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Abstract: Combining atomistic and coarse-grained (CG) models is a promising approach for
quantitative prediction of polymer properties. However, the gaps between the length and time
scales of atomistic and CG models still need to be bridged. Here, the scale gaps of the atomistic model
of polyethylene melts, the bead–spring Kremer–Grest model, and dissipative particle dynamics with
the slip-spring model were investigated. A single set of spatial and temporal scaling factors was
determined between the atomistic model and each CG model. The results of the CG models were
rescaled using the set of scaling factors and compared with those of the atomistic model. For each
polymer property, a threshold value indicating the onset of static or dynamic universality of polymers
was obtained. The scaling factors also revealed the computational efficiency of each CG model with
respect to the atomistic model. The performance of the CG models of polymers was systematically
evaluated in terms of both the accuracy and computational efficiency.

Keywords: polymer physics; molecular dynamics; coarse-grained model; atomistic model

1. Introduction

Because of scientific and industrial interest, entangled polymer materials have been studied for
many years. However, accurate quantitative prediction of polymer properties is still a long-standing
issue because of the slow relaxation nature of the polymer dynamics far from the nanoscale of the
molecular architecture [1–3]. Atomistic molecular dynamics (MD) simulations trace the dynamics of
polymer molecules using realistic length and time units in a straight forward manner, but the simulation
time (up to a few microseconds) is not sufficient to cover polymer relaxation (up to seconds, minutes,
hours, months, or years), even using current high-performance computers. Thus, coarse graining
of molecular models and simulations was developed to cover larger timescales [4–9]. To accelerate
simulations, in most cases, the number of degrees of freedom is reduced and a Langevin equation
of motion is often used. Importantly, the realistic units of length, time, temperature, and so forth
are lost during such coarse graining, and thus coarse-grained (CG) MD (CGMD) simulations only
return qualitative values. These “scale gaps” make it difficult to evaluate the accuracy of the estimated
polymer properties and determine how much MD simulations are accelerated using CG models.
To solve this problem and quantitatively evaluate CG models, the results of CGMD simulations
should be rescaled by using realistic units. A general way to rescale the results is application of
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the scaling law of polymer dynamics experimentally determined for polymer materials [1,2,10–17].
For simple straight-chain polymers, the scaling law can be determined regardless of the difference
of the chemistry of the molecular architecture. Importantly, the above character of the law can be
applied to different molecular models of polymers even though each model has a different concept,
such as the presence/absence of chemistry, employment of the Newton/Langevin equation of motion,
and so forth. This was investigated in several previous reports. Hamandaris et al. [18] compared the
polymer dynamics of the atomistic polystyrene (PS) model with that of the CG PS model. The CG
PS model was rescaled by a temporal scaling factor determined by comparison of the unentangled
short chain dynamics. Masubuchi et al. [19] investigated the compatibility of the dynamical and static
polymer properties among different models of the multi-chain slip-link model, multi-chain slip-spring
model, and bead–spring model. Polymer diffusion of the three models coincided by using spatial and
temporal scaling factors, showing the compatibility of the models. Takahashi et al. [20] compared the
polymer dynamics of the atomistic PE model with that of the bead-spring model. They determined a
set of spatial and temporal scaling factors to successfully rescale the results of the bead–spring model,
but the scaling behavior around the onset of entanglement was different for each polymer property.
This quantifies the applicable range of bridging between the models and suggests the possibility of
further improvements for CG models. Nevertheless, few studies evaluated both the accuracy and
computational efficiency of CG models rescaled by the above scheme.

In this work, we investigated the scale gaps of the atomistic model of polyethylene (PE) melts,
bead–spring Kremer–Grest (KG) model [5,8], and dissipative particle dynamics (DPD) with slip-spring
model [21]. A single set of spatial and temporal scaling factors was determined between the atomistic
model and each CG model. The results of the CGMD simulations were rescaled using the set of
scaling factors and compared with those of the atomistic model. Threshold values that indicate the
onset of static and dynamic universality among the polymer models were obtained for almost all
of the results of comparison of the polymer properties, showing the accuracy of the CG models.
The computational efficiency of each CG model was quantitatively estimated with respect to the
atomistic model. The performance of the CG models of polymers was systematically and quantitatively
evaluated in terms of both the accuracy and computational efficiency.

2. Methodology

2.1. Bead–Spring KG Model

In this work, the bead–spring model for polymer chains developed by Kremer and Grest [8] was
used as the coarse-grained model without chemical parameters. The model consists of simple beads
whose non-bonded interactions are described by the following repulsive LJ potential:

uLJ(r) =

{
4ε
[(

σ
r
)12 −

(
σ
r
)6

+ 1
4

]
(r/σ < 21/6)

0 (r/σ > 21/6)
, (1)

where ε = 1 is the unit of energy, σ = 1 is the unit of length, and r is the distance between two
beads. The bonds between beads are described by the following finite extensible nonlinear elastic
(FENE) potential:

uFENE(r) =

 − kR2
0

2 ln
(

1− r
R0

)2
(r < R0)

∞ (r > R0)
, (2)
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where k = 30 ε/σ2 is the spring constant and R0 = 1.5 σ is the maximum extension of the spring.
For polymer motion in the KG model, the following Langevin-type equation is used:

mKGr̈i = −∇∑
i 6=j

[uLJ(rij) + uFENE(rij)]− Γṙi + W(t), (3)

〈W(t) ·W(t′)〉 = 6kBTδijδ(t− t′), (4)

where mKG is the mass of the KG bead, r are the coordinates of the bead, Γ is an arbitrary friction
constant, W(t) is a random force, kB is Boltzmann’s constant, and T = ε/kB is the temperature. mKG,
kB, and T were set to 1, and Γ was set to 0.5. All of the simulations using the KG model were performed
using the NVT ensemble. The monomer density was 0.85 mKG/σ3. The velocity Verlet integrator [22]
was used with three-dimensional periodic boundary conditions and a time step of ∆tKG = 0.006 τKG,
where τKG is the time unit of the KG model. The number of KG beads (NKG) varied from 20 to 250.
For NKG = 20–80, equilibrium simulations with a total of 2× 108 time steps were performed for three
independent initial structures. For NKG = 100–250, equilibrium simulations with a total of 6× 108

time steps were performed for six independent initial structures. The total number of beads in the
system (Ntotal) was fixed at about 25,000. Each KG MD (KGMD) simulation system was equilibrated
prior to data acquisition.

2.2. DPD with the Slip-Spring Model

We used the DPD method [6,23,24] to reproduce the behavior of the polymer melt. The DPD
method was proven to be an effective mesoscopic simulation tool to study fluid events occurring at
millisecond timescales and micrometer length scales via by tracking the motion of coarse-grained
particles (composed of a group of atoms or molecules). Many researchers studied the thermodynamic
and morphological behavior of polymers using the DPD method, for example, self-assembly
of dendritic copolymers [25–27], micelle fusion or vesicle formation [28,29], and nanocomposite
systems [30–33].

The fundamental equation in the DPD method is Newton’s equation of motion. Newton’s
equation of motion for particle i is given by

mi
dvi
dt

= fi = ∑
j 6=i

FC
ij + ∑

j 6=i
FD

ij + ∑
j 6=i

FR
ij , (5)

where v is the velocity vector, FC is the conservative force, FR is the pairwise random force, and FD is
the dissipative force. The conservative force is softly repulsive:

FC
ij =

−aij

(
1−

∣∣rij
∣∣

rc

)
nij,

∣∣rij
∣∣ ≤ rc

0,
∣∣rij
∣∣ > rc ,

(6)

where rij = rj − ri and nij = rij/
∣∣rij
∣∣. Here, aij is a parameter to determine the magnitude of the

repulsive force between particles i and j, and rc is the cutoff distance. The random force FR
ij and

dissipative force FD
ij are given by

FR
ij =

{
ζωR (∣∣rij

∣∣) ζij∆t−1/2nij,
∣∣rij
∣∣ ≤ rc

0,
∣∣rij
∣∣ > rc

(7)

and

FD
ij =

{
−γωD (∣∣rij

∣∣) (nij · vij
)

nij,
∣∣rij
∣∣ ≤ rc

0,
∣∣rij
∣∣ > rc

(8)
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respectively, where vij = vj−vi, ζ is the noise parameter, γ is the friction parameter, and ζij is a random
number based on the Gaussian distribution. Here, ωR and ωD are r-dependent weight functions:

ωD (r) =
[
ωR (r)

]2
=


[

1−
∣∣rij
∣∣

rc

]2

,
∣∣rij
∣∣ ≤ rc

0,
∣∣rij
∣∣ > rc .

(9)

The temperature is controlled by a combination of dissipative and random forces. The noise parameter
ζ and friction parameter γ are connected by the fluctuation–dissipation theorem:

ζ2 = 2γkBT. (10)

Usually, reduced units are used for reporting DPD results. The DPD unit of length is the cutoff
radius (rc), the unit of mass is the DPD bead mass (mDPD), and the unit of energy is kBT. Hence,
rc = mDPD = kBT = 1.

In this work, the number of DPD beads NDPD was varied from 5 to 100. Each particle and its
nearest neighbor in the polymer are connected by a harmonic spring described by

FS
ij = −k

(∣∣rij
∣∣)nij (11)

with a spring constant of k = 2 kBT/r2
c [21].

All of the simulations were performed with the NVT ensemble. The particle density and
temperature were set to 3.0 r−3

c and 1.0 kBT, respectively. Periodic boundary conditions were applied
in all three dimensions. In the DPD simulation, the thermostat is achieved by pairwise random and
dissipative forces. These forces are coupled by the fluctuation-dissipation theorem [24]. The noise
amplitude ζ and friction coefficient γ are included in the dissipative and random forces, respectively.
They satisfy ζ =

√
2γkBT, which reproduces the canonical ensemble. ζ and γ were set to 3.0 and

4.5, respectively.
The total number of beads in the system (Ntotal) is 3000 to 24,000 depending on the chain length.

In our simulations, the interaction parameters in Equation (1) are described by aij = 25 kBT/rc.
In the DPD method, a soft potential is also used as the interaction between particles. However, it

is known to be unable to reproduce entanglement effects [34]. To capture the entanglement behavior of
the polymer, slip-springs [21,35,36] were introduced with the DPD polymer chains. The details of the
procedure are given elsewhere [21,36]. The number of slip-springs is 300 to 2400, namely a slip-spring
is placed for every ten beads.

Each run was performed for 107 time steps with a time step ∆tDPD = 0.06 τDPD, where τDPD is the
time unit for DPD with the slip-spring model, to reproduce the equilibrium polymer melt. The reported
data are the average over the last 5× 106 time steps.

2.3. Atomistic Model of PE

Most accurate classical MD simulations are performed using all-atom (AA) molecular models.
However, it is often beyond the capability of current computers to trace the slow polymer motion of
the AA model up to a meaningful timescale [18]. Thereforem united-atom (UA) molecular models
were developed and used as quantitative atomistic models. In UA models, a group of atoms, such as
CH3, is merged into one UA particle whose non-bonded interactions are described by Lennard-Jones
(LJ) potentials. Such UA models have three main benefits in terms of computational efficiency:
(i) the degrees of freedom can be reduced, (ii) the time step for molecular motion can be extended,
and (iii) computationally expensive Coulomb interactions can be omitted for UA particles that do
not have an overall charge. Because of these benefits, UA models “accelerate” the timescale of AA
molecular motion. A previous study showed that the dynamics of AA polystyrene (PS) systems
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is accelerated by about 120 times by using the UA PS model [18]. Importantly, this acceleration
ratio between AA and UA models cannot be evaluated before direct comparison of the dynamics
of the two simulations. This indicates that the UA model has a scale gap problem, like CG models.
However, in terms of only computational efficiency, UA models are used for quantitative molecular
simulations. In fact, UA models are widely used for MD simulations of polymers. For UA models of
the common polymer PE, the anisotropic UA (AUA) [37], optimized potentials for liquid simulations
(OPLS)-UA [38], and transferable potentials for phase equilibria force field (TraPPE)-UA [39] models
are widely accepted [40–46]. MD simulations using UA PE models were recently performed for a wide
range of polymer nanocomposites [47,48], polymer interfaces [49–51], ring polymers [52], nucleation
of polymer droplets [53], the Fermi–Pasta–Ulam problem in realistic systems [54,55], and better
understanding of the macroscopic mechanical properties [56–60].

In this work, the TraPPE-UA [39] model was used for the atomistic model of PE melts.
The TraPPE-UA PE model consists of two different types of UAs (CH3 and CH2), whose non-bonded
interactions are described by LJ 12–6 potentials. The bond lengths between the UA particles are
kept rigid using the LINCS algorithm [61]. The bond angle bending interactions are described using
harmonic potentials. Rotations along the bonds in the aliphatic backbone are described using standard
torsional potentials. These dihedral potentials are also used for the 1–4 non-bonded interactions.
Atomistic MD (AMD) simulations using the above UA model were performed for PE melts with
molecular weight (M) ranging from 422.8 to 3509 g/mol. Please note that the critical molecular weight
of the model was estimated to 983.9 g/mol from the scaling law and primitive path analysis [20].
Therefore both unentangled and entangled motions of PE chains can be observed in this work.
The MD package GROMACS [62] was used for the simulations. To obtain well-equilibrated initial
atomistic structures, over 100 ns long-time MD simulations with intermittent pressure increasing
and temperature decreasing processes were performed with the constant particle number, pressure,
and temperature (NPT) ensemble. The equilibrated systems were confirmed by comparison with the
results of a previous study [46]. The product runs using the equilibrated initial structures were
performed with the constant particle number, volume, and temperature (NVT) ensemble using
the Nosé–Hoover thermostat [63,64]. The density and temperature were set to 0.650 g/cm3 and
500 K, respectively. Non-bonded interactions were cut off beyond 1.2 nm. The Verlet leapfrog
integrator [65] was used with three-dimensional periodic boundary conditions and a time step of
2 fs. For M = 422.8–983.9 g/mol, equilibrium simulations with a total of 5× 107 time steps (=100 ns)
were performed for three independent initial structures. For M = 1405–2106 g/mol, equilibrium
simulations with a total of 2.5× 108 time steps (=500 ns) were performed for six independent initial
structures. For M = 2807–3509 g/mol, equilibrium simulations with a total of 5× 108 time steps
(=1µs) were performed for six independent initial structures.

For easy understanding, here we state the two clear differences between AMD using TraPPE-UA
and KGMD. The one is a force field. In TraPPE-UA, a bond, angle, torsion, and non-bonded repulsive
and diffusive forces are quantitatively considered based on quantum and molecular mechanics.
In contrast, KGMD considers only qualitative FENE-bond and non-bonded repulsive forces. The other
is an equation of motion. In AMD, Newton’s equation of motion is simply but strictly used. In KGMD,
Langevin equation is modified for polymer dynamics, and the arbitrary parameter Γ is employed for
easy expression of friction between polymer chains.

2.4. Rescaling of the CG Models

Regarding the unentangled/entangled nature of polymer molecules, some scaling laws of the
polymer properties have a critical molecular weight Mc that indicates the change of the polymer
dynamics. For simple explanation of the scaling laws, the Rouse model [66] and reptation model [1]
were suggested for unentangled motion (M < Mc) and entangled motion (M > Mc), respectively.
Thus, the scaling factor to rescale the CGMD simulation results can be determined by comparison of the
unentangled or entangled polymer dynamics based on the Rouse or reptation model. Determination
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from unentangled motion is beneficial in terms of the computational efficiency. Generally, relaxation
of unentangled motion is much faster than that of entangled motion. Thus, the scaling factor can be
determined with less effort. Hermandaris et al. [18] compared the unentangled polymer dynamics of
the atomistic model with that of the CG model by using the mean-squared displacements (MSDs) of
the short chain motions, and they determined the temporal scaling factor based on the Rouse model.
They observed hundreds of nanoseconds of polymer dynamics by quantified CGMD simulations of PS
melts. Nevertheless, determination of the scaling factor based on the Rouse model should be carefully
performed. The scaling law of the Rouse model is supported by the Gaussian nature of the motion of
the segment with sufficiently high molecular weight (i.e., the long chain). However, several atomistic
and CG models do not show Gaussian nature at M < Mc [67,68]. The non-Gaussian nature becomes
the cause of deviation of the scaling law from that of the Rouse model. Moreover, there is a concern
that a lot of accurate CG models have non-Gaussian nature in the unentangled state. Saleno et al. [69]
compared the polymer dynamics of the atomistic PE model with that of the coarse-grained PE model for
different degrees of coarse graining. They found that a small degree of coarse graining (4–6 monomers
per coarse-grained particle) is required to correctly describe the macroscopic behavior of the polymer
properties. The small degree of coarse graining indicates non-Gaussian nature of the coarse-grained
particle. Therefore, the deviation of the scaling law for unentangled motion should be carefully
examined for each molecular model.

Another strategy is to use the scaling law of entangled motion. This is computationally expensive,
but it is a promising method because some scaling laws are robust with respect to the degree of coarse
graining for M > Mc. In other words, the entangled motion based on the reptation model surpasses
the non-Gaussian nature of the segment that consists of the short chain. In this work, we determined
the spatial and temporal scaling factors focusing on the entangled motion. Takahashi et al. [20] focused
on the critical point of the scaling laws of the self-diffusion coefficient and end-to-end relaxation time
with respect to the molecular weight. They determined a single set of scaling factors that attain the
best accuracy for rescaling the KG model to the units and dimensions of the UA model of PE. However,
their scheme was optimized for comparison of the above two models. To determine the scaling
factors in a more general and robust way, we performed the following six steps: (i) for each molecular
model, compute the scaling laws with respect to the molecular weight for the self-diffusion coefficient
D–M, end-to-end relaxation time τR–M, mean-squared end-to-end vector 〈R2〉–M, and mean-squared
radius of gyration 〈R2

G〉–M (some other kinds of scaling law are basically addable), (ii) determine the
critical molecular weight of each molecular model from the critical point of D–M or τR–M scaling
laws, and determine a scaling factor of the mass, m∗ = Mc,AMD/Mc,CGMD (see Table 1 for actual
values), (iii) define the undetermined scaling factors for length and time, (iv) rescale the scaling laws
of the CG models using the undetermined scaling factors, (v) calculate the relative root-mean-squared
deviations (rRMSDs) between the scaling laws of the atomistic model and those of the rescaled CG
model, and (vi) determine the set of spatial and temporal scaling factors that give the smallest sum of
the rRMSDs. The definition of rRMSD is as follows:

rRMSD2
X(p, q) =

1
n− 1 ∑

M≥Mc

|δX(p, q, M)|2, (12)

δX(p, q, M) =
XCGMD(p, q, m∗M)− XAMD(M)

XAMD(M)
(13)

where rRMSDX is the rRMSD of the scaling law for property X, p and q are undetermined scaling
factors, n is the number of data points at M ≥ Mc, and δX is the deviation of property X from the
results of AMD.
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3. Results and Discussion

3.1. Scaling Laws

First of all, the D–M, τR–M, 〈R2〉–M, and 〈R2
G〉–M scaling laws are computed. Takahashi et al. [20]

shows that the critical molecular weight can be determined from the change in D–M and τR–M power
law exponents that indicate the onset of entanglement, and the determined value corresponds to the
critical molecular weight estimated from primitive path analysis [70–72]. Therefore, we employ their
strategy as a simple and robust way to determine the critical molecular weight. The 〈R2〉–M and
〈R2

G〉–M scaling laws are shown in Figure 1a,b, respectively. For 〈R2〉–M, the rescaled KGMD results
are almost equal to the AMD results for M ≥ Mc, whereas the rescaled DPD results slightly deviate
from the AMD results for M ≥ Mc. However, for 〈R2

G〉–M, the rescaled KGMD and DPD results are
almost equal to the AMD results for M ≥ Mc. The above results indicate that the determined spatial
scaling factor has adequate accuracy. The τR–M scaling law is shown in Figure 1c. The rescaled KGMD
and DPD results are almost equal to the AMD results for M ≥ Mc. This indicates that the temporal
scaling factor is reasonable. The D–M scaling law is shown in Figure 1d. The rescaled KGMD and
DPD results are almost equal to the AMD results for M ≥ Mc. Please note that both the spatial and
temporal scaling factors were required for rescaling D. The results indicate that the set of scaling
factors is reasonable. The scaling factors determined from our scheme are given in Table 1.

Figure 1. Comparison of the scaling laws for the UA PE model and rescaled CG models. (a) 〈R2〉–M
scaling law. (b) 〈R2

G〉–M scaling law. (c) τR–M scaling law. (d) D–M scaling law.

3.2. Static Properties

In the following sections, scaling factors determined in the previous section (see Table 1) were
used for rescaling the KGMD and DPD results to real units.
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The scale gap can be approximately evaluated from the scaling factors, but its details should be
carefully determined by comparison of the physical properties. To reveal the details of the spatial scale
gap, some static properties of the MD simulations were compared. The radial distribution function
g(r) is useful to reveal the local structure of polymer melts:

g(r) =
1

4πr2∆rρ

〈∑j nj(r)〉
Ntotal − 1

, (14)

where ρ is the number density of particles and nj(r) is the number of particles (i.e., carbon atoms/beads)
in the region between r and r + ∆r when particle j is on r = 0. The term nj(r) can be defined for
the total, intermolecular, and intramolecular contributions. g(r) describes the distance dependence
of the probability for beads/carbon atoms to meet. g(r) for all particles, intermolecular particles,
and intramolecular particles is shown in Figure 2a–c, respectively. For all of the results, the peaks of
the three models do not coincide at r < 0.77 nm, but the plateaus/curves at r > 0.77 nm do coincide.
For DPD, violation of the excluded volume effect is observed, showing that the DPD particle can pass
other DPD particles even after implementing slip-springs.

The static structure factor of an individual chain S(q) is useful to determine the small and large
internal structures of polymer melts:

S(q) = 1 +
1

Ntotal
〈∑

j 6=k
exp[−iq · (r j − rk)]〉, (15)

where q is the spatial frequency equal to 2π/r. The fractal scattering of S(q) ∼ q−1/ν is expected to be
equal to q−2 (ν = 1/2) and independent of the chain length. The static structure factors for the three
models are shown in Figure 3. The S(q) curves coincide for q < 2.0 rad/nm, but the fractal scattering
of the CG models is clearly different from that of the atomistic model for q > 2.0 rad/nm. For the
CG models, the fractal scattering for 1.0 rad/nm< q < 5.0 rad/nm is almost the same as that for an
ideal chain. In contrast, the fractal scattering of the atomistic model for 2.0 rad/nm< q < 10 rad/nm is
clearly different from the ideal value. This indicates that the expected cancellation of the dispersion
forces for polymer melts [73] is not entirely satisfied for the atomistic model. The fractal scattering
of the atomistic model for 2.0 rad/nm < q < 10 rad/nm is estimated to be q−1.3. Please note that
the fractal scattering of the atomistic model becomes almost ideal for 1.0 rad/nm< q <2.0 rad/nm,
indicating the onset of cancellation of the dispersion forces at q=2.0 rad/nm (i.e., r = 3.1 nm). In other
words, S(q) of the atomistic model and CG models do not coincide at length scales smaller than 3.1 nm
owing to the effect of dispersion forces. Even though the LJ interactions were cut off beyond 1.2 nm,
internal structures up to 3.1 nm were subject to the influence of dispersion forces.
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Figure 2. Comparison of the radial distribution function (RDFs) for the UA PE model and
rescaled CG models. (a) RDF for all particles. (b) RDF for intermolecular particles. (c) RDF for
intramolecular particles.

For the static properties, the largest threshold value of length is 3.1 nm. This is approximately
equal to 〈R2〉1/2 at M = Mc, indicating mismatch of the static structures between the CG models and
the atomistic model within the distance between the strands of the polymer network.
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Figure 3. Comparison of the static structure factors for the UA PE model and rescaled CG models.

3.3. Dynamic Properties

To clarify the details of the temporal scale gap, some dynamic properties of the MD simulations
were compared. The MSD of the chain center g1(t) shows the relaxation motion of mass transfer:

g1(t) = 〈[rc.c.(t)− rc.c.(0)]2〉, (16)

where rc.c. is the coordinates of the chain center. From the Rouse and reptation models, the scaling-law
sequence for the MSD is expected to be approximately

g1(t) ∼



t1 (t < τ0)

t1/2 (τ0 < t < τc ∼ N2
c )

t1/4 (τc < t < τN ∼ N2)

t1/2 (τN < t < τR ∼ N3/Nc)

t1 (t > τR)

, (17)

where Nc is the segment number corresponding to Mc, N is the segment number per chain, τ0 is
a specific short time, and τc and τN are the Rouse relaxation times that correspond to Nc and N,
respectively. The g1(t) curves for the three models are shown in Figure 4a. For M = Mc(=980 g/mol),
the g1(t) curves coincide for t > 550 ps. For M = 3200 g/mol, the g1(t) curves coincide for
t > 10,000 ps. These threshold values of 550 ps and 10,000 ps are proportional to τR ∼ N3 ∼ M3,
showing the delay in the onset of dynamic universality for the polymer melts. The matching between
the KG and atomistic models is slightly better than that between the DPD and atomistic models.
However, the shape of the g1(t) curve for the DPD model is close to that of the KG model. The threshold
values of Equation (17) are unclear from the g1(t) results themselves. Thus, we plotted g1(t)t−1/2

against time (Figure 4b). The scaling law for τN < t < τR ∼ N3/Nc is approximately satisfied at
about t = 10,000 ps, irrespective of the differences of the models. In contrast, the scaling laws of
the CG models for t < τN deviate from those of the atomistic model. This indicates the difficulty in
determining accurate scaling factors from the MSDs of short chain motions. The shape of the g1(t)t−1/2
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curve for the DPD model is close to that of the KG model, indicating the similarity of the short chain
motions of the two models. Please note that D can be determined from g1(t) because g1(t) ∼ t1 is
expected for t > τR.

Figure 4. Comparison of the MSD of the chain center g1(t) for the UA PE model and rescaled CG
models. (a) g1(t). (b) g1(t)t−1/2.

The time-correlation function of the end-to-end vector C(t) shows the relaxation motion of the
longest chains:

C(t) =
〈R(t) · R(0)〉
〈R2〉 . (18)

Logarithmic plots of C(t) for the three models are shown in Figure 5a. For M = Mc, the C(t) curves
coincide for t < 100 ps. For M = 3200 g/mol, the C(t) curves coincide for t < 1000 ps. However,
the DPD results at M = 3200 g/mol are slightly smaller than the others for t > 1000 ps. This behavior
corresponds to the results of g1(t). For DPD, the g1(t) value is slightly larger than the others, i.e., mass
transfer is slightly faster.

Please note that τR can be determined from C(t) because it is expected that C(t) ∼ exp(−t/τR).
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Figure 5. Comparison of the time-correlation functions of the end-to-end vector for the UA PE model
and rescaled CG models.

The relaxation modulus G(t) shows the viscoelastic behavior of polymer melts:

G(t) =
V

kBT
〈σαβ(t)σαβ(t)〉, (19)

where σαβ are the off-diagonal stress components xy, xz, and yz. For the rheological property, it is
generally believed that the scaling factor should be determined from the rheological response. Indeed,
mismatch of the scaling factor was demonstrated between direct determination from comparison of the
rheological response and the use of the unit of G(t) (energy per volume). For convenience, we defined
two different types of G scaling factors: the G scaling factor from direct comparison Gd and the G
scaling factor after using the unit Gu. Thus, Gd and Gu satisfy the following relation:

Gu = Gd (kBT)∗

l∗3
, (20)

where (kBT)∗ is the scaling factor for kBT. The Gd and Gu values are given in Table 1. G(t) rescaled by
the scaling factor of energy per volume ((kBT)∗/l∗3) based on the unit of the relaxation modulus is
shown in Figure 6a. The KGMD results are almost the same as the AMD results, despite not using
Gd. This is because of the similarity of the polymer networks. For rubber elasticity theory, the shear
modulus of polymer networks can be determined by

G = AνkBT = Aρ(NPPKuhn
e )−1kBT, (21)

where ν and ρ are the number density of the network strand and segment, respectively, A is a constant
dependent on the network functionality and fluctuations imposed to the network nodes, and NPPKuhn

e
is the segment number between entanglements. Please note that NPPKuhn

e is equal to Nc, which is
referred to as the “Kuhn length of the primitive path” and can be determined not only by the scaling
law but also by primitive path analysis [70–72]. From Equations (20) and (21) and Table 1, Gd can be
rewritten as

Gd = A∗ν∗
l∗3

(kBT)∗
= A∗ρ∗N∗−1

c
l∗3

(kBT)∗
. (22)
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Thus, the similarity of the polymer networks can be examined using the A and ν values. For KGMD,
the ν value is 0.85 times that of AMD, indicating that the strand densities of the two model are
approximately the same (see Table 1). From Equation (22) and Gu = 1.0, the A∗ value was determined
to be 1.2, showing that the polymer network of the KG model is very similar to that of the atomistic
model. In contrast, the G(t) results of DPD greatly deviate from those of AMD. For DPD, the ν value
is 1.3 times that of AMD, indicating that the strand densities of the two models are relatively close.
However, Gu between AMD and DPD is 0.19. Thus, the A∗ value is 0.14, showing that the polymer
network of the DPD model is considerably different from that of the atomistic model. Nevertheless,
using Equation (22), the G(t) results successfully rescaled for DPD. G(t) using the scaling factor
determined by Equation (22) is shown in Figure 6b. All of the results coincide for t > 10 ps.

For the dynamic properties, the largest threshold value of time is proportional to M3, showing
the delay in the onset of dynamic universality for the polymer melts. This differs from the onset of
static universality in terms of whether the observed threshold value continues to depend on the chain
length. If the threshold value of time continues to depend on the chain length, it becomes difficult to
effectively switch the use of AMD and CGMD with respect to the timescale. The delay in the onset
of dynamic universality may disappear for relatively large molecular weight, but this condition is
beyond the capability of current computers.

Figure 6. Comparison of G(t) for the UA PE model and rescaled CG models. (a) G(t) rescaled by the
scaling factor of energy per volume ((kBT)∗/l∗3) based on the unit of the relaxation modulus. (b) G(t)
using the scaling factor determined by Equation (22).
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Table 1. Scaling factors of the UA model of PE melts, KG model, and DPD with slip-spring model. a “Carbon num.” becomes the “dimension” of segment number.
b 1 e.u. = 6.9 × 10−21 J. c 1 e.u./nm3 = 6.9 × 106 J/m3 = 6.9 MPa.

Property Dimension Symbol for UA (Unit) KG (Unit) DPD (Unit)
Scaling Factor

— Length l∗ 1 nm/nm 0.33 nm/σ 0.57 nm/rc
— Time t∗ 1 ps/ps 0.080 ps/τKG 0.028 ps/τDPD
— Mass m∗ 1 g/mol/(g/mol) 14 g/mol/mKG 32 g/mol/mDPD
— Energy — 1 J/J 6.9×10−21 J/(kBT)KG 6.9×10−21 J/(kBT)DPD
— (Carbon num.) a N∗ 1 (carbons/carbons) 1.0 (carbons/KG segs.) 2.3 (carbons/DPD segs.)

kBT Energy (kBT)∗ 1 e.u./e.u. b 1.0 e.u./e.u. 1.0 e.u./e.u.

Segment density (Carbon num.)/Length3 ρ∗ 1 (carbons)nm−3

(carbons)nm−3 0.85 (carbons)nm−3

(carbons)nm−3 1.3 (carbons)nm−3

(carbons)nm−3

Critical segment number (Carbon num.) N∗c 1 (carbons/carbons) 1.0 (carbons/carbons) 1.0 (carbons/carbons)
Strand density Length−3 ν∗ = ρ∗/N∗c 1 nm−3/nm−3 0.85 nm−3/nm−3 1.3 nm−3/nm−3

Gd Energy/Length3 (See Equation (22)) 1 e.u.·nm−3

e.u.·nm−3
c 0.036 e.u.·nm−3

e.u.·nm−3 0.036 e.u.·nm−3

e.u.·nm−3

Gu Energy/Length3 Gu 1 e.u.·nm−3

e.u.·nm−3 1.0 e.u.·nm−3

e.u.·nm−3 0.19 e.u.·nm−3

e.u.·nm−3

A — A∗ 1 —/— 1.2 —/— 0.14 —/—



Polymers 2020, 12, 382 15 of 20

3.4. Computational Efficiency

The computational cost of MD simulations can generally be estimated by the number of particles
in the simulation system Np and the number of times of numerical integration Ni. Recent advances in
calculation methods have made it possible to reduce the computational cost of interaction calculations
by up to O(Np) while maintaining the accuracy, where O is a function indicating the order. Thus,
the total computational cost of a MD simulation can be determined by O(NpNi). When considering
numerical integration up to the same timescale for systems with the same particle scale, the relations
of the total time step and number of particles between CGMD and AMD can be expressed as

(Ni∆t)CGMD = (Ni∆t)AMD · t∗, (23)

Np, CGMD = Np, AMD · N∗. (24)

Thus, the ratio of the total computational cost of CGMD to that of AMD can be estimated by

O(NiNp)CGMD

O(NiNp)AMD
=

∆tAMD

∆tCGMD

1
N∗t∗

, (25)

where ∆t is the time step for numerical integration of the equation of motion. For KGMD, the total
computational cost is 4.2 times that of AMD, indicating that the computational efficiency of the KG
model is lower than that of the UA model. This is partly because of that the number of beads (or site)
in single chain of KG model is same as that of UA model. Ordinary, CG models for polymer chains
supposes that one segment of CG models contains several repeat units. In this work, however, “repeat
units per segment” is simply determined from mass (or carbon number) scaling factor shown in Table 1.
Therefore “one unit per segment” is basically possible, and an inversion of computational efficiency is
also possible eventuality. The inversion of computational efficiency between UA and KG model in this
work can be thought of as an overestimating of arbitrary parameter Γ in KGMD. The large Γ makes
dynamics slow because the friction between chains becomes large [74]. It can be assumed that the Γ of
AMD using TraPPE-UA is considerably smaller than that of KGMD. This fact indicates an existence of
real case that the optimization of basic parameter of KG model becomes necessary for efficient coarse
graining. For DPD, the total computational cost is 0.52 times that of AMD. Thus, coarse graining
of the UA model using the DPD model has the benefit of speeding up the MD simulations by about
2 times. The DPD with slip-spring model can be considered to be an option for coarse graining of the
UA PE model.

In Table 2 we summarize the overall performance of UA, KG, and DPD models to simulate
PE melts.

Table 2. Comparison of overall performance of molecular models for PE melts simulations. “A”, “B”,
“C”, and “D” mean “very good”, “good”, “adequate”, and “no good” performance, respectively. a “very
good” after using Equation (22).

UA KG DPD

Static properties 〈R2〉 A B C
〈R2

G〉 A C C
g(r) A B B
S(q) A B B

Dynamic properties D A A A
τR A A B
g1(t) A B B
C(t) A B C
G(t) A A Aa

Computational cost C D B
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4. Conclusions

We investigated the scale gaps among the atomistic model of PE melts, bead–spring KG model,
and DPD with slip-spring model. First, the single set of spatial and temporal scaling factors between
the atomistic model and each CG model was determined. The method to determine the scaling factors
was systematic and robust because some representative scaling laws of straight-chain polymer melts
that can be determined from experimental/computational results were used. The rescaled scaling
laws of the CG models coincide with that of the atomistic model for M > Mc, showing that the
entangled motion is more robust than the non-Gaussian nature of the segment which consists of the
short chain. The results of the CGMD simulations were rescaled using the well-estimated scaling
factors and compared with those of the atomistic model. Threshold values that indicate the onset of
the static and dynamic universality among the polymer models were obtained for almost all of the
results of comparison of the polymer properties. For the static properties, the largest threshold value of
the length is 3.1 nm. This value is approximately equal to 〈R2〉1/2 at M = Mc, indicating the mismatch
of the static structures between the CG models and the atomistic model within the distance between
the strands of the polymer network. For the dynamic properties, the largest threshold value of time
is proportional to M3, showing the delay in the onset of the dynamic universality for the polymer
melts. This is in contrast to the onset of static universality in terms of whether the observed threshold
value continues to depend on the chain length. If the threshold value of time continues to depend on
the chain length, it becomes difficult to effectively switch the use of AMD and CG MD with respect
to the timescale. The delay in the onset of dynamic universality may disappear for relatively large
molecular weight, but this condition is beyond the capability of current computers. From the G(t)
results, and thus the A value, the similarity of the polymer networks among the molecular models
was quantitatively evaluated. The KG model has a similar polymer network to the atomistic model,
whereas the polymer network of the DPD model considerably different from that of the atomistic
model. The computational efficiency of each CG model was quantitatively estimated with respect to
the atomistic model. The total computational cost of KGMD is 4.2 times that of AMD, whereas that of
DPD is 0.52 times that of AMD. The KG model is clearly a poor choice for coarse graining of the UA
PE model, whereas the DPD with slip-spring model is a possible choice for coarse graining, and it has
the benefit of speeding up the MD simulations by about two times.

The performance of the CG models of polymers was systematically and quantitatively evaluated
in terms of both the accuracy and computational efficiency. Using our scheme, the following three
points can be quantitatively evaluated for CG models: (i) the “scale gap” of the static and dynamic
properties from that of the atomistic model, (ii) the similarity of the polymer network to that of the
atomistic model, and (iii) the computational efficiency relative to the atomistic model. The above
three points are crucial elements for further development of better CG models and/or coarse-graining
schemes. In future studies, the performance of other CG models will be extensively evaluated using
our scheme.

Author Contributions: K.Z.T. and N.A. designed the study, R.M. and K.Z.T. performed the MD simulations and
data analyses, R.M. and K.Z.T. wrote the paper, and all authors contributed to the final version. All authors have
read and agree to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: K.Z.T. was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI) (Grant
Number 16H06071) from the Japan Society for the Promotion of Science (JSPS). N.A. was supported by JSPS
KAKENHI (Grant number 17K14610).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1988; Volume 73.
2. Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980.



Polymers 2020, 12, 382 17 of 20

3. Masubuchi, Y. Simulating the flow of entangled polymers. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 11–33.
[CrossRef] [PubMed]

4. Brini, E.; Algaer, E.A.; Ganguly, P.; Li, C.; Rodríguez-Ropero, F.; van der Vegt, N.F. Systematic coarse-graining
methods for soft matter simulations—A review. Soft Matter 2013, 9, 2108–2119. [CrossRef]

5. Everaers, R.; Sukumaran, S.K.; Grest, G.S.; Svaneborg, C.; Sivasubramanian, A.; Kremer, K. Rheology and
microscopic topology of entangled polymeric liquids. Science 2004, 303, 823–826. [CrossRef] [PubMed]

6. Groot, R.D.; Warren, P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic
simulation. J. Chem. Phys. 1997, 107, 4423. [CrossRef]

7. Jury, S.; Bladon, P.; Cates, M.; Krishna, S.; Hagen, M.; Ruddock, N.; Warren, P. Simulation of amphiphilic
mesophases using dissipative particle dynamics. Phys. Chem. Chem. Phys. 1999, 1, 2051–2056. [CrossRef]

8. Kremer, K.; Grest, G.S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation.
J. Chem. Phys. 1990, 92, 5057. [CrossRef]

9. McCarty, J.; Clark, A.; Copperman, J.; Guenza, M. An analytical coarse-graining method which preserves
the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the
mesoscale. J. Chem. Phys. 2014, 140, 204913. [CrossRef]

10. Clark, A.; Guenza, M. Mapping of polymer melts onto liquids of soft-colloidal chains. J. Chem. Phys. 2010,
132, 044902. [CrossRef]

11. Fritz, D.; Koschke, K.; Harmandaris, V.A.; van der Vegt, N.F.; Kremer, K. Multiscale modeling of soft matter:
Scaling of dynamics. Phys. Chem. Chem. Phys. 2011, 13, 10412–10420. [CrossRef]

12. Lyubimov, I.; McCarty, J.; Clark, A.; Guenza, M. Analytical rescaling of polymer dynamics from mesoscale
simulations. J. Chem. Phys. 2010, 132, 224903. [CrossRef]

13. Lyubimov, I.; Guenza, M. First-principle approach to rescale the dynamics of simulated coarse-grained
macromolecular liquids. Phys. Rev. E 2011, 84, 031801. [CrossRef] [PubMed]

14. Padding, J.; Briels, W. Systematic coarse-graining of the dynamics of entangled polymer melts: The road
from chemistry to rheology. J. Phys. Condens. Matter 2011, 23, 233101. [CrossRef] [PubMed]

15. Pérez-Aparicio, R.; Colmenero, J.; Alvarez, F.; Padding, J.; Briels, W. Chain dynamics of poly
(ethylene-alt-propylene) melts by means of coarse-grained simulations based on atomistic molecular
dynamics. J. Chem. Phys. 2010, 132, 024904. [CrossRef] [PubMed]

16. Peter, C.; Kremer, K. Multiscale simulation of soft matter systems–from the atomistic to the coarse-grained
level and back. Soft Matter 2009, 5, 4357–4366. [CrossRef]

17. Peter, C.; Kremer, K. Multiscale simulation of soft matter systems. Faraday Discuss. 2010, 144, 9–24. [CrossRef]
18. Harmandaris, V.A.; Kremer, K. Dynamics of polystyrene melts through hierarchical multiscale simulations.

Macromolecules 2009, 42, 791–802. [CrossRef]
19. Masubuchi, Y.; Uneyama, T. Comparison among multi-chain models for entangled polymer dynamics.

Soft Matter 2018, 14, 5986–5994. [CrossRef]
20. Takahashi, K.Z.; Nishimura, R.; Yamato, N.; Yasuoka, K.; Masubuchi, Y. Onset of static and dynamic

universality among molecular models of polymers. Sci. Rep. 2017, 7, 12379. [CrossRef]
21. Langeloth, M.; Masubuchi, Y.; Böhm, M.C.; Müller-Plathe, F. Recovering the reptation dynamics of polymer

melts in dissipative particle dynamics simulations via slip-springs. J. Chem. Phys. 2013, 138, 104907.
[CrossRef]

22. Swope, W.C.; Andersen, H.C.; Berens, P.H.; Wilson, K.R. A computer simulation method for the calculation
of equilibrium constants for the formation of physical clusters of molecules: Application to small water
clusters. J. Chem. Phys. 1982, 76, 637–649. [CrossRef]

23. Hoogerbrugge, P.; Koelman, J. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle
Dynamics. Europhys. Lett. 1992, 19, 155–160. [CrossRef]

24. Espanõl, P.; Warren, P. Statistical Mechanics of Dissipative Particle Dynamics. Europhys. Lett. 1995,
30, 191–196. [CrossRef]

25. Yu, C.Y.; Ma, L.; Li, K.; Li, S.L.; Liu, Y.N.; Liu, L.F.; Zhou, Y.F.; Yan, D.Y. Computer Simulation Studies on
the pH-Responsive Self-Assembly of Amphiphilic Carboxy-Terminated Polyester Dendrimers in Aqueous
Solution. Langmuir 2017, 33, 388–399. [CrossRef]

26. Zhang, C.Y.; Fan, Y.; Zhang, Y.Y.; Yu, C.; Li, H.; Chen, Y.; Hamley, I.W.; Jiang, S.C. Self-Assembly Kinetics of
Amphiphilic Dendritic Copolymers. Macromolecules 2017, 50, 1657–1665. [CrossRef]

http://dx.doi.org/10.1146/annurev-chembioeng-060713-040401
http://www.ncbi.nlm.nih.gov/pubmed/24498953
http://dx.doi.org/10.1039/C2SM27201F
http://dx.doi.org/10.1126/science.1091215
http://www.ncbi.nlm.nih.gov/pubmed/14764875
http://dx.doi.org/10.1063/1.474784
http://dx.doi.org/10.1039/a809824g
http://dx.doi.org/10.1063/1.458541
http://dx.doi.org/10.1063/1.4875923
http://dx.doi.org/10.1063/1.3292013
http://dx.doi.org/10.1039/c1cp20247b
http://dx.doi.org/10.1063/1.3450301
http://dx.doi.org/10.1103/PhysRevE.84.031801
http://www.ncbi.nlm.nih.gov/pubmed/22060394
http://dx.doi.org/10.1088/0953-8984/23/23/233101
http://www.ncbi.nlm.nih.gov/pubmed/21613700
http://dx.doi.org/10.1063/1.3280067
http://www.ncbi.nlm.nih.gov/pubmed/20095706
http://dx.doi.org/10.1039/b912027k
http://dx.doi.org/10.1039/B919800H
http://dx.doi.org/10.1021/ma8018624
http://dx.doi.org/10.1039/C8SM00948A
http://dx.doi.org/10.1038/s41598-017-08501-0
http://dx.doi.org/10.1063/1.4794156
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1209/0295-5075/19/3/001
http://dx.doi.org/10.1209/0295-5075/30/4/001
http://dx.doi.org/10.1021/acs.langmuir.6b03480
http://dx.doi.org/10.1021/acs.macromol.6b02331


Polymers 2020, 12, 382 18 of 20

27. Zhang, C.Y.; Zhou, H.P.; Li, Y.X.; Zhang, Y.Y.; Yu, C.; Li, H.F.; Chen, Y.; Hamley, I.W.; Jiang, S.C. Investigations
on the micellization of amphiphilic dendritic copolymers: From unimers to micelles. J. Colloid Interface Sci.
2018, 514, 609–614. [CrossRef]

28. Arai, N.; Yasuoka, K.; Zeng, X. Self-Assembly of Janus Oligomers into Onion-like Vesicles with
Layer-by-Layer Water Discharging Capability: A Minimalist Model. ACS Nano 2016, 10, 8026–8037.
[CrossRef]

29. Parent, L.R.; Bakalis, E.; Ramirez-Hernandez, A.; Kammeyer, J.K.; Park, C.; de Pablo, J.; Zerbetto, F.;
Patterson, J.P.; Gianneschi, N.C. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell
Transmission Electron Microscopy. J. Am. Chem. Soc. 2017, 139, 17140–17151. [CrossRef]

30. Arai, N.; Yasuoka, K.; Zeng, X. Self-Assembly of Triblock Janus Nanoparticle in Nanotube. J. Chem.
Theory Comput. 2013, 9, 179–187. [CrossRef]

31. Kobayashi, Y.; Arai, N. Self-Assembly and Viscosity Behavior of Janus Nanoparticles in Nanotube Flow.
Langmuir 2017, 33, 736–743. [CrossRef]

32. Cudjoe, E.; Khani, S.; Way, A.E.; Hore, M.J.A.; Maia, J.; Rowan, S.J. Biomimetic Reversible Heat-Stiffening
Polymer Nanocomposites. ACS Cent. Sci. 2017, 3, 886–894. [CrossRef]

33. Burgos-Mármol, J.J.; Álvarez-Machancoses, O.; Patti, A. Modeling the Effect of Polymer Chain Stiffness on
the Behavior of Polymer Nanocomposites. J. Phys. Chem. B 2017, 121, 6245–6256. [CrossRef]

34. Spenley, N.A. Scaling laws for polymers in dissipative particle dynamics. Europhys. Lett. 2000, 49, 534.
[CrossRef]

35. Likhtman, A.E. Single-Chain Slip-Link Model of Entangled Polymers: Simultaneous Description of Neutron
Spin-Echo, Rheology, and Diffusion. Macromolecules 2005, 38, 6128–6139. [CrossRef]

36. Masubuchi, Y.; Langeloth, M.; Böhm, M.C.; Inoue, T.; Müller-Plathe, F. A Multichain Slip-Spring Dissipative
Particle Dynamics Simulation Method for Entangled Polymer Solutions. Macromolecules 2016, 49, 9186–9191.
[CrossRef]

37. Pant, P.K.; Han, J.; Smith, G.D.; Boyd, R.H. A molecular dynamics simulation of polyethylene. J. Chem. Phys.
1993, 99, 597–604. [CrossRef]

38. Jorgensen, W.L.; Madura, J.D.; Swenson, C.J. Optimized intermolecular potential functions for liquid
hydrocarbons. J. Am. Chem. Soc. 1984, 106, 6638–6646. [CrossRef]

39. Martin, M.G.; Siepmann, J.I. Transferable potentials for phase equilibria. 1. United-atom description of
n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577. [CrossRef]

40. Boyd, R.H.; Gee, R.H.; Han, J.; Jin, Y. Conformational dynamics in bulk polyethylene: A molecular dynamics
simulation study. J. Chem. Phys. 1994, 101, 788–797. [CrossRef]

41. Harmandaris, V.A.; Mavrantzas, V.G.; Theodorou, D.N. Atomistic molecular dynamics simulation of
polydisperse linear polyethylene melts. Macromolecules 1998, 31, 7934–7943. [CrossRef]

42. Jin, Y.; Boyd, R.H. Subglass chain dynamics and relaxation in polyethylene: A molecular dynamics simulation
study. J. Chem. Phys. 1998, 108, 9912–9923. [CrossRef]

43. Kavassalis, T.; Sundararajan, P. A molecular-dynamics study of polyethylene crystallization. Macromolecules
1993, 26, 4144–4150. [CrossRef]

44. Moore, J.; Cui, S.; Cochran, H.; Cummings, P. A molecular dynamics study of a short-chain polyethylene
melt.: I. steady-state shear. J. Non-Newton. Fluid Mech. 2000, 93, 83–99. [CrossRef]

45. Paul, W.; Smith, G.; Yoon, D.Y.; Farago, B.; Rathgeber, S.; Zirkel, A.; Willner, L.; Richter, D. Chain motion in
an unentangled polyethylene melt: A critical test of the rouse model by molecular dynamics simulations
and neutron spin echo spectroscopy. Phys. Rev. Lett. 1998, 80, 2346. [CrossRef]

46. Ramos, J.; Vega, J.F.; Theodorou, D.N.; Martinez-Salazar, J. Entanglement relaxation time in polyethylene:
Simulation versus experimental data. Macromolecules 2008, 41, 2959–2962. [CrossRef]

47. Rissanou, A.N.; Power, A.J.; Harmandaris, V. Structural and dynamical properties of polyethylene/graphene
nanocomposites through molecular dynamics simulations. Polymers 2015, 7, 390–417. [CrossRef]

48. Zhang, Y.; Zhuang, X.; Muthu, J.; Mabrouki, T.; Fontaine, M.; Gong, Y.; Rabczuk, T. Load transfer
of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation.
Compos. Part B Eng. 2014, 63, 27–33. [CrossRef]

49. Harmandaris, V.A.; Daoulas, K.C.; Mavrantzas, V.G. Molecular dynamics simulation of a polymer melt/solid
interface: local dynamics and chain mobility in a thin film of polyethylene melt adsorbed on graphite.
Macromolecules 2005, 38, 5796–5809. [CrossRef]

http://dx.doi.org/10.1016/j.jcis.2017.12.070
http://dx.doi.org/10.1021/acsnano.6b04087
http://dx.doi.org/10.1021/jacs.7b09060
http://dx.doi.org/10.1021/ct3007748
http://dx.doi.org/10.1021/acs.langmuir.6b02694
http://dx.doi.org/10.1021/acscentsci.7b00215
http://dx.doi.org/10.1021/acs.jpcb.7b02502
http://dx.doi.org/10.1209/epl/i2000-00183-2
http://dx.doi.org/10.1021/ma050399h
http://dx.doi.org/10.1021/acs.macromol.6b01971
http://dx.doi.org/10.1063/1.465731
http://dx.doi.org/10.1021/ja00334a030
http://dx.doi.org/10.1021/jp972543+
http://dx.doi.org/10.1063/1.468134
http://dx.doi.org/10.1021/ma980698p
http://dx.doi.org/10.1063/1.476430
http://dx.doi.org/10.1021/ma00068a012
http://dx.doi.org/10.1016/S0377-0257(00)00103-8
http://dx.doi.org/10.1103/PhysRevLett.80.2346
http://dx.doi.org/10.1021/ma702445e
http://dx.doi.org/10.3390/polym7030390
http://dx.doi.org/10.1016/j.compositesb.2014.03.009
http://dx.doi.org/10.1021/ma050177j


Polymers 2020, 12, 382 19 of 20

50. Hu, M.; Keblinski, P.; Schelling, P.K. Kapitza conductance of silicon–amorphous polyethylene interfaces by
molecular dynamics simulations. Phys. Rev. B 2009, 79, 104305. [CrossRef]

51. Taylor, D.; Strawhecker, K.; Shanholtz, E.; Sorescu, D.; Sausa, R. Investigations of the intermolecular forces
between RDX and polyethylene by force–distance spectroscopy and molecular dynamics simulations. J. Phys.
Chem. A 2014, 118, 5083–5097. [CrossRef]

52. Hur, K.; Winkler, R.G.; Yoon, D.Y. Comparison of ring and linear polyethylene from molecular dynamics
simulations. Macromolecules 2006, 39, 3975–3977. [CrossRef]

53. Yi, P.; Locker, C.R.; Rutledge, G.C. Molecular dynamics simulation of homogeneous crystal nucleation in
polyethylene. Macromolecules 2013, 46, 4723–4733. [CrossRef]

54. Henry, A.; Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics
simulations. Phys. Rev. Lett. 2008, 101, 235502. [CrossRef]

55. Henry, A.; Chen, G. Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics
simulations. Phys. Rev. B 2009, 79, 144305. [CrossRef]

56. Hossain, D.; Tschopp, M.; Ward, D.; Bouvard, J.; Wang, P.; Horstemeyer, M. Molecular dynamics simulations
of deformation mechanisms of amorphous polyethylene. Polymer 2010, 51, 6071–6083. [CrossRef]

57. Kim, J.M.; Locker, R.; Rutledge, G.C. Plastic deformation of semicrystalline polyethylene under extension,
compression, and shear using molecular dynamics simulation. Macromolecules 2014, 47, 2515–2528.
[CrossRef]

58. Lavine, M.S.; Waheed, N.; Rutledge, G.C. Molecular dynamics simulation of orientation and crystallization
of polyethylene during uniaxial extension. Polymer 2003, 44, 1771–1779. [CrossRef]

59. Yeh, I.C.; Andzelm, J.W.; Rutledge, G.C. Mechanical and structural characterization of semicrystalline
polyethylene under tensile deformation by molecular dynamics simulations. Macromolecules 2015, 48,
4228–4239. [CrossRef]

60. Vu-Bac, N.; Lahmer, T.; Keitel, H.; Zhao, J.; Zhuang, X.; Rabczuk, T. Stochastic predictions of bulk properties
of amorphous polyethylene based on molecular dynamics simulations. Mech. Mater. 2014, 68, 70–84.
[CrossRef]

61. Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations.
J. Comput. Chem. 1997, 18, 1463–1472. [CrossRef]

62. Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.;
van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics 2013, 29, 845–854. [CrossRef]

63. Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.
[CrossRef]

64. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.
1984, 81, 511–519. [CrossRef]

65. Hockney, R.W. The potential calculation and some applications. Methods Comput. Phys. 1970, 9, 135–211.
66. Rouse, P.E., Jr. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem.

Phys. 1953, 21, 1272–1280. [CrossRef]
67. Takahashi, K.Z.; Nishimura, R.; Yasuoka, K.; Masubuchi, Y. Molecular Dynamics Simulations for Resolving

Scaling Laws of Polyethylene Melts. Polymers 2017, 9, 24. [CrossRef]
68. Takahashi, K.Z.; Yamato, N.; Yasuoka, K.; Masubuchi, Y. Critical test of bead–spring model to resolve the

scaling laws of polymer melts: A molecular dynamics study. Mol. Simul. 2017, 43, 1196–1201. [CrossRef]
69. Salerno, K.M.; Agrawal, A.; Perahia, D.; Grest, G.S. Resolving Dynamic Properties of Polymers through

Coarse-Grained Computational Studies. Phys. Rev. Lett. 2016, 116, 058302. [CrossRef]
70. Hoy, R.S.; Foteinopoulou, K.; Kröger, M. Topological analysis of polymeric melts: Chain-length effects and

fast-converging estimators for entanglement length. Phys. Rev. E 2009, 80, 031803. [CrossRef]
71. Kröger, M. Shortest multiple disconnected path for the analysis of entanglements in two-and

three-dimensional polymeric systems. Comput. Phys. Commun. 2005, 168, 209–232. [CrossRef]
72. Shanbhag, S.; Kröger, M. Primitive path networks generated by annealing and geometrical methods: Insights

into differences. Macromolecules 2007, 40, 2897–2903. [CrossRef]

http://dx.doi.org/10.1103/PhysRevB.79.104305
http://dx.doi.org/10.1021/jp5039317
http://dx.doi.org/10.1021/ma060274s
http://dx.doi.org/10.1021/ma4004659
http://dx.doi.org/10.1103/PhysRevLett.101.235502
http://dx.doi.org/10.1103/PhysRevB.79.144305
http://dx.doi.org/10.1016/j.polymer.2010.10.009
http://dx.doi.org/10.1021/ma402297a
http://dx.doi.org/10.1016/S0032-3861(03)00017-X
http://dx.doi.org/10.1021/acs.macromol.5b00697
http://dx.doi.org/10.1016/j.mechmat.2013.07.021
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1063/1.1699180
http://dx.doi.org/10.3390/polym9010024
http://dx.doi.org/10.1080/08927022.2017.1334883
http://dx.doi.org/10.1103/PhysRevLett.116.058302
http://dx.doi.org/10.1103/PhysRevE.80.031803
http://dx.doi.org/10.1016/j.cpc.2005.01.020
http://dx.doi.org/10.1021/ma062457k


Polymers 2020, 12, 382 20 of 20

73. Flory, P.J. The configuration of real polymer chains. J. Chem. Phys. 1949, 17, 303–310. [CrossRef]
74. Grest, G.S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath.

Phys. Rev. A 1986, 33, 3628. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.1747243
http://dx.doi.org/10.1103/PhysRevA.33.3628
http://www.ncbi.nlm.nih.gov/pubmed/9897103
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Bead–Spring KG Model
	DPD with the Slip-Spring Model
	Atomistic Model of PE
	Rescaling of the CG Models

	Results and Discussion
	Scaling Laws
	Static Properties
	Dynamic Properties
	Computational Efficiency

	Conclusions
	References

