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Abstract

Escape enables prey to avoid an approaching predator. The escape decision-making process has traditionally been
interpreted using theoretical models that consider ultimate explanations based on the cost/benefit paradigm. Ultimate
approaches, however, suffer from inseparable extra-assumptions due to an inability to accurately parameterize the model’s
variables and their interactive relationships. In this study, we propose a mathematical model that uses intensity of predator-
mediated visual stimuli as a basic cue for the escape response. We consider looming stimuli (i.e. expanding retinal image of
the moving predator) as a cue to flight initiation distance (FID; distance at which escape begins) of incubating Mallards
(Anas platyrhynchos). We then examine the relationship between FID, vegetation cover and directness of predator trajectory,
and fit the resultant model to experimental data. As predicted by the model, vegetation concealment and directness of
predator trajectory interact, with FID decreasing with increased concealment during a direct approach toward prey, but not
during a tangential approach. Thus, we show that a simple proximate expectation, which involves only visual processing of
a moving predator, may explain interactive effects of environmental and predator-induced variables on an escape response.
We assume that our proximate approach, which offers a plausible and parsimonious explanation for variation in FID, may
serve as an evolutionary background for traditional, ultimate explanations and should be incorporated into interpretation of
escape behavior.
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Introduction

Accurate timing of escape, as determined by flight initiation

distance (FID; distance between prey and predator when escape

begins), enables prey to avoid a lethal encounter with an

approaching predator. In accordance with the theoretical

optimality model [1,2] and its extended versions [3–5], prey

adjust FID based on a cost/benefit ratio in order to achieve

maximal fitness. Numerous studies [6] have demonstrated reduced

FID in situations where risk of predation is low and/or cost of

escape high. In these cases, measures of FID provided relatively

strong arguments supporting the optimality paradigm. It is

extremely difficult to obtain precise fitness consequence estimates

of decision-making (i.e. optimality model parameters) in nature,

however, and most empirical studies do not evaluate the

sufficiency of empirical data gained for optimality models

adequately [7]. As a consequence, there is currently no well-

established complementary interpretation framework available to

the dominant view of FID in terms of economic rationality derived

from normative models.

Decision-making is inherently a function of cognitive, physiolog-

ical and neurobiological processes at the proximate level [8–10].

However, heuristics (or rule-of-thumb logic) used by prey during the

decision-making process do not always correspond with the

economic rationality assumed by most optimality models [11–13].

These aspects are predominantly considered as a ‘‘black box’’ in

evolutionary based studies on decision-making [14]. Nevertheless,

incorporating a proximate insight into the decision-making process

theoretical model may prove a fruitful strategy, providing parallel

(i.e. not necessarily mutually exclusive) frameworks for interpreta-

tion of several phenomena and stimulating theoretical as well as

empirical progress in this field [12,15–17].

Behavioral decision making and adopted anti-predator behavior

depends highly on the acquisition of acoustic or visual signals from

the environment [8,18,19]. Quality of visual perception in

particular has been identified as a predictor of inter-specific

variability in anti-predator performance, including vigilance

[20,21], predator detection [22] and, most recently, escape

response [23]. To date, there have been only a few studies that

have explored escape behavior incorporating proximate explana-

tions and that consider escape responses triggered by visual stimuli

[24–28]. In these studies, escape behavior was considered as

elicited by looming stimuli (i.e. projection of the angle subtended

by an approaching predator’s frontal profile onto the retinal
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image) and escape response as generated by a threshold size and/

or speed of the ‘‘looming image’’ on the retina [26,29,30].

Moreover, firing level intensity of specific visual neurons was

observed to correlate with looming expansion [9,31] and

physiological activity of muscles related to escape behavior [32–

34]. In other words, visual stimuli activate the escape response

and, therefore, could provide a suitable keystone for a proximate

interpretation of the escape decision-making process.

The ultimate approach has traditionally been used to explain

changes in FID in relation to changing vegetation cover or

directness of a predator’s approach trajectory [6]. Vegetation

cover and directness of trajectory should also affect both visual

acuity and the retinal image of an approaching predator, i.e. they

are likely to affect the looming stimuli. Indeed, many studies have

documented a shorter FID for individuals in habitats surrounded

by dense vegetation [35–37]. The effect of vegetation cover on

FID is usually considered to be associated with a decrease in

perceived risk due to a prey’s inconspicuousness [38]; however,

vegetation cover may also prevent accurate processing of visual

information from the environment [39–41]. This obvious

proximate explanation is generally underestimated in the context

of FID.

Similarly, the effect of directness of predator trajectory on FID

may also be interpreted in two ways. Broom and Ruxton [5] have

suggested that prey should either flee immediately a predator is

detected, or stay motionless and rely on crypsis. The ‘‘motionless’’

strategy is more advantageous when the predator’s trajectory

bypasses the prey’s position, since it intuitively decreases the

probability of being detected by the predator. Based on the

ultimate explanation, prey perceives a predator approaching

tangentially as less of a risk. The proximate view, however,

proposes that visual processing of an object (i.e. a predator)

moving directly towards the prey causes a stronger cue for flight

initiation. There is a lack of transversal shift in the retinal image

in the case of a direct approach [42] and, therefore, we can

conclude that expansion of retinal image is the more relevant cue,

see [10], however, for limitations to visual processing of a directly

moving predator in fiddler crabs (Uca vomeris). In contrast, the

retinal image of a predator moving strictly tangentially (i.e. the

predator does not approach the prey at all; see Figure 1) does not

expand [42] and, therefore, the retinal image of a tangentially

moving predator magnifies less than the retinal image of a

predator moving directly toward the prey. This would suggest

that the visual cue for escape response is weaker during a

tangential approach and that the prey would, in consequence,

delay its flight initiation [10,26,42]. Based on these proximate

predictions, vegetation cover, which is supposed to constrain

quality of visual acquisition, may have a stronger effect on escape

decision-making in the case of a directly, rather than tangentially,

approaching predator.

This study proposes a mathematical model based on simple

visual processing of an approaching predator. Based on the

model’s predictions, we examine escape decision-making in

incubating mallards approached by a human. The data revealed

a negative correlation between FID and nest vegetation conceal-

ment when prey were approached directly. During a tangential

approach, however, we observed no effect of vegetation conceal-

ment on FID. We believe that a description of the proximate

mechanism behind a particular behavior is crucial for an

understanding of observed variability in response to different risk

factors. We suggest that our model is able to bridge the gap in our

knowledge of proximate mechanisms of prey escape decision-

making and that its incorporation into the ultimate framework

could improve the interpretation of prey escape behavior and

make it more biologically relevant.

Methods

Model and Theory
We assume that a prey’s decision to escape is triggered by

changes in the geometry of a visual signal. Such a signal is given by

the apparent size of a predator’s profile, A, which will increase with

decreasing distance between prey and predator, d, and decrease

with a decrease in actual size of the predator, A0 (i.e. A~A0=d
2
;

see Figure 1). If vegetation cover is involved then the predator

profile, as seen by the prey, is reduced by nest vegetation

concealment c, expressed as the proportion of the predator that is

obscured by vegetation (see below), thus A~ 1{cð ÞA0=d
2
.

Intuitively, even a 100% increase in apparent predator profile

would appear negligible if the predator is apparently small (this

would also include a very distant predator). On the other hand,

even a small proportional increase (e.g. 10%) in a large apparent

predator profile will be noticeable to prey (this would also include

a small predator at a short distance). Because ducks, like most

birds, have very poor stereoscopic vision, we assume that an

increase in apparent predator size DA between two instants is the

cue for a duck to take flight. DA will be largest when a predator is

heading directly toward the nest (direct approach; a~0; Figure 1)

Figure 1. Relationships between predator frontal profile size, predator-prey distance and what the prey can actually see. (A) If a
predator, at a predator-prey distance d , moves along a trajectory that bypasses the prey at distance dmin, then each step of Dd shifts the predator of
D’d toward the prey. (B) The prey does not see the whole predator frontal profile size (A) but only a portion 1{cð ÞA, where c corresponds to actual
vegetation concealment that obstructs the prey’s view. The predator’s frontal profile size (A) is calculated as a product of a profile shape specific
coefficient (k) and the square of an effective diameter (r), i.e.A%kr2 . (C) The prey can apparently see the predator as if it was placed on a screen at a
distance of one (see ‘1’ in the Figure). Consequently, the apparent size of the predator’s frontal profile corresponds to apparent diameters r’d and
r’d{D’d , for the distances d (before a step) and d{D’d (after the step), respectively.
doi:10.1371/journal.pone.0032522.g001
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and will be zero if the predator passes the nest strictly tangentially

(strict tangential approach; a~p=2; Figure 1).

Vegetation concealment c, predator directness a, its actual size

A0, and distance d, all define a particular situation that uniquely

determines the relationship between the cue to fly DA, and any

shift by the predator between two instants in which a duck analyses

its surrounding Dd (Figure 1). This relationship obeys

DA~ 1{cð ÞA0
1

d{Dd cos að Þ2zD2d sin2a
{

1

d2

 !
ð1Þ

(for details see Text S1). As the species-specific value for the cue to

fly is met at the species-specific FID, we can modify eq. 1 by

replacing d with FID, thus

0~ 1{cð Þ 1

FID{Dd cos að Þ2zD2d sin2a
{

1

FID2

 !
{

DA

A0
, ð2Þ

which is numerically solved with respect to FID using the bisection

method (FIDw0) (see [43], and http://en.wikipedia.org/wiki/

Bisection method). Symbolically, we can write the solution of the

bisection method as a function of c, with three parameters DA=A0,

Dd and a. The notation then follows

FID~fDA=A0,Dd,a(c): ð2Þ

The FID derived from eq. 2 is supposed to apply to all individuals

of the focal species. However, in order to take individuality of prey

into account, we include an individual specific term I into the FID

(FID~fDA=A0,Dd,a(c)zI ). This allows for some individuals react-

ing before (and some after) reaching the critical value of FID.

Since there is no reason for a zero mean value of individuality, the

modeled FID obeys

FID~fDA=A0,Dd,a(c)z�II ð3Þ

where �II is a mean value of bias in the prey’s individuality.

In the design scheme for the field experiment (see Figure 1 for

details), the angle a varied with type of predator approach toward

the mallard’s nest (i.e. tangential/direct). Variation depends on a

minimum distance between the linear trajectory of the predator

and the nest dmin, and follows

cos a~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

dmin

d

� �2
s

: ð4Þ

If we predict that a change in apparent predator profile size (DA)

triggers an escape response (i.e. DA does not essentially vary

among individuals) then the model suggests FID as a function of

vegetation concealment c, and four parameters DA=A0, Dd, dmin

and �II . Thus

FID~fDA=A0,Dd,dmin
(c)z�II : ð5Þ

In our experimental scheme, dmin~0 and dmin~1 represent direct

and tangential approaches, respectively.

The model was fitted to data based on the relationship between

c and the difference between FID for direct and tangential

approaches in order to reduce the number of free parameters to

two (i.e. DA=A0 andDd). Thus, the model for the difference

between direct and tangential FIDs obeys

DFID~FIDdir{FIDtransv~fDA=A0,Dd,0(c){fDA=A0,Dd,1(c): ð6Þ

This assumes (i) equal size of predator, (ii) equal predator speed

during each experimental approach, and (iii) equal �II for direct and

tangential approaches. If the predator varied in its size or speed

then DA=A0 or Dd could not be treated as constant, and if �II
varied between direct and tangential approaches then DFID
would be biased from the predicted value. Equation 6, therefore,

was fitted by randomly varying DA=A0 and Dd (between 0 and 1,

and dmin and 1, respectively). Four thousand pairs of parameters

were randomly drawn and the sum of square residuals between

them predicted (eq. 6; FID values extracted from eq. 2 by the

bisection method) and observed values calculated. The DA=A0

and Dd minimum sum of square residuals were taken as fitted if

one thousand additionally drawn pairs of parameters did not

provide a better fit (a smaller sum of square residuals). If one of the

one thousand random pairs provided a better fit then a new set of

a thousand pairs of parameters was drawn. The procedure ended

when the last one thousand pairs of parameters did not provide a

better fit. Proof that the minimum sum of square residuals lay

within the range from which the parameters were taken was

checked visually on the graphs. Afterwards, the parameters

DA=A0 and Dd were used to compute particular relationships

between c and FIDs for direct and tangential approaches. Mean

individuality �II was extracted from the data on direct approach.

For each c, the FID, without accounting for the mean individual

reaction (i.e. fDA=A0,Dd,dmin
(c) in eq. 5), was extracted from eq. 2

using the bisection method and �II was computed as a mean across

residuals between the predicted and observed FIDs. Finally, FIDs

for tangential approach were computed by adding the value �II (eq.

5) to the FID extracted from eq. 2 (with DA=A0 and Dd extracted

from the previous fitting) using the bisection method. Three

hierarchical fittings were thus performed: (i) fitting on data on the

differences between direct and tangential FIDs with two free

parameters; (ii) fitting on data on direct approach with one free

parameter; and (iii) fitting on data on tangential approach with no

free parameters. There is no mathematical reason why parameters

extracted from the first fitting should suit the second or third fitting

and why �II extracted from the second fitting should suit the third

fitting as: (i) identical DFID- concealment relationships (eq. 6) may

originate from a variety of relationships between particular FIDs

(e.g. a negative correlation between FID difference and vegetation

concealment can result from decreasing or increasing of particular

FIDs and decreasing FID-concealment relationships), and (ii) �II for

tangential approach does not mathematically determine �II for

direct approach. Hence, we test our model using three

independent tests. First, we test for residuals of the fit of data on

DFIDs; second, for residuals on the fit of data on the direct

approach; and third, for residuals on the fit of data on the

tangential approach. We would reject the model in the case that

any residual showed a bias with vegetation concealment.

Experiments
Ethics statement. The field experiment was carried out

under permission no. 162 (15/2/2006), issued by the Ministry of

Environment, on behalf of the Government of the Czech

Republic.

Study area and model species. Field research was carried

out from April to July 2006 and 2007 at four selected fishponds

(area polygon covered 18 km2) situated in the Třeboň Biosphere

Reserve (49u99 N, 14u439 E). We used mallards, a cryptically

Visual Cues in Escape Decision-Making
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colored, ground-nesting, dabbling duck as a model species.

Typical nesting habitat was represented by ten artificial fishpond

islands (5–30 m wide, 100–300 m long) where all experimental

nests were located. Vegetation on these islands consisted mainly of

common reed (Phragmites communis), sedge grass (Calamagrostis

epigeos), nettle (Urtica dioica) and bent-grass (Carex spp.).

Field procedures. Mallard nests were detected by walking

slowly and systematically until incubating hens were disturbed,

thus enabling us to localize the nests. We determined nest site

vegetation characteristics for each nest by using a checkerboard-

patterned (565 cm squares) plastic cube (20620620 cm) placed

on top of the nest (see [38] for details). In order to obtain a value

for nest vegetation concealment from the direction of the

experimental predator’s approach (see below), the percentage of

squares covered with vegetation when viewed at 0.5 meters along

the approach direction at a height corresponding to the female

ducks head position (,20 cm above ground) was scored (hereafter

called ‘‘nest vegetation concealment’’). We used a candler [44] to

estimate the incubation stage for each clutch, enabling us to

experimentally approach only nests with eggs at the same

incubation stage (12–15 days) and to eliminate observed effect of

current reproductive stage on FID [38,45]. Nests with eggs at an

advanced incubation stage were excluded from the experiment. In

order to avoid the confounding effect of nest parasitism, we also

excluded nests containing eggs of parasitic species (e.g. Tufted

Duck (Aythya fuligula) and Gadwall (Anas strepera)). Moreover, we

also excluded nests completely covered with vegetation (100%

concealment) as there would be no looming stimuli to model in this

case (see Model and Theory). All experimental nests (n = 17)

represent a random sub-sample from four different study areas (see

above).

Experimental design. Each nest was approached either

directly or tangentially by the same observer (VJ) simulating a

predator. All experiments were undertaken between 10:00 and

16:00 (CET). We recorded the FID for each approach (610 cm),

i.e. the distance of the predator (observer) from the nest at the

moment when the female mallard started to flee. Direct approach

was performed by slow (0.5 m/s) walking toward the nest. Due to

the observed effect of bypass distance on FID [37], we

standardized the tangential approach by setting a minimum

perpendicular distance from the nest (dmin in Figure 1) equal to

one meter and by walking slowly (0.5 m/s) along this trajectory.

Predator sight was never targeted directly to the nest but above it

at human eye level. To eliminate the confounding effect of head

position on prey flight response [46], the observer’s head was

always oriented toward the movement trajectory during both

experimental approaches (i.e. the observer’s head did not turn

toward the nest during a tangential approach). Individual types of

experimental approach were applied in random sequence and the

interval between experimental approaches at the same nest was

not longer than four days, which enabled us to keep the incubation

stage at the same phase during particular experimental

approaches. In order to avoid the effect of starting distance (i.e.

the distance between predator and prey when approach begins) on

FID [47], we kept equal starting distances (ranging from 7 to

10 meters) for both experimental approaches to the same nest.

Results

Mean FIDs 6 SD were 2.461.04 m for a direct approach and

1.960.6 m (N = 17) for a tangential approach. The minimum

approach distance (i.e. minimum FID) for both direct and

tangential approach was 1 m, which corresponded to the

minimum bypass distance used in our field experiment (i.e.

dmin~1). Maximum FIDs for direct and tangential approaches

were 4 m and 3 m, respectively.

The modeled relationship (eq. 6) fitted to data on the difference

between FIDs (fitted parameters: Dd%0:6 m, DA=A%0:2)

decreased with vegetation concealment (Figure 2). Models of

particular relationships between vegetation concealment and FIDs

for direct (fitted parameter: �II%0:7 m) and tangential (no free

parameter) approaches showed decreasing and constant curves

(Figure 3A; phenomenologically, they could be approached with

lines). None of the residuals between the fitted and observed FIDs

showed significant bias (p&0:73, Wald. stat = 0.12, df = 1, N = 17;

p&0:14, Wald. stat = 2.14, df = 1, N = 17; and p&0:55, Wald.

stat = 0.35, df = 1, N = 17 for direct, tangential, and the difference

between both these approaches, respectively; GLM,

residual&czc2, linear link) (see Figure 3B). Since there was also

no evidence for any significant second order polynomials (i.e. c2)

for particular approaches (p&0:93, Wald. stat = 0.002, df = 1,

N = 17; p&0:12, Wald. stat = 2.44, df = 1, N = 17; and p&0:29,

Wald. stat = 1.01, df = 1, N = 17, respectively), we did not reject

the proposed model and considered it an appropriate proximate

interpretation of escape decision-making.

For contrast, we attributed an artificially inverted vegetation

concealment to each observation (e.g. the nest with c~0:1 was

given a new c~0:9; Figure S1), then ran the test for the deformed

dataset. Both the residuals for fit on DFID and FIDs for direct and

tangential approaches were significantly biased (p&0:03,

r~0:53,N~17;pv0:0001, r~{0:79, N~17 and p&0:006,

r~{0:64, N~17, respectively) (see Figure S1). Thirty artificial

data sets, where vegetation concealment was randomized across

the observed nests, showed that all residuals on FIDs (for

tangential approach) extracted from the randomized data were

biased to a higher significance level than residuals extracted from

observed data (i.e. p randomized was smaller than p observed). Of

these, 16 residuals were significantly biased at a level of p,0.01

and five at p,0.05 (9 were non-significant). This model, therefore,

is able to indicate a contrast between correct and deformed data.

Experimental data showed a significant relationships between (i)

vegetation concealment and difference between FIDs (p&0:021,

r~{0:55, N~17) and (ii) between vegetation concealment and

FID for direct approach (p&0:011, r~{0:6, N~17), just as our

Figure 2. Observed (squares) and modeled (solid line) relation-
ships between nest vegetation concealment and differences
between two types of FID (direct minus tangential approach).
N = 17, though some points overlap at symbols (see Data S1).
doi:10.1371/journal.pone.0032522.g002
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model predicted. There were no significant relationships between

vegetation concealment and FID for tangential approach (p&0:9,

r~0:032, N~17). Furthermore, the plot of FID for direct

approach against the difference between particular FIDs

(Figure 3C) showed a linear relationship (pv0:0001, r~{0:86,

N~17; Figure 3C) with a slope of one (CI0:95& 0:68;f 1:22g). The

FID for tangential approach, therefore, is independent of the FID

for direct approach, as predicted.

Discussion

Escape decision-making theory has long been interpreted

mainly in terms of the ultimate fitness cost/benefit balance

paradigm [1,2]. Further, mathematical models based strictly on

ultimate explanations for interpretation of the behavioral decision-

making process are widely adopted and used by most behavioral

ecologists [3,4,6]. This kind of approach has a certain degree of

heuristic power; for example, observed inter- and intra-specific

variability in escape response to identical risk factors is widely

interpreted through their multiple (i.e. additive or interactive)

effects [4,48–50]. These ultimate variables, however, cannot be

directly parameterized and are considered as hidden or latent

variables which can only be correlated with observable behavior

[7]. Such non-complex characteristics of ultimate approaches are

taken into account in the most recent theoretical studies that

incorporate a proximate insight into interpretation of decision-

making processes during mate choice [51] or the decision to flee

[52]. Accordingly, with respect to the above mentioned theoretical

background, it is correct to assume that an understanding of the

physiological mechanisms that trigger escape behavior are needed

in order to produce proximate explanations that can eventually be

applied in the sense of ultimate considerations [52,53].

Several studies have confirmed that individuals primarily use

information from their sensory systems [8,19,54] and that visually

guided animals are able to precisely distinguish between a false

and relevant visual signal in the environment [55,56]. Surprisingly,

even though empirical evidence exists for the escape response

being closely linked with proximate cognitive and/or physiological

mechanisms [9,34,57], this fact has mostly been ignored in

theoretical models that evaluate escape decision-making [3–5]. To

our knowledge, our study is the first that proposes a theoretical

model predicting prey escape behavior based on looming stimuli

and that includes both environmental- and predator-induced

factors as model variables. By including the interactive effect of

given factors affecting visual processing of an approaching

predator, and through defined experimental conditions (e.g. no

totally covered nests), we show that even a relatively complex

escape response pattern where various risk factors interact [48–50]

can be explained by a simple proximate mechanism.

Experimental data were consistent with the model’s predictions

regarding the interaction of effect of vegetation cover and

directness of predator approach, i.e. FID increased with

decreasing vegetation concealment during a direct approach but

not during a tangential approach (see Figure 3A). These results can

be interpreted with respect to the model’s predictions in which we

Figure 3. Particular relationships and their residuals. (A) FIDs/
vegetation concealment relationships for tangential (observed =
empty squares, modeled = dashed line) and direct (observed = solid

squares, modeled = solid line) approaches. (B) Neither residuals
between data and models for the tangential approach (empty squares)
and the direct approach (solid squares) nor the direct minus the
tangential approaches (triangles) show significant bias. (C) Observed
(squares) and modeled (line) relationships between FID for a direct
approach and the difference between FIDs for the two types of
approach. N = 17 in all cases, though some points overlap at pictures
symbols (see Data S1).
doi:10.1371/journal.pone.0032522.g003
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consider the different contribution of vegetation concealment to

visual processing of a direct vs. tangential predator movement (eq.

5; Figure 1B). The fitted parameters (Data S1) indicate that the

predator effectively covered a distance of 60 cms (Dd%0:6) while

a duck processed the visual information as indicating danger. As

the speed of the ‘‘predator’’ was set at 0.5 m/s in our experiment,

the duck’s processing time is around 1 sec. This is in accordance

with the mean individual reaction, which shifts average values of

FID of around 70 cms toward longer distances (�II%0:7), and with

variability in individual reaction, which is about 1 m either side of

the predicted value (Figure 3A). A value of DA=A0%0:2 indicates

that the predator’s profile has to increase by approximately 20%

with respect to actual predator profile, or in the case of a human

being (A0%0.6 m2). This means that the trigger value (for the

observed mallards) on the duck’s ‘‘virtual screen’’ (see Figure 1 for

details) at a distance of one meter is 0.12 m2 (or a two-dimensional

angle of 0.12 steradians). For a small predator (e.g. A0%0.3 m2),

therefore, the fitted parameter DA=A0 would be approximately

0.7 m2 (&0:12=0:3), a conclusion that serves as a testable output

of our theory (see also Software S1, Manual S1).

We assume that the trigger for escape behavior is the contrast in

apparent predator size (equivalent to a two-dimensional angle in

steradians) between two different instants (we assume the

difference as species-specific). Such a trigger makes better

biological sense than speed of the predator. If, for example, prey

process a visual signal from two instants very close in time, the

contrast in visual signal would be small and the prey probably

would not notice any change. If, on the other hand, prey compare

visual signals from two instants clearly separable in time, there is a

higher chance of a noticeable contrast, which may then trigger a

response. This resonates with the parental experience of a lack of

progress in their children’s development on a daily basis, whereas

clearly visible changes are seen on photographs taken at Sunday

picnics. Our model, therefore, not only takes account of predator

speed but also the way in which prey separate visual signals from

each other and how this affects visual stimuli. We assume that the

values of these two factors result from predator/prey co-evolution.

Although previous studies have documented that FID decreases

with increasing vegetation concealment, and have interpreted

these findings in terms of the protective function of dense

vegetation for the prey [36–38,49], we suggest that the degree of

vegetation cover limits the visual stimuli input [41,58] and thereby

affects FID. Moreover, our empirical data show a linear

relationship between FIDs for a direct approach and the

differences between particular FIDs (see Figure 3C). Our model,

therefore, suggests that the visual appearance on a duck’s retina of

a predator moving directly toward prey will be different than the

visual appearance of a tangentially approaching predator (but see

[10,26]).

Support for our proximate insight into escape decision-making

is also provided by several studies demonstrating that variations in

escape response are driven by certain constrains, such as the

capacity of the visual system [23,26,28,34] or the responsiveness of

vision-related neurons [9,34,59]. Jabloński and Strausfeld [60]

used a ‘‘looming image’’ projected on an insect’s retina for

modeling evolution of contrastive pattern in bird plumage

coloration, a factor that appears to be crucial for foraging success

in insectivorous flush-pursuing birds. This fact, in our opinion,

indicates that proximate insight per se may have a predictive value

for evolution and the interpretation of observed ultimate

consequences.

In this study, we provide a simple proximate explanation for the

effects of environmental- and predator-induced factors on FID.

Although it is clear that escape decision-making is more complex

than our model suggests [61,62] (e.g. FID could also be affected by

auditory stimuli in the case of dense vegetation concealment

obstructing vision [63–65]), the good fit to data indicates that the

overall pattern is well described by modeling visual stimuli and

that escape is likely to be triggered by magnification of the

predator’s frontal profile. An ultimate evolutionary mechanism is

thus likely to act through this proximate mechanism, making our

model a useful tool for upcoming research of prey escape behavior.

Supporting Information

Figure S1 Results for artificially deformed data. (A)

Observed (squares) and modeled (solid line) relationships between

nest vegetation concealment and differences between the two types

of FIDs (direct minus tangential approach). (B) Particular FID/

vegetation concealment relationships for tangential (observed =

empty squares, modeled = dashed line) and direct (observed =

solid squares, modeled = solid line) approaches. (C) All residuals

between data and models for a tangential (empty squares) and

direct approach (solid squares) and the direct minus tangential

approaches (triangles) show significant bias. N = 17 in all cases,

though some points overlap each other at symbols (see Data S1).

(TIF)

Text S1 Derivation of eq 1.
(DOC)

Data S1 Dataset.
(XLS)

Manual S1 Software manual.
(DOC)

Software S1 Software.
(EXE)

Acknowledgments

We thank Petr Haflant, Mark Rawlings and Kevin Roche for helpful

comments and English correction on previous and the final version of the

manuscript. We particularly thank an anonymous referee for comments

and language correction. We certify that all of the field experiments were

permitted and carried out in accordance with Czech Governmental ethical

standards.

Author Contributions

Conceived and designed the experiments: TA. Performed the experiments:
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60. Jablònski PG, Strausfeld NJ (2000) Exploitation of an ancient escape circuit by
an avian predator: prey sensitivity to model predator display in the field. Brain

Behav Evol 56: 94–106.

61. Stankowich T, Coss RG (2006) Effects of predator behavior and proximity on
risk assessment by Columbian black-tailed deer. Behav Ecol 17: 246–254.

62. Cooper W (2009) Fleeing and hiding under simultaneous risks and costs. Behav
Ecol 20: 665–671.

63. Noesselt T, Tyll S, Boehler CN, Budinger E, Heinze HJ, et al. (2010) Sound-

induced enhancement of low-intensity vision: multisensory influences on human
sensory-specific cortices and thalamic bodies relate to perceptual enhancement

of visual detection sensitivity. J Neurosc 30: 13609–13623.
64. Llusia D, Marquez R, Beltran, JF (2010) Non-Selective and Time-Dependent

Behavioural Responses of Common Toads (Bufo bufo) to Predator Acoustic
Cues. Ethology 116: 1146–1154.

65. Rattenborg NC, Lima SL, Amlaner CJ (1999) Half-awake to the risk of

predation. Nature 397: 397–398.

Visual Cues in Escape Decision-Making

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e32522


