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Background: Prevention is highly involved in reducing the incidence of post-

thrombotic syndrome (PTS). We aimed to develop accurate models with

machine learning (ML) algorithms to predict whether PTS would occur within

24 months.

Materials and methods: The clinical data used for model building were

obtained from the Acute Venous Thrombosis: Thrombus Removal with

Adjunctive Catheter-Directed Thrombolysis study and the external validation

cohort was acquired from the Sun Yat-sen Memorial Hospital in China. The

main outcome was defined as the occurrence of PTS events (Villalta score ≥5).

Twenty-three clinical variables were included, and four ML algorithms were

applied to build the models. For discrimination and calibration, F scores were

used to evaluate the prediction ability of the models. The external validation

cohort was divided into ten groups based on the risk estimate deciles to

identify the hazard threshold.

Results: In total, 555 patients with deep vein thrombosis (DVT) were included

to build models using ML algorithms, and the models were further validated

in a Chinese cohort comprising 117 patients. When predicting PTS within

2 years after acute DVT, logistic regression based on gradient descent and

L1 regularization got the highest area under the curve (AUC) of 0.83 (95%

CI:0.76–0.89) in external validation. When considering model performance

in both the derivation and external validation cohorts, the eXtreme gradient

boosting and gradient boosting decision tree models had similar results and

presented better stability and generalization. The external validation cohort

was divided into low, intermediate, and high-risk groups with the prediction

probability of 0.3 and 0.4 as critical points.
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Conclusion: Machine learning models built for PTS had accurate prediction

ability and stable generalization, which can further facilitate clinical decision-

making, with potentially important implications for selecting patients who will

benefit from endovascular surgery.

KEYWORDS

deep vein thrombosis, machine learning, post-thrombotic syndrome, prognosis,
endovascular

Introduction

Post-thrombotic syndrome (PTS) is a common sequela of
deep vein thrombosis (DVT), which is caused by chronic venous
insufficiency (CVI), secondary to prior DVT, and can affect
up to 50% of patients with proximal DVT within 2 years (1,
2). However, its pathophysiology remains unclear. Nonetheless,
similar to other forms of CVI, PTS is mostly caused by venous
hypertension, which is attributed to an irreversibly fibrosed
vein wall, valvular damage, or residual venous obstruction after
acute DVT (3). The clinical symptoms of PTS can manifest
as heaviness, pain, edema, pruritus, and spasticity of the lower
extremities, which are often aggravated during standing or
walking and relieved while resting or lying down (4). PTS
heavily affects the quality of life and has an effect comparable
to that of heart failure or diabetes mellitus (5), which could
cost an estimated annual direct cost of US $200 million and
an annual loss of 2 million workdays in the United States (6,
7). Existing treatment options for PTS remain limited despite
its severe harm to health and a high socioeconomic impact (8).
Preventative interventions remain a key measure to reduce the
incidence, impact on quality of life, and treatment cost of PTS.

Preventing PTS remains a huge challenge as symptoms
of PTS change gradually during chronic progression. Many
previous studies have identified predictors that may help in the
risk stratification of patients with PTS. The baseline Villalta

Abbreviations: PTS, post-thrombotic syndrome; ML, machine learning;
DVT, deep vein thrombosis; LR, logistic regression; AUC, area under the
curve; 95% CI, 95% confidence intervals; XGBoost, eXtreme gradient
boosting; GBDT, gradient boosting decision tree; CVI, chronic venous
insufficiency; PE, pulmonary embolism; BMI, body mass index; ATTRACT,
Acute Venous Thrombosis, Thrombus Removal with Adjunctive
Catheter-Directed Thrombolysis; PCDT, pharmacomechanical catheter-
directed thrombolysis; BIOLINCC, Biologic specimen and Data
Repository Information Coordinating Center; VCSS, venous clinical
severity scores; VKA, vitamin K antagonists; LMWH, low-molecular
weight heparin; DOAC, direct oral anticoagulation; ISTH, International
Society on Thrombosis and Hemostasis; VTE, venous thromboembolism;
COPD, chronic obstructive pulmonary disease; MI, myocardial infarction;
CHF, congestive heart failure; SMOTE, Synthetic Minority Over-sampling
Technique; RF, Random Forest; NRI, net reclassification improvement;
IDI, integrated discrimination improvement; IQR, interquartile range;
ROC, receiver operating characteristic; PMT, percutaneous mechanical
thrombectomy; CDT, catheter directed thrombolysis.

Scale score is usually identified as an independent predictor
(9). Proximal, recurrent ipsilateral, or provoked DVT; previous
varicose vein surgery; body mass index (BMI); age; gender;
smoking status; and persistent venous obstruction may be
helpful for risk stratification (10, 11). Five prediction models
were developed by Huang et al. (12), the two-step model by
Amin et al. (13), the SOX-PTS score by Rabinovich et al.
(14), the prediction model for the elderly by Méan et al. (15),
and a new predictive model by Qiu et al. (16) to determine
the probability of PTS more accurately and facilitate clinical
decision-making, and the two were validated externally (13,
14). An accurate clinical prognostic model can help patients at
high risk of developing PTS receive sufficient clinical education
and achieve optimal anticoagulation quality to prevent severe
PTS and lower the cost of treatment. However, these models
have limitations. First, the SOX-PTS score and two-step model
were developed based on a large cohort (762 former, 479 latter);
however, they had poor discrimination (13, 14). The SOX-
PTS scale yielded C-Statistics of 0.65 (95% CI:0.64–0.67) and
0.63 (95% CI:0.59–0.67) in internal and external validation,
respectively (14). For the two-step model, the optimism-
corrected) AUCs were 0.71 for the baseline model and 0.60
for the secondary model, and those in the derivation cohort
were 0.66 (95% CI:0.63–0.70) and 0.64 (95% CI:0.60–0.69),
respectively, in external validation (13). Second, the other
three prediction models, including the APTSD score, prediction
model for the elderly, and new PTS predictive model by Qiu
et al., showed far better prediction ability (AUC varied from 0.71
to 0.79); however, they were developed based on smaller cohorts
(107 for APTSD score, 276 for being elderly, and 210 for the
new PTS predictive model by Qiu et al.), and all lacked external
validation, which made their models less convincing (12, 15,
16). Third, the model developed by Méan et al. was specially
built for elderly patients aged >65 years, which undermined
the applicability of the model (15). Fourth, these five models
were built using traditional Cox or logistic regression (LR).
However, some high-dimensional or non-linear relationships
between clinical data and outcomes could not be identified.

Machine learning (ML) is a widely accepted computational
technique that can overcome some of the limitations of
current analytical approaches and capture high-dimensional,
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non-linear relationships among clinical features to make data-
driven outcome predictions (17). ML can also improve the
robustness and generalizability of the prediction model by
constructing a phenotypically cohort-based risk model (18).
The potential to improve prediction accuracy for cardiovascular
diseases using ML approaches has been investigated widely
(19, 20). In this study, we hypothesized that ML could help
improve the prediction accuracy of PTS using numerous
multidimensional clinical variables. The clinical data used
for model building were obtained from the Acute Venous
Thrombosis: Thrombus Removal with Adjunctive Catheter-
Directed Thrombolysis (ATTRACT) study, a phase III, multi-
center, dual-arm randomized clinical trial (21). The model was
validated in a Chinese cohort to investigate its generalizability.

Materials and methods

Patients and materials

Clinical data of the derivation cohort included in this study
were extracted from the ATTRACT study (21). A total of
691 patients with symptomatic proximal DVT, involving the
femoral, common femoral, or iliac veins (with or without other
involved ipsilateral veins), were randomly assigned to receive
either pharmacomechanical catheter-directed thrombolysis
(PCDT) with standard anticoagulation therapy or separate
standard anticoagulation therapy in a 1:1 ratio. Relevant
participant inclusion criteria can be found in the original study.
Subjects were enrolled at 30–60 United States Clinical Centers
for 4.5 years and followed up for 24 months. Since not every
individual in ATTRACT completed a 2-year follow-up, patients
with <2 years of follow-up and who did not present with PTS
were excluded from this study to reduce the follow-up bias.

Clinical data in the external validation cohort were obtained
from the electronic record database of Sun Yat-sen Memorial
Hospital. The inclusion criteria were as follows: patients
diagnosed with lower-extremity DVT who were admitted to
the hospital between 2010 and 2020, and the gold standard
for diagnosis was thrombus filling defect detected by Doppler
ultrasound in the deep iliofemoral or femoral popliteal veins.
Other auxiliary diagnoses included clinical symptoms, D-dimer
index, and relative clinical score. As this study was retrospective,
the requirement for informed consent was waived under the
ethical supervision of the center. The patients were followed
up for 2 years, and their Villalta and venous clinical severity
scores (VCSS) were calculated. The exclusion criteria were as
follows: (1) patients who refused follow-up visits or forgot
about their status; (2) patients who had not been followed
up for 2 years and did not present with PTS events; (3)
patients whose baseline data could not be found in the
electronic record database; (4) The patient was diagnosed
with DVT but also with small saphenous vein thrombosis,

femoral-popliteal vein sclerosis, and others diagnosed using
Doppler ultrasonography; and (5) Patients mainly treated with
traditional Chinese medicine.

Clinical treatment

The treatment plan in the ATTRACT study can be obtained
from the original study or BIOLINCC in detail. The treatment
plan of the external validation cohort also included patients
undergoing standard DVT treatment with or without PCDT.
The basic standard DVT treatment includes anticoagulation,
inferior vena cava filter implantation, and physical pressure
therapy. Anticoagulation drugs consisted of unfractionated
heparin, low-molecular-weight heparin (LMWH), vitamin K
antagonists (VKA), and direct oral anticoagulants (DOAC).
For patients with DVT, but not cancer, DOACs, such as
rivaroxaban or LMWH with VKA, were preferred. For those
with cancer, LMWH, as well as VKA or DOAC, was preferred.
The use of retrievable inferior vena cava filters is generally
recommended for patients at a high risk of pulmonary embolism
(PE) (history of PE, planned use of pneumatic compression
therapy). Physical pressure therapy includes the use of elastic
stockings and intermittent pneumatic compression devices. The
treatment plan for PCDT at our center was detailed in our
previous study (22). The patients were treated with LMWH
twice daily before and after PCDT. The urokinase dosage
was adjusted according to the patient’s weight. Urokinase was
first injected at a bolus dose of 2–3 × 105 U. Urokinase
was continuously infused at a dose of 1–1.5 × 104 U/kg/d.
Residual thrombi were evaluated daily using ultrasonography
or venography. Thrombolysis should generally last for less
than 7 days. If the patient experienced a mild, controllable
bleeding event, PCDT was paused. If minor bleeding continued,
the PCDT was permanently disabled. When anticoagulation
was administered, an appropriate antagonist was used, if
necessary. The center followed the guidelines of the American
College of Chest Physicians for the diagnosis and treatment
of DVT (23).

Outcomes and variables definition

In 2009, the International Society on Thrombosis and
Hemostasis (ISTH) recommended the Villalta scale for PTS
assessment 3–6 months following acute DVT (24). The Villalta
score was calculated using five subjective symptoms (pain,
spasm, heaviness, itching, and paresthesia) and six clinical signs
(edema, redness, induration of the skin, hyperpigmentation,
venous distension, and calf compression pain) scored on a
scale from 0 (non-existent) to 3 (severe). The main outcome
was PTS (binary outcome, which was defined as Villalta score
of ≥5), whereas moderate-severe PTS (binary outcome, which
was defined as Villalta score of ≥10) and severe PTS (binary
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outcome, which was defined as Villalta score of ≥15) were
secondary outcomes.

The VCSS score was also calculated for each patient,
if possible. The VCSS score was calculated using 10
items, including pain, varicose veins, venous edema, skin
pigmentation, inflammation, induration of active ulcers,
number of active ulcers, active ulcer diameter, ulcer duration,
and compression therapy, and scored on a scale from 0 (non-
existent) to 3 (severe). The SOX-PTS score was also calculated
based on the research by Rabinovich et al., which contained
three items: iliofemoral DVT (1 score), BMI of ≥35 (2 scores),
baseline Villalta score of ≥15 (2 scores), or baseline Villita score
of 10–14 (1 score) (14).

Baseline data of the external validation cohort. Age, sex,
complications, history of venous thromboembolism (VTE),
provoked DVT, and in-hospital diagnoses were obtained from
the admission records. The clinical treatment plan was obtained
from the doctor’s list. Height and weight were obtained from the
nursing sheets. The DVT type and leg involved were obtained
from the Doppler ultrasonography reports.

Imputation of missing value

Only variables that had missing value rate lower than 5%
would be included in the model and filled with imputation.
The missing rate of all variables is shown in Supplementary
Table 1. Given the heterogeneity of the different populations
in the derivation and external validation cohorts, imputation
was conducted separately in two independent datasets. In this
study, a single imputation was conducted to fill in the missing
values based on the complete conditional criterion. Missing
values were filled using the predictive mean matching method.
Each missing variable was estimated using an independent
model to ensure its validity (25). To ensure the authenticity of
these scores, the Villalta, VCSS, and SOX-PTS scores were not
imputed for missing values.

Feature selection and model
development

Twenty-three variables were included in the structured
dataset: basic demographic information, including age, sex,
height, weight, and BMI; DVT-associated variables, including
an extension to the iliac vein or isolated femoropopliteal, DVT
leg, previous VTE, major surgery, hospitalization, plaster cast
immobilization, childbirth, impatient qualifying DVT, baseline
Villalta score, and complications, including hypertension,
diabetes mellitus, high cholesterol, asthma, chronic obstructive
pulmonary disease (COPD), angina or myocardial infarction
(MI), congestive heart failure (CHF), DVT treatment type, and
aspirin use. The treatment included PCDT with anticoagulation
or base anticoagulation only.

As there still exited imbalance in the derivation set (slight
for PTS in 24 months: 327 [58.9%], mainly when the outcome
was set as moderate-severe PTS in 24 months: 144 [25.9%]
and severe PTS in 24 months: 69 [12.4%]), the synthetic
minority over-sampling technique (SMOTE) was used to
oversample the derivation set, which was intended to synthesize
new samples and add them into the derivation cohort to
ensure equality between the number of positive and negative
examples. Our previous experimental results also had shown
that the performance index of the models was improved
after oversampling in both primary and secondary outcomes
(Supplementary Table 2).

To decrease the effect of non-normality on the model
performance, the Shapiro-Wilk normality test was conducted to
detect the normality of the continued variables in the derivation
cohort (including age, height, weight, BMI, and base Villalta
score) and none of them showed normality (Supplementary
Table 3). In the derivation and external validation cohorts,
zero-mean normalization of non-normal distribution continued
variables was performed to eliminate dimensionality effects and
improve comparability among variables.

To select a more suitable model that had a better
matching degree with the data, 12 algorithms [including
random forest (RF), logistic regression (LR), gradient boosting
decision tree (GBDT), extreme gradient boosting (XGB),
k-Nearest Neighbors (KNN), iterative dichotomiser 3 (ID3),
classification and regression trees (CART), adaptive boosting
(ADB), Gaussian naive Bayes (GNB), least absolute shrinkage
and selection operator (LASSO), Elasticnet, and support vector
classification (SVC)] were conducted to build models, and,
finally, models with better performances in both derivation
and external validation cohorts, which did not have too much
overfitting, were chosen (Supplementary Table 4). At last, four
ML algorithms, XGBoost, GBDT, and LR based on gradient
descent, L1 regularization, and RF, were used for model building.
An overview of ML algorithm principles used in this study is
shown in Supplementary Methods. A grid search method was
used to optimize the hyperparameters to improve the prediction
ability of the model. Every individual in the derivation and
external validation cohorts was given a prediction probability
according to the different ML models.

In addition to the primary outcome, models for predicting
secondary outcomes were established and validated.

Feature importance

The relative importance of each feature in the four
models was calculated and ranked to select the predictor
with the greatest impact on each outcome. The feature
importance was retrieved using the scikit-learn library and
XGBoost package. Based on the different principle of the four
model algorithms, we used different methods to calculate the
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feature importance. For RF, we used feature_importances_
property of RandomForestClassifier to calculate the feature
importances, and the calculation method was based on
impurity. For GBDT, we used feature_importances_ property
of GradientBoostingClassifier, and the calculation method was
based on impurity. For XGBoost, we used feature_importances_
property of XGBClassifier, and the calculation method was
based on “gain,” which used the average gain across all
splits of the feature. For LR, we used coef_ attribute of
LogisticRegression, and the calculation method was based on
regression coefficient.

Moreover, to explain the interpretability of ML in more
depth, permutation importance was calculated by ELI5 package
of Python. Partial dependence plots (PDP) were drawn by
the sklearn package of Python to show the marginal effect
that each feature had on the predicted outcome of a model.
Shapley additive explanations (SHAP) values were calculated
by the SHAP package of Python, which used a game theoretic
approach, to explain the output of ML models. The SHAP force
plots and feature importance plots were also plotted.

Evaluation and validation of the model

Evaluation of the model was internally validated with 10-
fold cross-validation in the derivation cohort to investigate
the stability of the model (derivation cohort was divided
into training and internal validation dataset for 10-fold cross-
validation), and then external validation was conducted to
investigate the generalization ability of the model. AUC and
calibration plots were used to evaluate the discrimination
and calibration. After determining the cutoff value of the
prediction probability by the receiver operating characteristic
(ROC) curve, calibration and risk classification results, F scores,
negative predictive value, positive predictive value, sensitivity,
and specificity were used to evaluate the risk stratification
ability of the models. We also externally validated the SOX-
PTS score in the derivation and external validation cohorts
and used net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) to investigate the prediction
ability improvement of ML models compared with SOX-PTS.

Risk classification

Patients in the external validation cohort were divided
into estimated risk deciles in accordance with the prediction
probability yielded by the four models and then grouped
into low-, intermediate-, and high-risk groups with thresholds
reflecting clinically meaningful gradients in risk from one group
to the next. The mean prediction probability and observed
probability were calculated for each group.

Statistical analysis

Continuous variables were represented by the median with
interquartile range (IQR) and compared using the Kruskal–
Wallis test. Categorical variables are expressed as percentages,
compared with chi-square tests. A two-sided P < 0.05
was considered statistically significant. Data imputation and
significance tests were conducted using R software (version
3.6.3). Data preprocessing, model development, and further
evaluation and validation were conducted using Python
(version 3.8.5).

Role of funders

The funders of this research had no role in the study design,
management, provision of study materials, data collection,
data analysis, interpretation of the data, manuscript writing,
preparation, review, and approval of this manuscript, or the
decision to submit the manuscript for publication.

Results

After filtration based on the exclusion criteria in this study,
555 patients from the ATTRACT study were finally included in
the derivation cohort to build four models with ML methods
comprising XGBoost, GBDT, LR, and RF. As for the external
validation cohort, 428 patients were diagnosed with DVT
between 2010 and 2020, 288 patients refused follow-up or forgot
the details of body status, and 117 patients were finally included
in the external validation cohort. The study pipeline is illustrated
in Figure 1. The baseline data of the derivation and external
validation cohorts are shown in Table 1, and the heterogeneity
of different populations can be observed. The prevalence of PTS
occurrence within 2 years and previous VTE was higher in the
derivation cohort than in the external validation cohort (58.9
vs. 32.5% [P < 0.001]; 23.4 vs. 19.7% [P = 0.446]). The BMI
in the derivation cohort was higher than that in the validation
cohort (30.84 [26.98, 36.17] vs. 23.87 [21.31, 26.20], P < 0.001),
as were basic comorbidities and aspirin use (21.4 vs. 10.3%,
[P = 0.008]). However, the DVT occurrence age was lower in
the derivation cohort than in the external validation cohort (54
[44, 62] vs. 59 [48, 67], P = 0.002). A higher prevalence of
VTE occurrence, and basic comorbidities, as well as a higher
BMI, might be associated with a higher prevalence of PTS
occurrence.

The relative importance of the features in the four models
was ranked, and a radar plot of the seven most important
features for each model is shown in Figure 2. The main
predictors varied among the four models, which was due
to the principle of different algorithms and the method of
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FIGURE 1

Model development and evaluation pipeline. ATTRACT, Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed
Thrombolysis; BIOLINCC, Biologic Specimen and Data Repository Information Coordinating Center; PTS, post-thrombotic syndrome; XGBoost,
eXtreme gradient boosting; GBDT, gradient boosting decision tree; RF, random forest; LR, logistic regression; DVT, deep vein thrombosis.

importance calculation. BMI, diabetes mellitus, baseline Villalta
score, and treatment type all appeared on the importance
radar of the four models. High-cholesterol level, weight, and
history of VTE were observed on radar images in three of the
models. In addition, two other radar plots built for predicting
the occurrence of moderate-severe PTS and severe PTS are
shown in Supplementary Figures 1, 2. It is worth noting that
BMI, diabetes mellitus, baseline Villalta score, and treatment
type were four significant features that appeared in all radar
plots, whereas BMI failed to appear in the GBDT model when
predicting moderate-to-severe PTS. Thus, there were adequate
reasons to believe that these four features were the most
important for predicting PTS.

To explain the interpretability of ML in more depth and
evaluate the effect of variables on outcome, permutation
importance for 3 outcomes was calculated and is shown
in Supplementary Tables 5–7. Baseline Villalta score got
the highest weight in LR and GBDT when predicting
PTS in 24 months, while weight and diabetes mellitus got
highest in RF and XGB. PDP showed the influence of each
feature for 3 outcomes and is shown in Supplementary
Figures 3–5. The SHAP force plots showed which features
have the most influence on the model’s prediction for
a single observation and are shown in Supplementary
Figures 6–8. The SHAP feature importance plots are
shown in Supplementary Figures 9–11, which were similar
to permutation importance, showing the effect of each
feature on the outcome.

When the models were evaluated and validated, the LR,
based on gradient descent and L1 regularization, performed
best in external validation (0.83 [95% CI:0.76–0.89]). In the
derivation cohort, RF performed best (0.81 [95% CI:0.78–
0.84]), whereas LR performed worst (0.73 [95% CI:0.70–0.76]).
The ROC curves for the four models for predicting PTS are
shown in Figure 3. In addition, four models were used to
predict moderate-to-severe PTS and severe PTS. In the external
validation cohort, LR performed best in predicting moderate-
to-severe PTS and PTS, with AUCs of 0.97 (95% CI:0.94–1)
and 0.99 (95% CI:0.97–1), respectively. The ROC curves for the
prediction of secondary outcomes are shown in Supplementary
Figures 12, 13.

The calibration plots of the four models for the three
outcomes in both the derivation and external validation cohorts
were also plotted, as shown in Supplementary Figures 14–19.

For other ML performance indices, we paid more attention
to the F2 score because the dataset had a degree of imbalance,
and the potential cost of missed real cases was higher than
that of missed cases. The results showed that all four models
had a good predictive ability (F2 score:0.70–0.76 when the
threshold was set to 0.3). LR performed best in predicting
moderate-to-severe and severe PTS (F2 score:0.76 and 0.91,
respectively, when the threshold was set at 0.4). Other
performance indices (F1 score, F.5, negative predictive value,
positive predictive value, accuracy, sensitivity, and specificity)
are shown in Supplementary Figures 20, 21. The NRI and
IDI results showed that all four models performed better
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TABLE 1 Baseline characteristics and outcome of derivation cohort and validation cohort.

Characteristics and outcome Derivation cohort (n = 555) Validation cohort (n = 117) P-value

Treatment 0.011

Using PCDT with anticoagulation 279 (50.3%) 43 (36.8%)

Using anticoagulation only 276 (49.7%) 74 (63.2%)

DVT type 0.055

Extend to Iliac vein 313 (56.4%) 54 (46.2%)

Isolated femoropopliteal 242 (43.6%) 63 (53.8%)

Age 54.00 [44.00, 62.00] 59.00 [48.00, 67.00] 0.002

Gender 0.004

Male 349 (62.9%) 56 (47.9%)

Female 206 (37.1%) 61 (52.1%)

Comorbidity

Hypertension 242 (43.6%) 15 (12.8%) <0.001

Diabetes mellitus 91 (16.4%) 8 (6.8%) 0.012

High cholesterol 176 (31.7%) 8 (6.8%) <0.001

Asthma 57 (10.3%) 3 (2.6%) 0.013

COPD 22 (4.0%) 2 (1.7%) 0.357

MI 25 (4.5%) 4 (3.4%) 0.783

CHF 26 (4.7%) 1 (0.9%) 0.097

Height 175.00 [165.10, 182.88] 164.00 [156.00, 170.00] <0.001

Weight 93.00 [80.95, 112.14] 62.50 [57.00, 71.50] <0.001

BMI 30.84 [26.98, 36.17] 23.87 [21.31, 26.20] <0.001

DVT leg 0.029

Right 209 (37.7%) 31 (26.5%)

Left 346 (62.3%) 86 (73.5%)

Previous VTE 130 (23.4%) 23 (19.7%) 0.446

DVT risk factor

Major surgery 48 (8.6%) 25 (21.4%) <0.001

Hospitalization 55 (9.9%) 14 (12.0%) 0.618

Plaster cast immob 15 (2.7%) 3 (2.6%) 1

Childbirth 7 (1.3%) 5 (4.3%) 0.064

Inpatient qualify DVT 92 (16.6%) 17 (14.5%) 0.683

Taken aspirin 119 (21.4%) 12 (10.3%) 0.008

SOX-PTS score 2.00 [1.00, 3.00] 1.00 [0.00, 1.00] <0.001

PTS in 24 Months 327 (58.9%) 38 (32.5%) <0.001

PCDT, pharmacomechanical catheter-directed thrombolysis; DVT, deep vein thrombosis; COPD, chronic obstructive pulmonary disease; MI, myocardial infarction; CHF, congestive heart
failure; BMI, body mass index; VTE, venous thromboembolism; PTS, post-thrombotic syndrome.
All values included in the machine learning model had missing value rate lower than 1%.

than the SOX-PTS score in the derivation and external
validation cohorts (NRI and IDI > 0, P < 0.05), as shown in
Table 2.

The ten divided groups based on the estimated risk deciles
of the four models predicting PTS in the external validation
cohort are shown in Figure 4. The observed probability also
tended to increase with an increase in the prediction probability.
According to the risk classification results of XGBoost, LR, and
GBDT (RF was excluded because of its poor performance in
external validation), we stratified the patients into three risk
groups (first to fifth deciles as low risk: prediction probability
approximately lower than 30%; sixth to eighth deciles as

intermediate risk: prediction probability approximately of 30–
40%; and eighth to tenth deciles as high risk: prediction
probability approximately higher than 40%). In calibration
plots of four models in both derivation and validation cohorts
(Supplementary Figure 14), underestimation is shown when
predicted probability is higher than 0.4. As a result, defining 0.4
as the high-risk threshold was meaningful. The risk stratification
figures for PTS in the derivation cohort are also plotted and
shown in Supplementary Figure 22. The risk stratification
figures for moderate-to-severe and severe PTS in both the
derivation and external validation cohorts are also plotted and
are shown in Supplementary Figures 23–26.
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FIGURE 2

Radar plot for the seven important predictors of post-thrombotic syndrome in 24 months. Higher value means more importance of the features
determined by different ML algorithms. PTS, post-thrombotic syndrome; XGBoost, eXtreme gradient boosting; VTE, venous thromboembolism;
BMI, body mass index; COPD, chronic obstructive pulmonary disease; DVT, deep vein thrombosis; ML, machine learning.

To evaluate the risk classification ability of the ML models,
the XGBoost model was chosen as an example to investigate
the association between risk groups and clinical features. As
the derivation group was divided into low-risk, intermediate-
risk, and high-risk groups based on the prediction probability
of XGBoost, the prevalence of PTS increased (PTS: 14.8% [9/61]
low risk vs. 34.3% [12/35] intermediate risk vs. 81% [17/21] high
risk; moderate-severe PTS: 0% [0/61] low risk vs. 5.7% [2/35]
intermediate risk vs. 28.6% [6/21] high risk; severe PTS:0%
[0/61] low risk vs. 0% [0/35] intermediate risk vs. 19% [4/21]
high risk). In addition, the related risk scores at different time
points showed similar results, as shown in Table 3.

Discussion

In this study, 555 patients with DVT were included to
build models with different ML algorithms, and the models
were validated in a Chinese cohort of 117 patients. The results
showed that the models presented good prediction abilities for
both the primary and secondary outcomes. When predicting

PTS 2 years after acute DVT, LR based on gradient descent
and L1 regularization had the highest AUC of 0.83 (95%
CI:0.76–0.89) in external validation, whereas RF had the highest
AUC of 0.81 (95% CI:0.78–0.84) in the derivation cohort.
However, when considering the model performance in both
the derivation and validation cohorts, the XGBoost and GBDT
models had similar results and presented better stability and
generalization. Compared with the SOX-PTS score, all ML
models exhibited improved prediction ability, with NRI and
IDI indices all significantly higher than zero. After dividing
the external validation cohort into ten groups based on the
estimated risk deciles of the models, three risk groups were
identified. Moreover, a tendency of increase in the risk score
and prevalence of PTS occurrence could be found as the
risk increased, which indicated good clinical application of
the models. Moreover, BMI, diabetes mellitus, baseline Villalta
score, and treatment type were identified as important features
using ML algorithms in this study. To the best of our knowledge,
this study is the first to build models for predicting PTS using
ML algorithms and confirm that ML can help improve the
prediction ability.
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FIGURE 3

Receiver operating characteristic curves for post-thrombotic syndrome at 2-year follow-up. ROC, receiver operating characteristic curve; PTS,
post-thrombotic syndrome; AUC, area under the curve; XGboost, eXtreme gradient boosting.

TABLE 2 Net reclassification improvement and integrated discrimination improvement results of machine learning models compared with
the SOX-PTS score.

Different methods
compared with SOX-PTS

Derivation cohort Validation cohort

NRI (95% CI/P-value) IDI (95% CI/P-value) NRI (95% CI/P-value) IDI (95% CI/P-value)

XGBoost 0.621 (0.461–0.782/<0.001) 0.098 (0.074–0.121/<0.001) 0.351 (0.095–0.607/0.007) 0.176 (0.091– 0.260/<0.001)

LR 0.642 (0.484–0.801/<0.001) 0.082 (0.062–0.103/<0.001) 0.518 (0.264–0.772/<0.001) 0.239 (0.154–0.324/<0.001)

RF 0.664 (0.507–0.820/<0.001) 0.124 (0.099–0.149/<0.001) 0.350 (0.077–0.622/0.012) 0.078 (−0.001–0.157/0.054)

GBDT 0.672 (0.514–0.830/<0.001) 0.102 (0.078–0.125/<0.001) 0.404 (0.141–0.668/0.003) 0.144 (0.062–0.227/<0.001)

XGBoost, extreme gradient boosting; LR, logistic regression; RF, random forest; GBDT, gradient boosting decision tree; NRI, net reclassification improvement; IDI, integrated
discrimination improvement.
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FIGURE 4

Risk of post-thrombotic syndrome within 24 months according to deciles of event probability based on four machine learning models in the
validation cohort. PTS, post-thrombotic syndrome; ML, machine learning; XGBoost, eXtreme gradient boosting.

TABLE 3 Outcome in each risk groups defined by prediction probability of the XGBoost model in external validation cohort.

Outcome Low-risk group (n = 61) Intermediate-risk group (n = 35) High-risk group (n = 21) P-value

Risk score

Baseline Villalta score 1.00 [1.00, 3.00] 2.00 [1.00, 3.50] 9.00 [3.00, 13.00] <0.001

6 Month Villalta score 0.00 [0.00, 2.00] 1.00 [0.00, 2.25] 5.00 [4.00, 10.75] <0.001

12 Month Villalta score 0.00 [0.00, 1.00] 0.00 [0.00, 1.50] 4.00 [1.00, 6.00] 0.002

18 Month Villalta score 1.00 [0.00, 1.00] 1.00 [0.00, 2.75] 3.00 [2.00, 6.50] 0.001

24 Month Villalta score 1.00 [0.00, 2.00] 1.00 [0.00, 3.00] 3.00 [0.00, 5.25] 0.073

6 Month VCSS score 0.00 [0.00, 1.00] 1.00 [0.00, 1.25] 3.00 [2.00, 5.00] <0.001

12 Month VCSS score 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 2.00 [1.00, 3.50] 0.002

18 Month VCSS score 1.00 [0.00, 1.00] 1.00 [0.00, 1.25] 2.00 [1.00, 3.00] 0.004

24 Month VCSS score 1.00 [0.00, 1.00] 1.00 [0.00, 2.00] 2.00 [0.00, 3.25] 0.057

Baseline SOX-PTS score 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 1.00 [1.00, 2.00] <0.001

Binary outcome

PTS in 24 months 9 (14.8%) 12 (34.3%) 17 (81.0%) <0.001

Moderate to severe PTS in 24 months 0 (0.0%) 2 (5.7%) 6 (28.6%) <0.001

Severe PTS in 24 months 0 (0.0%) 0 (0.0%) 4 (19.0%) <0.001

Low-risk group was defined as patients whose XGBoost prediction ability is lower than 30%, Intermediate-risk group was defined as patients whose XGBoost prediction ability is between
30 and 40%, High-risk group was defined as patients whose XGBoost prediction ability is higher than 40%.
VCSS, venous clinical severity scores; PTS, post-thrombotic syndrome.
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Predicting and preventing PTS remains a challenge to date.
There is still no effective treatment, and the management thereof
relies more on prevention after DVT (8). Anticoagulation
remains the cornerstone of acute DVT treatment. Although
it is not the main purpose of treatment, it plays a key role
in preventing the development of PTS (26). Physiological
and clinical studies have shown that LMWH is preferred
over VKA in preventing PTS due to its improved rates
of venous recanalization and anti-inflammatory effects (27,
28). However, current guidelines do not recommend specific
anticoagulation to prevent PTS in clinical practice (10).
Extending anticoagulation therapy also adversely affected the
prevention of PTS, and it is recommended that VTE occurrence
besides PTS be prevented (29, 30). Early thrombus removal may
prevent PTS by reconstructing the microenvironment of blood
circulation and preserving venous function (31). However, the
results of the ATTRACT study showed that PCDT did not
exert a protective effect on PTS (46.7% PCDT vs. 48.2% no
PCDT, P = 0.56). This might be interpreted as the ATTRACT
study, including both femoropopliteal and iliofemoral DVT,
and femoropopliteal DVT showed a lower risk of developing
PTS (21). Therefore, another study conducted a subgroup
analysis of the iliofemoral arm in ATTRACT and showed
that PCDT reduced the risk of moderate-to-severe PTS (18%
PCDT vs. 28% no PCDT, P = 0.021) (32). A recent study
investigated the efficacy of different treatment modalities for
percutaneous thrombus removal and found that the use of
PCDT for treating iliofemoral DVT could provide comparable
patient outcomes, comparable vessel patency, an acceptable
safety profile, and a reduced overall lytic dose (33). Percutaneous
mechanical thrombectomy (PMT) is an alternative method for
DVT treatment, and pharmacomechanical thrombectomy refers
to a combination of mechanical and pharmacological therapies
to achieve thrombolysis. Compared with PCDT or catheter-
directed thrombolysis (CDT) alone, pharmacomechanical
thrombectomy can lower thrombolytic dosage and procedural
time and achieve a more complete resolution of the thrombus.
When the prognosis results of PMT ± CDT and CDT alone
were compared, the partial thrombolysis rate was higher in the
PMT ± CDT group (odds ratio, 2.64; 95% confidence interval,
1.34–5.21; P = 0.005) (34). With advancements in endovascular
technology, we believe that it can reduce PTS risk in the future.
An accurate prediction model can help identify patients who can
benefit from endovascular surgery, which we hypothesize is one
of the most important implications of our models.

Machine learning is currently an effective method to
investigate high-dimensional and non-linear relations between
features and outcomes and improves the prediction ability of
the prognostic model (17). In this study, ML models reached
a higher AUC than previous PTS models and attained an
improved prediction ability compared with SOX-PTS. We used
an American cohort to build models and a Chinese cohort to
validate them to ascertain whether the models were effective

in other populations as well. Western and Asian populations
are extremely heterogeneous. Previous studies have indicated
that VTE occurrence and reoccurrence were not as high in
the Chinese cohort as in the Western population (35, 36).
In addition to the effect of genes, nutritional status, dietary
habits, economic status, and medical status also affect the
prognosis of DVT. In this study, we found that the prevalence
of PTS occurrence in 2 years and previous VTE was higher in
the derivation cohort, which might be associated with higher
BMI, higher prevalence of basic comorbidity, and aspirin use
(aspirin use also indicated worse health status). However,
models built with XGBoost and GBDT still showed good and
stable prediction abilities in internal and external validation,
which indicated the good stability and generalization of ML.

The chosen four ML models in this study both had their
advantages and disadvantages. LR is a kind of discriminative
models, which can be used in combination with regularization
methods. The linear models have high interpretability compared
to most classification algorithms. LR has the advantages of easy
implementation and low computational cost. However, when
there are a large number of features, LR performances are poor,
and LR is easy to cause underfitting. It is mostly used to deal with
binary classification problems, and the classes must be linearly
separable. The non-linear characteristics need to be transformed
before modeling. RF performs well on a lot of datasets. Firs, RF
is suitable for highly dimensional features. Second, it has fast
calculation speed and easy implementation. Third, the model
has strong generalization ability. Fourth, RF has strong anti-
interference capability and can also be used when there is
a large amount of missing data. Fifth, it has a strong anti-
overfitting ability. The disadvantages of RF are the following:
poor performances in solving regression problems; the model is
similar to the black box, which has poor interpretability; and it
may not produce good classification results in small samples or
low dimensional data. GBDT has good prediction performances
and is suitable for low-dimensional data. It can flexibly handle
various types of data and has strong robustness to outliers.
However, due to the dependency between weak learners, it
is difficult to carry out parallel computing. The calculation
complexity will be increased when the data dimension is high.
XGBoost is based on GBDT. Compared with GBDT, XGBoost
has the following advantages: first, adding the complexity of tree
models to the regularization term, the generalization ability is
better; second, it uses Taylor expansion on the loss function to
accelerate the optimization speed; and third, XGBoost supports
parallel processing (37).

The performance metrics for four ML models in predicting
different outcomes were shown in Supplementary Figure 21.
The threshold term indicated the threshold of 0/1 classification
of samples according to the model prediction probability,
where in the fourth column of each model was the best cutoff
value of ROC curve. For PTS in 24 months, performance
indices of RF and LR were similar, performance indices of
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GBDT and XGBoost are similar, and the former two models
performed better than the latter two. For moderate-severe PTS,
performance indices of four models were different. LR had the
highest F2 score and accuracy, while the other three models
had low F2 scores and accuracy. XGBoost had the highest
sensitivity and specificity, while LR had the lowest sensitivity
and specificity. For severe PTS, LR had the best performance
indices, while XGBoost and GBDT had the worst performance
indices, because both the accuracy and sensitivity of LR were
higher than XGBoost and GBDT.

Area under the curve is an important index to evaluate
the discrimination of the models; however, the cut-off value of
prediction probability should also be focused on because risk
stratification and prevalence identification in each risk group are
important for clinical decision-making. Based on the prediction
results of the XGboost, three risk groups were identified. PTS
occurrence reached up to 81% in the high-risk group and only
14.8% in the low-risk group. Other ML performance indices
can also be calculated after the threshold is determined to
reflect the effectiveness of the models. The results showed that
all four models had good predictive ability (F2 score:0.70–
0.76 when the threshold was set to 0.3). LR performed best in
predicting moderate-severe and severe PTS (0.76 and 0.91 when
the threshold was set as 0.4). The threshold may vary in different
populations as the prevalence of disease may differ.

In this study, a more important result was the identification
of important features for predicting PTS, including BMI,
diabetes mellitus, baseline Villalta score, treatment type, high
cholesterol level, and history of VTE. BMI and baseline Villalta
score as risk factors have been validated by previous studies and
were also the predictive items included in the SOX-PTS score
(14). A history of VTE or recurrent DVT is a strong predictor
of PTS (38). PCDT was found to be a protective factor in the
present study. Therefore, diabetes mellitus and high-cholesterol
levels were identified as new risk factors that have not been
reported elsewhere. The pathophysiology and epidemiological
mechanisms are complex. Diabetes mellitus is associated with
an increased risk of DVT and CVI (39, 40), which can be
attributed to PTS. Moreover, a hyperglycemic environment
can damage the vascular wall and create hypercoagulability
(41). High-cholesterol levels are also associated with DVT
due to hypercoagulability in the blood and can reduce the
rate of thrombosis recanalization (42). Previous studies have
shown that statin use was associated with a higher rate of
thrombus resolution and could reduce the rate of PTS (38.3 and
48.5% in the statin and control groups, respectively, P = 0.02)
(43, 44). Hyperglycemic and high-cholesterol levels can also
contribute to inflammation and senescent pathological changes
in the vasculature (45, 46). However, there are still some
confounding factors, such as BMI, diabetes mellitus, and high-
cholesterol levels, which are associated with BMI and drug use.
The mechanism, by which these two factors contribute to the
development of PTS, requires further investigation.

This study has several limitations. First, it had a retrospective
design, and the derivation cohort in the ATTRACT study
was not designed to build models in the original study.
Consequently, some important factors were not included in
the model because they were not included prospectively or
too many values were missing. For example, some laboratory
induces, such as D-dimers, were not included because >20%
of the values were missing, which might affect the ability of
the model if they were filled using mean values or single
imputation. Moreover, previous studies have indicated that
previous varicose vein surgery is a strong predictor (13).
However, it was not recorded in the ATTRACT database and
not included in the model. Second, as varicose veins, iliac vein
compression syndrome, and smoking status were not recorded
in ATTRACT, other previous scores [including APTSD score
by Huang et al. (12), two-step model by Amin et al. (13), the
prediction model for elderly by Méan et al. (15), and a new
predictive model by Qiu et al. (16)] could not be validated
and compared with our models. Although the AUC showed
that our ML models improved the prediction ability, it would
be more rigorous if they were validated in the same cohort
using the NRI and IDI to evaluate the difference in prediction
ability. Third, the external validation cohort did not record
any bleeding events as a safety outcome. If bleeding events
were recorded, the prevalence of PTS and bleeding events
could be calculated in each risk group, e.g., using the PRAISE
score (20), which could guide further anticoagulation or other
treatment. However, the duration of anticoagulation therapy
cannot be extended, especially to prevent PTS. In clinical
practice, extended anticoagulation should refer to the risk of
VTE and bleeding. We believe that this limitation did not affect
the value of the model too greatly. Fourth, all four models
slightly underestimated the high-risk category when predicting
PTS, which negatively impacted the predictive power of the
prediction system. In the future, we may consider ways to reduce
the underestimation of the current model. For example, adding
a penalty during the derivation phase or selecting a different
classification threshold. Other ML algorithms, such as neural
networks, can be used to build the model or increase the sample
size of the derivation data.

In conclusion, we developed and validated models using
ML algorithms in large cohorts. This study demonstrated that
the ML models had accurate prediction ability and stable
generalization, which can further facilitate clinical decision-
making, with potentially important implications for selecting
patients who will benefit from endovascular surgery.
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