24]. Our selection of 
state number as eight here is also driven by that the spatial 
topographies are in consistent with previous MEG HMM 
studies [12, 19] and traditional resting state networks.

Changed temporal dynamics in suicide attempters

We found differences in temporal parameters of state 1, 4, 7 
and 8 between the whole MDD cohort and HC cohort (Sup-
plementary Figure S4). Then we further explored differences 
between SA and NS subgroups of MDD to find the suicidal 
features. The changed temporal dynamics related with SA 
were found in state 4 (Fronto-temporal), 7 (Sensorimotor) 
and 8 (Parietal) as present in Fig. 1. For the fronto-temporal 
network, the FO of SA patients is significantly higher than 
that of the NS patients (p < 0.001 after correction), and IT is 
significantly lower (p < 0.001 after correction). The signifi-
cant higher FO and LT also are displayed for the parietal net-
work in SA patients accompanying with lower IT (p < 0.001 
after correction). And for the sensorimotor network, LT is 
lower in the SA patients (p < 0.001 after correction).

Furthermore, the temporal parameters of fronto-temporal 
network (state 4) in SA subgroup of MDD could be corre-
lated with their suicide risks, which were clinically meas-
ured by NGASR. As shown in Fig. 2, FO of the fronto-
temporal network is positively correlated with suicidal risk 

Fig. 1  A The spatial maps for state 4 (Fronto-temporal), 7 (Sensori-
motor) and 8 (Parietal) for all subjects. Please note that the activation 
maps have been thresholded here to visualize. B Corresponding plots 
for each state show fractional occupancy, state lifetimes and interval 

times between suicide attempted (SA) and non-suicide (NS) MDD 
subgroups. Asterisks (***) denote significantly changed temporal 
dynamics with p < 0.001. The crosses in the figure represent the mean 
values
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(r = 0.4239, p = 0.0125) and IT is negatively correlated 
(r = -0.4384, p = 0.0095). The FO and IT are validated to 
be not correlated with severity of depression within SA 
patients.

Changed state‑wise power in suicide attempters

Significant differences on state-wise power were found in 
state 1, default mode network (DMN) between the whole 
MDD cohort and HC cohort as shown in Supplementary 
Figure S5. To detect suicidal features, spectral activation 
differences of the DMN between SA and NS subgroups of 

MDD were further compared in each independent frequency 
band. DMN (state1) shows an abnormal power activation 
pattern in theta band (Fig. 3A) in SA patients compared 
with NS patients. In the posterior part of DMN, SA patients 
activate with higher power in theta band than NS depressed 
patients do (after correction). Interestingly, the posterior cin-
gulate cortex (PCC), on which the posterior DMN centers 
[41], is included in the differential regional sets (p < 0.001 
after correction). In Fig. 3B, power of the whole brain aver-
aged among 39 parcellations are plotted for 8 dynamic states 
(acquired from HMM inference) and a static condition (cal-
culated in the whole-length time scale without HMM). The 

Fig. 2  Significant correlations 
between suicide risk scores 
(NGASR) and dynamic param-
eters of fronto-temporal network 
(fractional occupancy and inter-
val times) in suicide attempted 
MDD patients. NGASR, 
Nurses’ Global Assessment of 
Suicide Risk

Fig. 3  A Comparison between suicide attempted and non-suicide 
MDD subgroups on the power of default mode network derived from 
HMM states. Colorbars represent -log10 transform of p values, which 
mean 1.3–3.5 in the colorbars correspond to p values in 0.05–0.0003. 
B Powers of the whole brain averaged across regions for the 8 states 

in HMM dynamic analysis and for the whole time-scale static analy-
sis. Power distributions for the PCC are also plotted in the same way. 
C Power changes in the HMM-specific and static frequency content 
induced by suicide attempt. The significant difference of default mode 
network (state1) in Figure A is boxed in red
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power of PCC is also plotted in the same way. The power 
of state 1 (DMN) is mainly activated in the low frequency 
and much higher than all the other states here. The same 
situation is applicable to the PCC. The PCC power is also 
highest in state 1 compared with all the other states and 
the static condition. Suicide induced spectral changes in the 
static and HMM-specific frequency content are displayed in 
Fig. 3C. The dynamic spectral analysis is likely to decom-
pose the static spectral findings in different temporal HMM 
states, but could reveal more clear and detailed differences. 
To validate that, we also present the static spectral analysis 
in the following part.

Static spectral findings

As a comparison, static spectral power was calculated and 
compared also in three frequency bands, which could be 
found in Fig. 4A. Among the 39 parcels, the main difference 
between the whole MDD group and HC group is located 
in the prefrontal power (after correction) of theta and beta. 
Then the static powers of three frequency bands were further 
compared between MDD subgroups of SA and NS as shown 
in Fig. 4B. Although certain changing trends could be found 
in the frontal and sensorimotor areas between groups, there 

is no significant result survived after multi-comparison cor-
rection. The static method is not as sensitive as the HMM 
method to find the distinguishing characteristics of suicide 
attempt.

Discussion

The study investigated and compared dynamic functional 
networks in MDD patients with and without suicide 
attempts. By the comparison between SA and NS subgroups 
of MDD, we show that FO of fronto-temporal network is a 
dynamic variable increasing significantly in SA patient sub-
group. Furthermore, we show that this variable is a sensitive 
marker for SA, as the fronto-temporal FO is positively cor-
related with the clinically assessed suicide risk. Also in the 
SA subgroup, the DMN exhibits a higher state-wise activa-
tion in theta band compared with the NS group, which could 
not be captured by the static analysis and emphasizes the 
essentiality of dynamic analysis. The current study provide 
a more comprehensive insight into neural activities, which 
may be ignored via averaging those activities over time in 
static analysis.

Fig. 4  A Static spectral comparisons between the whole MDD and 
HC cohorts. Significant decreased theta power and increased beta 
power in the depressed group are displayed. Colorbars represent 
-log10 transform of p values, which mean 1.3–3.5 in the colorbars 
correspond to p values in 0.05–0.0003. B Static spectral compari-
sons between the non-suicide and suicide attempted MDD subgroups. 

Changing trends could be found between MDD patients without 
suicide and with suicide attempt, but no significant finding could 
be found after correction. Colorbars represent -log10 transform of p 
values, which mean 1.3–2 in the colorbars correspond to p values in 
0.05–0.01
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A recent review has also proposed that the suicidal brain 
across psychiatric diagnoses seems to heavily involve the 
dysfunction of the fronto-temporal network [42]. Such dys-
function has also been further enriched from the dynamic 
aspect from our findings. In this study, dynamic parameter 
of the fronto-temporal network, particularly the FO, is sig-
nificantly increased in the SA subgroup and positively cor-
related with the increases in suicide risks. From the aspect 
of cognitive impairment, suicide attempters were proven 
with impaired executive function, attention, and memory, 
which was linked to prefrontal lobe dysfunction [18]. The 
specific brain network of fronto-temporal regions was sug-
gested for processing emotional prosody [43]. In addition, 
planning and acting out suicidal impulses in response to 
mental pain were also associated with increased activity 
in the frontal cortex [44]. It’s interesting that we report the 
increase of fronto-temporal FO in SA patients is accompa-
nied by a decrease in IT, but with no apparent difference 
in state LT between the two MDD subgroups. Once the 
fronto-temporal state occurs, its dwell time is not changed 
with SA. However, the increased FO and decreased IT 
imply that the resting-state activity of SA patients switches 
more frequently into the fronto-temporal state, which may 
disturb the regular time allocation of the whole cognitive 
processing and increase mental pain in MDD patients. The 
correlation between temporal parameters and suicidal risk 
also implies further that FO of fronto-temporal network 
could be a potential biomaker to predict the risk level of 
suicide behavior.

In addition to the frontal and temporal cortices, it is 
agreed that dysfunction associated with the parietal corti-
ces is also implicated in the suicidal brain. Fronto-parietal 
network is involved as a part of cognitive control network 
which is critical for problem-solving and executive function-
ing [14]. Previous in vivo and post-mortem neurobiologi-
cal studies have also implicated ventromedial and parietal 
regions in suicide risk [45]. According to our HMM analy-
sis, three temporal parameters of the parietal network are 
all significantly changed by SA. Compared with NS MDD 
subgroup, SA MDD subgroup exhibits increased FO and 
LT. There may be major dynamic disturbance to the related 
cognitive control function, so as to increase the vulnera-
bility to suicide for MDD patients. In addition, this study 
found decreased LT of sensorimotor network in the SA sub-
group. Sensorimotor-related areas involve the lateral tem-
poral and occipital lobes, and primary sensorimotor cortex 
[46]. Attention and other cognitive processes also play a 
role in the modulation of rhythmic activity in sensorimotor 
regions and similarly may reflect sensory gating mechanisms 
involved in motor preparation or anticipation of sensory 
input [47].Based on the suicidal changing trend in the pari-
etal and sensorimotor state, we propose that sensorimotor 
network works as a complement to the parietal network in 

the suicidal cognition processing, and thus, it exhibits the 
opposite changing dynamics to the parietal abnormalities 
in SA patients.

Of our HMM analysis, state 1 exhibits significant spatial 
similarity with the stationary activation pattern. Its spatial 
morphology, coupled with low FO and high IT (Supplemen-
tary Figure S1) between state visits suggests that this state 
is equivalent to what Baker and colleagues [19] termed the 
DMN. In addition, its power spectra is also much higher 
than all the other states as shown in Fig. 3B, which is in 
agreement with Diego et al.[29]. Our dynamic analysis 
finds SA related theta-band power difference in the poste-
rior activations of DMN (Fig. 3A), including its centered 
region PCC. The DMN plays an important role in “internal 
mentation”—the introspective and adaptive mental activi-
ties in which humans spontaneously and deliberately engage 
[48]. Several lines of evidences suggest a perturbed sense of 
self in people who attempt suicide [49, 50]. Suicidal activ-
ity in mood disorder patients may be also a consequence 
of impaired self-referential thought processing [15]. In par-
ticular, posterior DMN has been implicated in conscious-
ness and memory processing [41], which are both critical 
to suicidal susceptibility. Our results in the posterior part of 
DMN, SA patients activate with higher power in theta band. 
The evidence from EEG study reported that theta power in 
the fronto-central region was significantly increased in the 
high SI group [51]. Although the EEG study were conducted 
in the sensor level and reported scalp electrode changes, 
it supports the increased activity in theta band has clini-
cal potential as a biomarker for identifying suicide. Thus, 
we validate the essentiality of exaggerated posterior DMN 
activation in theta band underlying SA.

To our knowledge, only few previously published stud-
ies examined suicide in MDD using MEG. Optimal use of 
the rich information content of MEG signals often benefits 
from reconstruction of the generators of the signals [52]. 
The previous analysis from our group of resting-state MEG 
data in source space found caudothalamic coupling abnor-
mality in the high risk suicidal group [53]. In a whole-brain 
source-level MEG study, the gamma power of anterior insula 
regions was found to be associated with SI and Ketamine 
could improve the clinical symptoms of SI [54]. Healthy 
controls were not included. In the recent MEG study, they 
didn’t capture the group difference, but revealed that elec-
trophysiological connectivity, as coupling of low frequency 
power (delta and theta) with alpha and beta power, was 
strongly related to SI [55]. These published MEG study on 
suicide didn’t consider the sub-second dynamics in spon-
taneous fluctuations, but validated the potential of MEG to 
explore SA and inspired us to make full use of MEG tem-
poral information. As we adopted the difference analysis 
methods from the previous MEG application, the results 
are hard to be comparable with them. In our static analysis 



European Archives of Psychiatry and Clinical Neuroscience 

1 3

shown in Fig. 4, the difference of brain regional power can 
only be found between the whole MDD and HC cohorts. 
No static power difference between SA and NS subgroups 
is significant after correction. That is not surprising because 
the difference between subgroups in a cohort is usually not 
as significant as that between two cohorts. Dynamic differ-
ences in the time scale may be erased in the traditional static 
analysis. This dynamic analysis complements the past static 
findings and provides more sensitive measures. The HMM 
is a probabilistic model, which means it does not specify a 
model fit with Gaussian noise distributed around it, instead 
the state-specific multivariate Gaussian distribution is itself 
the actual model description. So we can look at the free 
energy, as an approximation of the model evidence, i.e. prob 
(model | data) [39]. As shown in supplementary Figure S2, 
the improvement in free energy over the K = 1 model as evi-
dence that it is doing a better job than a static model at least. 
Together with the process of HMM validation completed in 
the supplementary material, we could be confident that the 
HMM was focused on relevant dynamics of MEG.

In the current study, we used the mean temporal param-
eters within each subject in the statistical analysis following 
the previous resting-state neuroimaging HMM studies [12, 
56–59]. Before that, each individual does not only generate 
the single value of LT or IT from the direct HMM output 
other than FO. These application studies of HMM could sup-
port the feasibility of within-subject averaging parameters 
in our group comparisons, and the high dependency of the 
values from the same subject could be eliminated in this 
way. However, for analysis of task data, the scanning time of 
each subject may be divided into different period according 
to the stimulus onset and response time. In this case it will be 
tricky to average the dynamic parameters in different visits 
to get the within-subject mean values. To overcome the high 
dependency across the values from the same individual, a 
mixed-effect modeling/regression and controlling some pre-
dictors in the regression would be good and essential for 
analysis of task data where the task design may limit the 
summary statistics of state sequences. Controlling some pre-
dictors, like demographical variables could also be discussed 
in our current study. As noted in Table 1, demographical 
variables were not significantly different between groups in 
our dataset. Furthermore, we repeated the between-group 
comparisons of dynamic parameters after regressing out age 
and education years and performing inference on the result-
ing residuals. Between-group differences were unchanged 
when inference was performed on the residuals, suggesting 
that these matched variables did not significantly influence 
our findings. We would like to recommend readers to con-
sider these points in their following work in such cases.

Some limitations need to be discussed for the cur-
rent study. Firstly, our sample size is relatively small due 
to the difficulties in MEG acquisition. But it’s relatively 

considerate comparing with other MEG studies. Secondly, 
we only performed a cross-sectional study, and a longitudi-
nal study is also in need both with neuroimaging recordings 
and clinical follow-up to ascertain the predictions of SA in 
the future. A bigger dataset with more clinical data would 
also be of interest in the future suicidal study.

Conclusion

Overall, we propose that fast transient dynamics is potential 
for capturing changes in state-wise temporal-spatial-spectral 
patterns, which may lead to dysfunctional emotional pro-
cessing and cognitive control in SA of MDD individuals. 
Dynamic measures (FO and IT) of fronto-temporal network 
may become potential biomarkers of SA in MDD patients, 
and state-wise activation of DMN in specific frequency 
band should also be emphasized in the future dynamic stud-
ies on SA. The whole framework could fuel our ability to 
understand the neuronal mechanism of SA, and potentially 
response to the clinical need of suicidal prediction in the 
MDD population.
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