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Abstract 

Background:  Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breed-
ing, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection 
using traditional SNP information is easily implemented for any number of genotyped individuals using single-step 
genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to 
investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known.

Methods: Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals 
in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The 
genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were 
computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted 
with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated 
weights, (e) only unweighted causative QTN, (f–h) as in (b–d) but using only the top 10% causative QTN, and (i) using 
only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGB-
LUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses 
of GRM were obtained directly or with APY.

Results: Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for 
ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights 
were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM 
was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accura-
cies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the APY inverse were equal or 
higher than those with a regular inverse.

Conclusions: Single-step GBLUP can account for causative QTN via a weighted GRM. Accuracy gains are maximum 
when variances of causative QTN are known and blending is at 1%.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Initially, genomic selection used a large set of single 
nucleotide polymorphisms (SNPs) for genetic evaluation 
without the explicit identification of quantitative trait loci 
(QTL) [1]. SNP estimation coupled with variable selec-
tion or weighting is a way to improve accuracy by empha-
sizing regions with major genes, which is generally called 

Bayesian regression and we will use this term throughout 
the paper.

Those Bayesian methods could not be implemented 
directly for commercial populations, for which only a 
fraction of animals are genotyped. The methods were 
incorporated indirectly by using pseudo-observations 
and combining results with pedigree structure [2, 3]. 
Such a methodology called multistep is close to optimal 
only when pseudo-observations are very accurate (e.g., 
sires in dairy cattle or crop trials). When the structure 
of the genotyped dataset is more complex, problems 
such as double counting of contributions from pedigree 
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and phenotypes, and preselection bias [4] reduce accu-
racy. SNP best linear unbiased predictor (SNP BLUP) 
is equivalent to genomic BLUP (GBLUP) or BLUP with 
a genomic relationship matrix (GRM) [2]. Single-step 
GBLUP (ssGBLUP), which is an extension of GBLUP, can 
incorporate pedigree, genomic, and phenotypic informa-
tion jointly by using a relationship matrix that combines 
pedigree and genomic relationships [5]; an equivalent 
ssGBLUP based on SNP effects only has also been imple-
mented [6]. Due to its simplicity and accuracy, ssGBLUP 
is now a method of choice for genomic evaluation in 
many livestock species.

When the number of genotyped animals is small, the 
use of Bayesian regression was found to increase accu-
racy of genomic prediction for many traits [7, 8]. How-
ever, as the number of genotyped animals increases, the 
improvement in accuracy becomes smaller or is zero. For 
example, VanRaden [2] reported that the improvement 
from non-linear predictions for milk yield in US dairy 
cattle was 4% in 2008 but dropped to 1% in 2011 [9]. In 
other words, the influence of the prior vanishes with 
larger amounts of data, a well-known property of Bayes-
ian inference. A small improvement could be an artifact 
due to the use of non-coding SNPs. If all causative SNPs 
are identified, only those markers need to be fit in the 
model and the accuracy could approach 100%.

When the number of genotyped animals is very large, 
the computing costs of ssGBLUP, especially for invert-
ing the GRM, could be prohibitive. Such costs could be 
reduced if the dimensionality of the genomic information 
is limited and exploited to reduce computations. Van-
Raden [2] found that the GRM has limited dimensional-
ity and that blending of GRM with pedigree relationships 
(numerator relationship matrix, NRM) was required 
for numerical stability of GBLUP. Dimensionality of the 
GRM can be understood as the number of linearly inde-
pendent genotypes that are present in the GRM. This 
dimensionality of the genomic information can be equally 
assessed by the eigenvalues of the GRM, the eigenval-
ues of the design matrix of SNP-BLUP, and the squares 
of singular values from singular value decomposition of 
the matrix of SNP content (matrix containing genotyped 
animals in the rows and each SNP genotype in the col-
umns), which are all identical. Indirectly assuming lim-
ited dimensionality, Misztal et al. [10] proposed a method 
for the inversion of GRM called algorithm for proven and 
young (APY) based on the inversion of a small matrix of 
“core” animals, followed by a sparse expression for the 
other individuals. APY has a cubic computational cost 
for the size of the core subset but cost is only linear for 
the remaining animals. If the size of the core subset is 
not too large, APY can successfully invert GRM for mil-
lions of animals at a small cost. When tested in Holsteins, 

APY based on any core subset of more than 15,000 ani-
mals maximized the accuracy of genomic prediction 
[11]. APY was successfully used with several datasets 
that included up to 500,000 genotyped animals [12–14], 
which indicates that the dimensionality of the genomic 
information is indeed limited. Misztal [15] suggested that 
the dimensionality of the genomic information is propor-
tional to effective population size (Ne). In simulations 
that involved populations with different Ne, accuracy was 
maximized when the number of animals in the core sub-
set was equal to 4NeL, where L is genome length in Mor-
gan [16]. However, accuracies decreased by less than 5% 
when the core subset size was equal to NeL. The number 
4NeL (or NeL) is associated with the effective number of 
genomic segments, and was approximately 14,000 (3500) 
for Holsteins, 12,000 (3000) for Jerseys, 11,000 (2750) for 
Angus, and 4000 (1000) for pigs and broilers [17].

The concept of dimensionality of the genomic informa-
tion, as described above, applies to generic GRM; how-
ever, it can also be applied to trait-specific or weighted 
GRM. If SNP selection for a specific trait results in only 
n SNPs being retained, the dimensionality cannot be 
greater than n. Subsequently, a trait-specific GRM that is 
created via SNP selection or GWAS is likely to have lower 
dimensionality than a generic GRM. Subsequently, the 
ratio of trait-specific to generic dimensionality could be 
an indicator of complexity of the trait. In particular, a low 
value of this ratio for a trait-specific GRM that results in 
the highest accuracy of GEBV would indicate that rela-
tively few genes control this trait.

Recent advances in sequencing methodologies have 
renewed the interest in finding genes or QTN. If a trait 
is influenced by n QTN, the rank of the trait-specific 
genomic information (including GRM) is n, since only 
the QTN need to be used for the evaluation, and the 
accuracy of the genomic prediction reaches 100% if the 
dataset is large enough to estimate all QTN effects accu-
rately. More realistically, if only a fraction of the causative 
QTN is identified, then both causative and non-caus-
ative SNPs must be used in the analyses. Some studies 
showed no improvement in accuracy of genetic evalua-
tions when sequence data was included [18, 19], whereas 
other studies reported a small improvement [20–25]. 
Brøndum et al. [26] reported an important insight about 
the use of causative SNPs in genetic prediction i.e. they 
observed that including QTN with non-coding SNPs and 
using GBLUP or Bayesian regressions for the analyses did 
not result in any substantial increase in accuracy. How-
ever, accuracy increased when QTN were assigned more 
weight, in other words, higher a priori variance of their 
effects, to avoid these being heavily regressed towards 
zero like in SNP-BLUP. Thus, specific knowledge of those 
a priori variances is needed to correctly weight QTN.
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If some causative QTN are identified, it would be useful 
to incorporate them in a simple analysis with increased 
gains in accuracy. The first goal of our study was to deter-
mine the properties of ssGBLUP when all or some QTN 
are identified and the second goal was to determine the 
dimensionality of genomic information when QTN are 
known and whether APY is applicable.

Methods
Heterogeneous SNP variances and weighted genomic 
relationship matrix
SNP-BLUP and GBLUP are equivalent models [2]. In 
particular, the breeding value is a linear function of SNP 
effects:

where s is a vector of SNP effects, a is a vector of breeding 
values, and Z is a matrix of gene content, centered on the 
allele frequencies that are obtained from the entire geno-
typed population being evaluated. Assuming an equal 
distribution of SNP effects:

where σ 2
s  is the SNP variance, G is a genomic relationship 

matrix (GRM), and σ 2
a  is the additive variance. GRM can 

be derived directly from the a priori SNP variance as:

Assuming that the additive variance and gene frequen-
cies are known, and under certain assumptions including 
Hardy–Weinberg and linkage equilibrium, the SNP vari-
ance is estimated as follows:

so that based on [2]:

where pi is the allele frequency of the i-th SNP and 
qi = (1− pi). Allele frequencies were calculated using all 
genotypes in G.

Assume a priori unequal SNP variances:

where σ 2
s,i is the variance of the i-th SNP effect and 

n is the number of SNPs. Then, it is possible to use a 
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SNP-BLUP with these variances [27] or, alternatively, 
GBLUP with a “weighted” genomic covariance matrix 
Var(a) = Zvar(s)Z′. Specifically, GRM can include a 
diagonal matrix D of “weights”, such that:

where the factor 
∑m

i=1 2piqi is introduced for compatibil-
ity with the current software so that for the unweighted 
GRM D = I and m is the number of SNPs. The contribu-
tion of locus i to the covariance matrix G must be equal 
to its contribution in Zvar(s)Z′:

Thus,

In other words, di is proportional to σ 2
s,i. The genetic 

variance in the population is σ 2
a =

∑

2piqiσ
2
s,i, which 

means that all weights must average to 1. In practice, σ 2
s,i 

are not available (or even estimated) and are often substi-
tuted by the squared effect of the SNP (di ≈ ŝ2i

∑m
j=1 2pjqj

σ 2
a

 ). 

Because 
∑

2piqiŝ
2
i  does not add up to the genetic vari-

ance of the population, σ 2
a , weights dj are, after estima-

tion, standardized to sum to 1. Thus, in practice di can be 
computed as equal to ŝ2i  and then scaled. Another approx-
imation involves the squared effect of the SNP, weighted 
by the population heterozygosity (di ≈ 2piqiŝ

2
i

∑m
j=1 2pjqj

σ 2
a

 ) 

[28], but this has no theoretical justification and gave 
poorer results in our study (not shown). Thus, here, the 
form di ≈ ŝ2i

∑m
j=1 2pjqj

σ 2
a

 was used, by including either the 

estimated effect (for SNPs or QTN) or the true effect (of 
the QTN, in which case ŝ2i = s2i ).

Simulation
Using the software QMSim [29], we simulated a livestock 
population under selection for a single quantitative trait 
that has a heritability of 0.3. A historical population was 
generated by mutation and drift over 1000 generations, 
expanding from 1000 to 10,000 individuals, in order to 
create initial linkage disequilibrium (LD). For each rep-
licate, 180,000 animals were simulated across 11 over-
lapping generations. Phenotypes were available for all 
animals in generations 6  to  10. For the first generation, 
15,000 males and 15,000 females were simulated. A litter 
size of one individual was set resulting in 15,000 progeny 
in each generation, with a male to female ratio of 1:1. Sire 
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and dam replacement rates of 20% were applied, animals 
were selected based on the highest estimated breeding 
values (EBV) estimated by BLUP at the end of each gen-
eration, and mating of selected animals was at random.

Genomic information was available only for animals 
in the last five generations. All animals with progenies 
were genotyped, i.e. 24,000 sires and dams. In addition, 
5000 animals were randomly selected from the last gen-
eration to be genotyped. We simulated 10 chromosomes 
each 150 cM long and with evenly spaced 6000 SNPs, i.e. 
60,000 SNPs in total. Each chromosome contained either 
10 or 100 biallelic randomly located QTN (casual vari-
ants), i.e. 100 or 1000 QTN in total that are not included 
on the 60,000-SNP array. QTN effects were sampled 
from a gamma distribution with a shape parameter of 
0.4 and scaled internally for a genetic variance of 0.3, and 
explained 100% of the genetic variance of the trait.

Analysis
We used two methods for genetic evaluation: PBLUP 
and ssGBLUP. Both included 75,000 phenotypes in gen-
erations 6 to 10 and all pedigree information. The linear 
model was the same for all analyses and scenarios:

where y is the observation vector, µ is the mean, a is the 
vector of the animals’ additive effects, e is the vector of 
residuals, and W is the incidence matrix. Assumptions 
for residual effects were the same in all methods:

where σ2e is the simulated residual variance, and I is an 
identity matrix with dimension equal to the number of 
animals.

The first method was PBLUP with a ∼ N
(

0,Aσ
2
a

)

 , 
where σ2a is the genetic additive variance and A is the 
numerator relationship matrix. The second method was 
ssGBLUP with a ∼ N

(

0,Hσ
2
a

)

, where H is defined as in 
Legarra et al. [30] and its inverse is the same as in BLUP 
is [4]:

where A−1
22  is the inverse of the numerator relationship 

matrix for genotyped animals, and Gb is a “blended” 
GRM as described next.

Matrix G was constructed using different combina-
tions of SNPs and weights: (a) unweighted with 60,000 
non-coding SNPs; (b) unweighted with non-coding 
SNPs and the 100 or 1000 causative QTN; (c) as in (b) 
but with weights in D calculated based on genome-wide 
association studies (GWAS) using iterative ssGBLUP as 

y = 1µ+Wa + e,

e ∼ N

(

0, Iσ2e

)

,

H−1
= A−1

+
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0 0

0 G−1

b
− A−1
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)

,

in Wang et al. [31]; (d) as in (b) but unweighted for non-
coding SNP (di = c, where c was a constant equal to the 
smaller simulated QTN variance) and with weights based 
on true QTN effects as di = s2i

∑m
j=1 2piqi

σ 2
a

; (e) unweighted 
using only 100 or 1000 causative QTN; (f–h) as (b–d) but 
using only 10% of the largest QTN; and (i) weighted by 
the true simulated variance using only 100 or 1000 causa-
tive QTN. Thus, QTN weights were proportional to s2i . 
Table  1 summarizes information about these scenarios. 
In an additional scenario, SNPs that are adjacent to caus-
ative variants received a weight equal to 0, while all other 
SNPs received the same constant for the polygenic effect, 
and causative SNPs received the simulated true effect as 
weight. The number of adjacent SNPs with weight equal 
to 0 started from 1 and increased until all non-coding 
SNPs had their weight set to 0.

Then, a scaled G0 was constructed as follows:

where constants a and b ensure equivalence of genomic 
and pedigree-based average relatedness and inbreeding 
[32], and I is an identity matrix with the same dimensions 
as G. Because this G0 is not guaranteed to be positive 
definite [2], three alternative blended genomic matrices 
(Gb) were constructed from G0 as Gb = (1− α)G0 + αK , 
where α is a blending factor and K is a positive definite 
matrix. We considered three cases: blending with either 
α = 0.05 or 0.01 of A22, or with α = 0.01 of the identity 
matrix. The inverse of Gb was obtained either by direct 
inversion or by APY [15]. In the latter case, the number 
of core animals was either (a) the number of the largest 
eigenvalues explaining 98% of the variance of Gb, or (b) 
twice the number of simulated QTN.

G0 = aI+ bG,

Table 1 Parameters for the analysis of scenarios

‘60 k SNPs’ defines scenarios that included the simulated SNPs

‘Causative QTN’ defines scenarios that included all or the top 10% simulated 
causative variants

‘Weight GWAS’ defines scenarios that used weights from the iterative GWAS 
approach

‘Causative variance’ defines scenarios that used true simulated variance for QTL

Scenario 60 k SNPs Causative 
QTN

Weights 
GWAS

Causative 
variances

(a) Yes

(b) Yes Yes

(c) Yes Yes Yes

(d) Yes Yes Yes

(e) Yes

(f ) Yes Top 10%

(g) Yes Top 10% Yes

(h) Yes Top 10% Yes

(i) Yes Yes
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The quality of predictions was assessed for the 5000 
genotyped animals in the last generation. The accuracy 
was measured as the Pearson correlation between the 
genomic EBV (GEBV) and the simulated true breed-
ing value (TBV). All calculations were done by using the 
BLUPF90 program suite [33], preGSf90 [34] to calculate 
the genomic matrices and postGSf90 for the GWAS [34]. 
All analyses were replicated 10 times.

Results and discussion
We observed very little difference between the realized 
accuracies across the replicates (≤0.01), and standard 
errors were <0.005, thus only the results of one replicate 
are shown. Accuracies obtained with different options are 
in Figs. 1, 2, 3, 4 and 5. LD was measured by  r2 between 
adjacent SNPs with a mean (standard deviation) of 0.63 
(0.06) across all chromosomes and generations.

Including only non‑coding SNPs
The accuracies obtained with PBLUP and ssGBLUP using 
only non-coding SNPs are in Fig. 1 and, as expected, were 
higher for ssGBLUP than for PBLUP. Accuracies were 
much lower than the value of 0.8 found for dairy cat-
tle [35] because the number of phenotypes was much 
smaller but accuracies were close to those found for the 
broiler population for which a similar number of phe-
notypes was available [36]. Using the APY inverse with 
16,000 randomly selected core animals resulted in the 
same accuracies as using the regular inverse. When an 

unweighted GRM was used to obtain the APY inverse, 
the optimum number of core animals was close to the 
number of the largest eigenvalues in the GRM that 
explained 98% of the variance [16], which in this case was 
close to 16,000.

Including causative QTN
Figure  2 presents the accuracies obtained when using 
non-coding SNPs and causative QTN together. Includ-
ing causative QTN in the unweighted GRM increased 
accuracies by 0.04, which is similar to the 2.5% increase 
in reliability reported by VanRaden et al. [25]. Karaman 
et al. [37] found that, as in Bayesian regressions, GBLUP 
partially accounts for QTL regions, in particular for very 
large datasets because the variances of the SNP effects 
constitute prior information that vanishes as the amount 
of data increases. Using weighted GRM with weights 
obtained by GWAS as described by Wang et  al. [31], 
the accuracy increased further, by 0.10 for the data with 
100 QTN and by 0.05 with 1000 QTN. This increase was 
higher with 100 QTN because these have larger effects, 
and because there are fewer effects to be estimated by 
the model. Using GWAS for weighting SNP effects seems 
to have a limited success due to the structure of LD [17, 
38]. GWAS as used in this study is relatively simple; in 
BayesR or BayesRC, several sets of prior variances are 
available, with the largest set being potentially useful for 
identifying causative QTN [19, 22]. When creating the 
GRM by using true effects for causative QTN with small 

0.32

0.49

0.49

0.32

0.51

0.51

0 0.1 0.2 0.3 0.4 0.5 0.6

BLUP

ssGBLUP

APY

100 1000
Fig. 1 Accuracies of predictions with BLUP and ssGBLUP. Predictions with only pedigree information (BLUP) or genomic information using 
unweighted GRM derived from 60 k SNPs and a regular inverse (ssGBLUP), and as ssGBLUP but with the GRM inverse derived using APY. The number 
of causative QTN is 100 or 1000
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variances for the non-coding SNPs, accuracies increased 
substantially, i.e. by 0.36 with the 100 QTN data and 0.31 
with the 1000 QTN data, as compared to the unweighted 
GRM including the causative variants. This confirms the 
assertion of Brøndum et  al. [26] who reported that for 

accuracy to increase substantially with causative QTN, it 
is necessary to weight them differently. When the previ-
ous analysis was repeated with the APY inverse, accura-
cies increased even further, to 0.94 and 0.88, respectively. 
As accuracies approach 1 in the analyses that fully exploit 

0.53

0.63

0.89

0.94

0.55

0.58

0.86

0.88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QTN

QTN/GWAS

QTN/TRUE

QTN/TRUE/APY

100 1000
Fig. 2 Accuracies of prediction with ssGBLUP including causative variants. Predictions with ssGBLUP with an unweighted GRM derived from 60 k 
SNPs and causative QTN and a regular inverse (QTN), as QTN but with a weighted GRM with weights derived from GWAS (QTN/GWAS), as QTN but 
with a GRM weighted by true QTN effects (QTN/TRUE), and as QTN/TRUE but with the APY inverse (QTN/TRUE/APY). The number of causative QTN is 
100 or 1000

0.52

[VALUE]

0.75

0.75

0.53

0.56

0.74

0.74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10% QTN

10% QTN/GWAS

10% QTN/TRUE

10% QTN/TRUE/APY

100 1000
Fig. 3 Accuracies of prediction with ssGBLUP including the top 10% causative variants. Predictions with ssGBLUP with an unweighted GRM derived 
from 60 k SNPs + the top 10% causative QTN and a regular inverse (10% QTN), as 10% QTN but with a weighted GRM with weights derived from 
GWAS (10% QTN/GWAS), as 10% QTN but with a GRM weighted by true QTN effects (10% QTN/TRUE), and as 10% QTN/TRUE but with the APY 
inverse (10% QTN/TRUE/APY). The number of causative QTN is 100 or 1000
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all causative QTN, increases in accuracy with the APY 
inverse must be due to a decrease in noise from the non-
coding SNPs. VanRaden et  al. [25] obtained on average 
a 2.5% increase in reliability by incorporating potential 

causative SNPs while removing adjacent SNPs. Since one 
QTN generates a multi-SNP response [31, 39, 40], its 
incorporation in the analyses allows the removal of spuri-
ous effects of adjacent SNPs.

0.95

0.99

0.99

0.99

0.99

0.99

0.91

0.92

0.93

0.93

0.95

0.95

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

only QTN/ 5% A22

only QTN/ 1% A22

only QTN/ 1% A22/ APY

only QTN/ 1% I/ APY

only QTN/ TRUE/1% A22

only QTN/ TRUE/1% I

100 1000
Fig. 4 Accuracies of prediction with ssGBLUP including only causative variants. Predictions with ssGBLUP with an unweighted GRM with causative 
QTN only and a regular inverse with 5% blending by pedigree relationships (only QTN/5% A22), as only QTN/5% A22 but with 1% blending by pedi-
gree relationships (only QTN/1% A22), as only QTN/1% A22 but with inversion by APY with the number of core animals equal to twice the number of 
QTN (only QTN/1% A22/APY), as only QTN/1% A22/APY but with blending of the identity matrix by 1% (only QTN/1% I/APY). Predictions with GRM 
weighted by true QTN effects were used with 1% pedigree relationship blending (only QTN/TRUE/1% A22) and 1% identity matrix blending (only 
QTN/TRUE/1% I ). The number of causative QTN is 100 or 1000

Fig. 5 Accuracy of prediction with ssGBLUP without SNPs flanking QTN. Predictions with ssGBLUP with GRM derived from 60 k SNPs +causative 
QTN, weighted by the true simulated QTN effects and a constant for SNPs. SNPs flanking the causative variants had weights zeroed within the 
distance shown on the x axis
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Analyses with the top 10% causative QTN
Identifying all causative QTN and their weights is unreal-
istic, and Fig. 3 presents accuracies for scenarios similar 
to those above but including only the top 10% causative 
QTN. Compared to the scenario including all causa-
tive QTN, considering only the top 10% resulted in a 
decreased accuracy, as expected. The reduction was small 
with unweighted GRM, larger with weights via GWAS, 
and largest with the true weights of causative SNPs. 
Using the APY inverse does not improve the accuracy as 
in scenarios that include all QTN, because the non-cod-
ing SNPs are not redundant anymore since they are prox-
ies for the 90% missing causative QTN.

Analysis with causative QTN only
To investigate how blending of the GRM affects the accu-
racy with causative QTN, we conducted analyses using 
GRM calculated from QTN assuming equal weights 
and different blending factors (Fig.  4). While accuracies 
close to 1.00 were expected, the computed accuracies 
with blending factors of 5% and (1%) with the pedigree 
relationships (A22) were equal to 0.95 and 0.91 and (0.99 
and 0.92) with the 100 and 1000 QTN data, respectively. 
Using the APY inverse with the number of core animals 
equal to twice the number of QTN resulted in the same 
accuracy as with the 100 QTN data and increased by 
0.01 with the 1000 QTN data. Accuracies obtained with 
a 1% blending factor with the identity matrix or A22 were 
identical.

When all causative QTN are known, blending with 
pedigree relationships only adds noise and is done for 
numerical stability. Blending at a 5% factor adds more 
noise than blending at 1%, and blending with the iden-
tity matrix may be slightly superior. The lower accu-
racy that is obtained with the 1000 QTN data can be 
explained by the use of an unweighted GRM. In SNP-
BLUP, a large amount of data overwhelms the priors of 
variances when the number of SNPs is small (say 100) 
but less when it is larger (say 1000). Since SNP-BLUP 
and GBLUP are equivalent [2, 41], the same applies 
to GBLUP or ssGBLUP. When all causative SNPs are 
known, blending of GRM as used for the APY inverse is 
for numerical stability only. One way to eliminate blend-
ing is to estimate genomic breeding values by using a 
reduced model, which includes only the core animals in 
the equations and derives predictions for the remain-
ing animals as linear functions of the core animals [42]. 
However, the optimal number of core animals is not an 
exact parameter, since varying the number of core ani-
mals by a factor of more than 2 (from 95 to 99% of the 
explained variance in GRM) changed the realized accu-
racy by 0.01 only [16].

Removing SNPs around causative QTN
Assigning zero as a weight for SNPs around causative 
variants increased the accuracy, until the weight of all 
non-causative SNPs was set to 0, which caused accuracies 
to reach the maximum of 0.99 for the 100-QTL scenario 
and 0.95 for the 1000-QTL scenario (Fig. 5). The shapes 
of the two curves were very similar, but scales differed i.e. 
in the 1000-QTL scenario, accuracy increased by a fac-
tor 10. This increase was observed because there were 
10 times more SNPs with a zero weight in the scenario 
with more QTL. The shape of the curves showed that the 
difference in accuracy is bigger when the genomic seg-
ments with weights set to 0 are shorter. This can occur 
for two reasons. First, most of the non-causative SNPs 
had a weight set to 0 when the number of SNPs set to 0 
was equal to 600 in the 100-QTL scenario or 60 in the 
1000-QTL scenario; thus, random spacing of QTL could 
still allow a few SNPs to have a weight different from 0. 
Second, removing the SNPs that are located near causa-
tive variants is actually equivalent to removing SNPs 
that are “hitchhiking” because of LD. This is especially 
true for the SNPs that are located near QTL with a larger 
effect. Similar results were reported by VanRaden et  al. 
[25] who found that removing SNPs around Manhattan 
plots peaks improved the resolution for potential causa-
tive variants in dairy cattle data. In drosophila, Ober 
et al. [43] showed that accuracy of phenotype prediction 
of phenotypes increased when non-causative SNPs were 
excluded from the analysis, but the pattern of accuracy 
fluctuated considerably, probably because of the small 
sample size.

Dimensionality of the genomic relationship matrix
Table  2 shows the number of eigenvalues required to 
explain a certain percentage of variance of GRM with 
various options. For unweighted and unblended GRM, 
the number of eigenvalues required to explain 90, 95 and 
98% variance was about 8500, 12,000, and 17,000, respec-
tively, with little difference between 100 and 1000 QTN 
datasets. According to Pocrnic et al. [16, 17], the optimal 
dimensionality of the genomic information—for predic-
tion—corresponds to the number of eigenvalues asso-
ciated with 98% of variance in GRM, and linked those 
values to the number of independent chromosome seg-
ment (ICS). While the GRM is not full rank, the NRM 
is full rank. In theory, the number of ICS depends on 
the effective population size and the length of genome 
but not on the number of QTN [44]. A blending factor 
of 5% with A22 increased the number of eigenvalues by 
10 to 15%. Increasing the blending factor with A22 makes 
the blended G better conditioned numerically although 
the amount of information is not increased.
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With GRM weighted by GWAS, the dimensional-
ity was reduced especially at the 90% level. The reduc-
tion was bigger with fewer QTN, which indicated lower 
complexity of the trait as expected, but this difference 
was small. This could be due to limited efficiency of the 
method used for GWAS in this study. This method [31] 
estimates variances of SNP effects jointly, as opposed to 
sequentially in Bayesian methods, as squares of the SNP 
effects. Subsequently, the method is inefficient for QTL 
with small effects. Possible solutions include limiting the 
changes of variances from round to round as in Nonlin-
earA [2], or setting the lower bound on the variance as in 
FastBayesA [45].

When the GRM was constructed using the QTN infor-
mation only, the number of eigenvalues required to 
explain 90, 95 and 98% variance was close to the number 
of simulated QTN, especially for the scenario with 100 
QTN. QTN were distributed randomly, and likely, QTN 
in large LD to adjacent QTN contributed little informa-
tion, with more such QTN for the 1000-QTN scenario.

In a population with a different structure, QTN 
may be in LD with each other, and thus this number is 
expected to be smaller. Blending increased the dimen-
sionality, especially at the 98% level. While this increase 
was at most 30% with a 1% blending factor, the increase 
was up to 8 (1000 QTN) and 77 times (100 QTN) with 
the 5% blending factor. While the extra dimensionality 
added noise, it made the matrix more stable to explicit 
inversion.

The numbers of eigenvalues obtained with the 10% 
top QTN are in between those obtained with no causa-
tive SNPs and with only causative SNPs. In general, the 
dimensionality of unweighted GRM could be equal to the 
number of ICS or close to 4NeL and the dimensionality 
of GRM constructed with causative QTN only would be 
equal to the number of those QTN or smaller (if some 
causative QTN have very little effect or are in LD). With 
GRM uniformly weighted for SNPs (with SNP weights 
accounting for a small proportion of the total genetic 
variance) and with true variances for all or the top 10% 
causative QTN, intermediate numbers of eigenvalues will 
be obtained.

Conclusions
Information on causative QTN can be included in sin-
gle-step GBLUP via a weighted GRM. To obtain a high 
accuracy of prediction, the matrix has to be constructed 
using realistic weights for the causative QTN, by pos-
sibly eliminating non-coding SNPs that are located 
close to causative QTN, and with very little blending 
with pedigree information, i.e. the minimum required 
for stability. Use of the APY algorithm for inversion of 
GRM results in increased or similar accuracy as with 
the regular inverse but at much reduced cost, regard-
less of the inclusion of SNPs, QTN, or both. Finally, the 
dimensionality of the genomic information is roughly 
the number of independent chromosome segments for 
unweighted GRM, the number of causative QTN for 

Table 2 Number of eigenvalues explaining 90, 95 or 98% of the variance for genomic relationship matrices

Options used to construct the genomic relation matrix: 60 k non-coding SNPs (60 k), all causative QTN (QTN), the top 10% causative SNPs (QTN10), blending at 5% 
(BL5) or 1% (BL1), weighted by the 3rd iteration of the single-step GWAS (GWAS3), and weighted by true QTN effects (TRUE) for datasets with 100 or 1000 causative 
QTN
a 10 eigenvalues explained 76% of the variance of G for the 100-QTN scenario
b 100 eigenvalues explained 71% of the variance of G
c Eigenvalues after number of QTN (100 or 1000) had values approaching 0 (below 10E−4)
d Simulated true weights for QTN and a constant equal to the minimum QTN value for SNPs

Option Number of eigenvalues

100 QTN 1000 QTN

90% eigenvalue 95% eigenvalue 98% eigenvalue 90% eigenvalue 95% eigenvalue 98% eigenvalue

60 k 8496 12,185 16,978 8502 12,192 16,984

60 K-BL5 9553 13,787 19,111 9560 13,796 19,120

60 K-GWAS3 4571 7537 13,139 4757 7704 13,230

60 K-QTN-BL5 9553 13,788 19,112 9563 13,806 19,136

60 k-QTN-BL5-TRUEd 76 1803 5093 469 1942 5140

60 k-QTN10-BL5-TRUEa,b,d 4054 8972 15,886 7482 13,320 19,918

60 K-QTN-BL5-GWAS3 4082 7084 12,880 4627 7594 13,186

QTN 88 94 98 793 872 930

QTN-BL5c 94 122 7639 863 980 7925

QTN-BL1c 89 95 127 806 888 995
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GRM weighted with their exact weights, and in between 
with a fraction of causative QTN or with GRM using 
weights from GWAS.
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