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Cardiovascular disease (CVD) is the major cause of mortality in individuals with diabetes mellitus. However the molecular
and cellular mechanisms that predispose individuals with diabetes to the development and progression of atherosclerosis, the
underlying cause of most CVD, are not understood. This paper summarizes the current state of our knowledge of pathways and
mechanisms that may link diabetes and hyperglycemia to atherogenesis. We highlight recent work from our lab, and others), that
supports a role for ER stress in these processes. The continued investigation of existing pathways, linking hyperglycemia and
diabetes mellitus to atherosclerosis, and the identification of novel mechanisms and targets will be important to the development
of new and effective antiatherosclerotic therapies tailored to individuals with diabetes.

1. Introduction

Worldwide, cardiovascular disease (CVD) is the leading
cause of premature death in both men and women. Risk
factors for CVD include abnormal lipid levels, smoking,
hypertension, abdominal obesity, stress, sedentary lifestyle,
and diabetes mellitus [1]. While the incidence of CVD has
declined in many developed countries, this trend is expected
to reverse in the near future [2]. This is largely due to the
dramatic, worldwide increase in the incidence of diabetes
mellitus. Driven by changes in lifestyle and an escalating
rate of obesity, the number of individuals with diabetes may
already be as high as 350 million [3, 4]. Diabetes mellitus is
a major, independent risk factor for cardiovascular disease
(CVD), and individuals with diabetes are 2 to 3 times more
likely to die from CV causes than people with no history of
diabetes, even after controlling for other CV risk factors [5—
9]. These individuals are also at increased risk of diseases
that are associated with CVD and atherosclerosis including
hypertension and renal failure. Ultimately, this translates to a
CV mortality rate in diabetic patients of approximately 75%
[6, 7]. The increasing incidence of diabetes means that the

global burden of this chronic disease on health care resources
will continue to rise for the foreseeable future.

It is not clear why individuals with diabetes are predis-
posed to CVD. Recent reports from clinical trials examining
the effects of intensive blood glucose lowering on CV risk,
including ACCORD (Action to Control Cardiovascular Risk
in Diabetes) [10], ADVANCE (Action in Diabetes and
Vascular Disease: Preterax and Diamicron MR Controlled
Evaluation) [11], UKPDS (United Kingdom Prospective
Diabetes Study) [12], and VADT (Veterans Affairs Diabetes
Trial) [13], suggest that the relationship between hyper-
glycemia and CVD is complex. Despite a vast amount of
research, currently available treatments show only limited
CV benefit and CVD continues to be the major cause of
mortality.

There is a strong correlation between hyperglycemia and
both micro- and macrovascular disease [14-18]. The neg-
ative effects of elevated glucose levels on vascular function
can include decreased proliferation of endothelial cells, the
impairment of some parameters of vascular responsiveness,
and increased endothelial programmed cell death [19-
21]. It is well established that aggressive blood glucose
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lowering significantly decreases the incidence and severity
of microvascular disease including retinopathy, renal failure
and peripheral nerve dysfunction [14, 15]. Recent evidence
suggests that increased glycemic control also correlates
with a reduction in macrovascular disease; however, the
relationship between glucose lowering and a decrease in CVD
has been much more difficult to demonstrate [15]. Several
explanations have been put forth to rationalize the inability
of clinical trials to demonstrate a strong improvement in
cardiovascular outcomes through glycemic control including
the possibilities that the trials were underpowered, were
too short in duration, or were too focused upon fasting
glucose rather than postprandial glucose levels. Alternatively,
these findings may indicate that the quality of glycemic
control presently achievable is insufficient to be effective
in protecting against macrovascular disease. Therefore, even
short-term deviations in the control of blood glucose may
promote vascular dysfunction.

The pathophysiology of T2D-associated CVD is further
complicated by multiple risk factors, collectively known as
the metabolic syndrome, that commonly accompany chronic
hyperglycemia. The metabolic syndrome is clinically defined
as a combination of abdominal obesity, insulin resistance
(prediabetes), atherogenic dyslipidemia, and hypertension
[22]. The metabolic syndrome is a major cause of morbidity
and mortality with cardiovascular disease being the primary
clinical outcome [22]. Other complications can include
respiratory difficulties, chronic skeletal muscle problems,
gall bladder disease, infertility, hepatic steatosis, circulatory
problems, and certain cancers [23, 24].

Therefore, while a role for hyperglycemia in the devel-
opment and progression of atherosclerosis is supported by
a great deal of basic research, the clinical role of elevated
glucose levels in macrovascular disease is less clear. Fur-
thermore, despite a great deal of research, the mechanisms
that may link high glucose concentrations to the molecu-
lar and cellular pathways of disease development are not
fully understood. This paper will focus on potential direct
proatherogenic consequences of hyperglycemia.

2. Mechanisms and Pathways Linking
Diabetes and Hyperglycemia to CVD and
Accelerated Atherosclerosis

Several mechanisms have been proposed to explain the
proatherogenic effects of diabetes and hyperglycemia. In
general these have focused upon the intracellular effects of
elevated levels of glucose, and the increased availability of
glucose metabolites, in cells of the vascular wall. There is evi-
dence that hyperglycemia is associated with increased aldose
reductase activity that can lead to increased consumption of
NADPH and depletion of GSH levels resulting in elevated
levels of reactive oxygen species (ROS) and subsequent
cellular damage [25, 26]. Glucose-induced PKC activation
has been implicated in decreased endothelial vasodilation
[27] and increased production of ROS [28] that could con-
tribute to endothelial dysfunction. It has also been proposed
that the conversion of sorbitol to 3-deoxyglucosone can
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feed into the production of advanced glycation endproducts
(AGEs). AGES are formed through a nonenzymatic process,
known as the Maillard reaction, involving the reaction of
the aldehyde groups of reducing sugars with the amino
groups of proteins [29, 30]. There are several potential
pathways where AGE-modified proteins could be damaging;
the formation of AGEs may alter protein function [31],
disrupt the extracellular matrix [31, 32], and/or lead to
the modification of lipoprotein particles thereby increasing
their atherogenicity. However the predominant vascular
effect of AGEs appears to occur through their interaction
with RAGE (receptor for AGE) found on macrophages and
endothelial and smooth muscle cells [33-35]. The AGE-
RAGE interaction triggers a signal transduction cascade that
results in the production of intracellular ROS that can initiate
an inflammatory response [36, 37].

While preclinical evidence supports a causative role for
oxidative stress in atherogenesis [38—41], virtually every well-
controlled clinical trial has failed to show a cardiovascular
benefit in diabetic patients receiving antioxidant supple-
ments [42-46]. There are several ways to rationalize this
apparent paradox by questioning: the specific antioxidants
tested, the doses prescribed, and/or the power and duration
of the trials themselves. However, these clinical observations
may be indicative of the existence of other important
molecular mechanisms or pathways that play a causative role
in diabetic atherogenesis in addition to oxidative stress.

2.1. The Hexosamine Pathway. Conditions of hyperglycemia
also result in the shunting of excess intracellular glucose
through the hexosamine biosynthetic pathway (HBP). In a
typical cell, under normoglycemic conditions, 1 to 3% of
total glucose will be converted to glucosamine-6 phosphate
by the enzyme glutamine:fructose-6 phosphate amidotrans-
ferase (GFAT) [47]. When intracellular glucose levels rise,
flux through this pathway increases. Furthermore, increased
GFAT expression and activity have been reported in tissues
from humans with diabetes [48]. The net result is an elevated
intracellular concentration of glucosamine. This effect has
been observed in cultured cells challenged with elevated
concentrations of glucose as well as in vascular and hepatic
tissues of hyperglycemic animals [49-52].

Increased hexosamine pathway flux has been impli-
cated in several diabetes-associated complications including
insulin resistance [47, 53] and pancreatic f3 cell death [54], as
well as atherosclerosis [55]. The molecule mechanisms that
underlie the pathogenic effects of increased HBP flux are
not fully understood. Most research has focused upon the
role of UDP-N-acetylglucosamine (UDP-GIcNAc), the end-
product of the HBP pathway and a substrate for both O- and
N-linked protein glycation, as a causative agent. It is well
established that elevated glucosamine concentrations drive
the O-linked glycosylation of proteins including transcrip-
tion factors [56] and nuclear pore proteins [57], as well as
signaling factors [58] which potentially alters their function,
stability, and/or activity. Specifically, studies have suggested
that O-glycosylation may regulate transcription, plasma
lipids, and gluconeogenesis by modulating the activation
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of RNA polymerase II [59], angiopoietin-like protein 3
[60], FoxO1, and CRTC2 [61, 62], respectively (further
reviewed in [63]). Glucosamine has been shown to desen-
sitize insulin-stimulated glucose uptake in both adipocytes
[47] and skeletal muscle cells [64], probably by inhibiting
the translocation of the glucose transporter, GLUT4, to the
cell surface [65]. In addition, increased hexosamine pathway
activity can promote the transcription of proinflammatory
and prothrombotic factors including TGF-«, TGF-f, and
PAI-1 [66-68]. Therefore, the hyperglycemia-induced O-
GlcNAc modification of proteins may change gene expres-
sion patterns and alter the function of specific factors that
contribute to a proatherogenic, prothrombophilic vascular
environment. More studies are required to test this theory
and to precisely determine the factors and downstream
pathways that may be involved in the acceleration of vascular
disease.

UDP-GIcNAc is also a substrate for N-linked protein
glycation that occurs in the endoplasmic reticulum (ER). N-
glycosylation is an important posttranslational modification
of nascent proteins that is critical for proper protein folding
[69]. Mutations in asparagine residues of specific proteins,
which are critical for N-glycosylation, result in disrupted
folding, secretion and/or activity [70-72]. Tunicamycin, a
UDP-GIcNAc antagonist, has been shown to inhibit N-
glycosylation and activate the cell’s quality control mech-
anism: the unfolded protein response [73-75]. Ultimately,
disruptions in the N-glycation process can lead to an
accumulation of unfolded/misfolded proteins in the ER that
perturb the ER homeostatic balance; this is known as “ER
stress.” An additional intracellular effect of glucosamine,
which has not been investigated in the context of diabetes
and atherosclerosis, is its ability to promote the accumulation
of unfolded proteins in the ER, thereby leading to ER
dysfunction and cell injury [75-78].

3. The Endoplasmic Reticulum and
the Unfolded Protein Response

In a typical eukaryotic cell, the ER is responsible for the
proper modifying, folding, and trafficking of approximately
one-third of all proteins. ER-localized modifications of
nascent proteins include disulfide bond formation and N-
linked glycosylation, which are critical to protein folding
[69]. Unfolded/misfolded proteins are directed to undergo
ER-associated degradation (ERAD), and, under physiologi-
cal conditions, the ER is able to maintain a homeostatic bal-
ance between folded and misfolded proteins [79]. When the
ER processing capacity is overwhelmed, unfolded/misfolded
proteins accumulate and disrupt the ER homeostatic balance;
this is known as ER stress.

Traditional ER-stress-inducing agents are known to
disrupt protein folding by interfering with disulphide bond
formation (dithiothreitol) [80], ER Ca?* balance (A23187,
thapsigargin) [81], ER membrane structure (palmitate,
unesterified cholesterol) [82, 83] or by blocking protein N-
glycosylation (tunicamycin) [84]. Conditions of ER stress
activate the unfolded protein response (UPR) which func-

tions to restore ER homeostasis (Figure 1). The UPR is a
three pronged signaling cascade that is initiated by trans-
membrane ER proteins known as inositol-requiring enzyme
(IRE)-1, activating transcription factor (ATF)-6, and PKR-
like ER kinase (PERK) [85]. Initiation of these pathways
alleviates ER stress by decreasing protein synthesis, increas-
ing ER chaperone levels, and facilitating degradation of
irreversibly misfolded proteins. Under conditions of chronic
ER stress, upregulation of pathways involved in lipid accu-
mulation (SREBP) and inflammation (NF-xB) can occur
(49, 86-88]. If the UPR is unable to restore ER homeostasis,
proapoptotic signaling factors (i.e., GADD153/CHOP) are
upregulated to initiate programmed cell death [89].

3.1. ER Stress and Atherogenesis. There is increasing exper-
imental evidence in support of a direct and causative role
for ER stress in the development and/or progression of
atherosclerosis. First, several independent risk factors for
CVD, including hyperglycemia [49], hyperhomocysteinemia
[7, 88], obesity [90], and elevated levels of palmitate [91]
and unesterified cholesterol [92], have been associated with
ER stress, suggesting that this pathway may represent a
common or unifying mechanism of accelerated atheroge-
nesis [93, 94]. Secondly, activation of the UPR has been
noted at all stages of atherosclerotic development, from a
fatty streak to an advanced occlusive plaque [95]. Third,
conditions of ER stress can activate/dysregulate metabolic
pathways that are directly involved in the development of
atherosclerotic lesions. ER-stress-inducing agents promote
lipid accumulation by activating the sterol regulatory ele-
ment binding proteins (SREBPs), which are transcription
factors that control lipid biosynthesis and uptake [88, 96,
97]. ER-stress-inducing agents also activate NF-«B, the
transcription factor responsible for promoting inflammatory
gene expression [98, 99]. Finally, ER stress has been shown
to activate caspases and promote apoptosis of human aortic
endothelial cells and other cell types [100, 101]. Together,
lipid accumulation, inflammation, and endothelial apoptosis
are the hallmark features of atherosclerosis [102, 103].

3.2. Glucosamine-Induced ER Stress. Our lab has recently
overexpressed the HBP rate limiting enzyme, GFAT, using an
adenoviral expression system in cell culture and measured a
significant increase in UPR gene expression and downstream
effects of ER stress including lipid accumulation, inflam-
matory gene expression, and apoptotic signaling under
hyperglycemic conditions [86]. We have shown that addition
of exogenous glucosamine, or increased endogenous produc-
tion of glucosamine, can disrupt the capacity of the ER to
process nascent proteins and initiate an ER stress response.
Furthermore, this effect has been observed in cell types that
are relevant to the development of atherosclerosis, includ-
ing human aortic smooth muscle cells, monocyte-derived
macrophages, and HepG2 cells [49, 50, 100, 101]. Thus,
elevated levels of glucosamine may play an important role
in ER and cellular dysfunction associated with atherogenesis.

It is not known how increased concentrations of glu-
cosamine (but not mannose) disrupt protein folding in
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Figure 1: The unfolded protein response to endoplasmic reticulum stress. ER stress occurs when the capacity of the ER to process/fold
proteins is exceeded by the load of nascent proteins entering the ER. The function of the UPR is to reestablish ER homeostasis by decreasing
protein flux into the ER (translation block) while increasing the folding capacity of the ER (increased chaperone expression). Conditions of
ER stress lead to the dissociation of ER chaperone GRP78 from the trans-ER-membrane signaling factors PERK, IRE1, and ATF6, resulting
in their activation. Activated PERK phosphorylates and inhibits the activity of eIF2«, an essential factor in general protein translation.
PERK is also involved with the downstream activation of transcription factors including ATF4 and GADD153. Activated IRE1 assists in the
alternative splicing of XBP-1 resulting in the translation of a transcription factor, XBP-1, which is involved in upregulation of the expression
of ER chaperones. Activated ATF6 translocates to the Golgi where proteases SIP and S2P release an N-terminal transcription activation
domain that works in concert with XBP-1 to upregulate ER chaperone expression.

the ER. UDP-N-acetylglucosamine is an essential substrate
for both O- and N-linked protein glycosylation, and protein
glycosylation is an important step in the proper folding of
many proteins [69]. It is known that elevated concentrations
of glucosamine increase levels of O-linked protein glycosyla-
tion [49] and alter N-linked glycosylation patterns of specific
proteins including ApoB100 [104]. It is possible that either
of these effects could promote ER stress. In cultured HepG2
cells, our lab has shown that PUGNAG, an inhibitor of O-
GlcNAcase, increases protein-O-GIcNAc levels but does not
promote ER stress [49]. This may suggest that glucosamine-
induced ER stress is caused by free and not protein O-
linked glucosamine. We hypothesize that increased levels of
glucosamine, or a derivative of glucosamine, may interfere
with a step in the N-linked glycation of proteins resulting in
the production of misfolded proteins and the activation of
the UPR.

Elevated levels of glucosamine and glucosamine-induced
ER stress have been previously implicated in acquired
insulin resistance [47, 53, 105, 106]; however, there is
some controversy to whether this effect is physiologically
relevant in humans. Incubation of relatively high concen-
trations of glucosamine (1-10 mmol/L) in adipose, muscle,
or endothelial cell cultures has been implicated in impaired
insulin action [106—109]. Furthermore, high levels of intra-
venously injected glucosamine (plasma concentrations of
0.5-1.8 mmol/L) in both animals and humans have also
been shown to cause insulin resistance [110, 111]. The
recommended daily dose of oral glucosamine supplements,
commonly taken to treat joint pain, are far lower (plasma
concentrations of ~3 ymol/L), and data suggest that these
supplements have no effect on insulin sensitivity [112, 113].

Additional studies will be required to determine the effects of
chronic hyperglycemia on endogenous, intracellular levels of
glucosamine and possible effects on insulin resistance.

4. Hyperglycemia, ER Stress, and
Accelerated Atherosclerosis

To investigate the molecular mechanisms that link hyper-
glycemia to atherosclerosis, we have established a model
in which we inject ApoE™/~ mice with multiple low
doses of streptozotocin (STZ) [49, 50, 114]. Using this
model we have observed a correlation between hyper-
glycemia, the accumulation of glucosamine in the artery
wall, vascular ER stress, and accelerated atherogenesis [49]
(Figure 2). Significantly, ER stress levels in the endothelium
of hyperglycemic mice increase prior to the development of
the atherosclerotic lesions, a result that is consistent with ER
stress playing a causative role in lesion development [50]. In
addition, accelerated lesion development is observed in these
diabetic mice before the onset of dyslipidemia, suggesting
that hyperglycemia is sufficient to independently promote
the activation of proatherogenic processes [49].

In a direct test of the atherogenic potential of glu-
cosamine, we have recently found that ApoE~/~ mice given
drinking water containing 5% glucosamine (w/v) for 7 weeks
have significantly increased vascular and hepatic ER stress
levels in addition to larger atherosclerotic lesions than mice
given regular water or water containing 5% mannitol (w/v)
[115]. This is consistent with a report from Tannock et al.
who found that 5 weeks of glucosamine supplementation
increased lesion size in LDL-receptor-deficient mice [116].
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FIGURE 2: Analysis of aortic root from normoglycemic, STZ-injected hyperglycemic, and STZ-injected insulin-treated ApoE~/~ mice.
Hyperglycemic mice show increased vascular O-linked GIcNAGg, elevated levels of ER stress markers (GRP78/94), and significantly accelerated
atherosclerotic lesion development, relative to normoglycemic controls. Normalization of glucose levels with insulin attenuates O-GlcNAc

accumulation, ER stress, and atherogenesis.

Our data suggests that glucosamine-induced ER stress plays
a direct and causative role in accelerated atherogenesis.

5. ER Stress in Patients with
Metabolic Syndrome

There is ample evidence in vitro and in animal models
to support a role for ER stress in the development and
complications of diabetes. Recently, small clinically relevant
studies involving humans with metabolic syndrome have
been carried out. Patients with diabetic nephropathy have
been shown to have increased GFAT expression in glomerular
epithelial and mesangial cells and that GFAT is expressed in
most tissues involved in diabetic complications [48, 117].
Pancreatic beta cells isolated from type 2 diabetics have
been shown to have marked expression of ER stress markers
[118] and increased susceptibility to ER stress compared to
nondiabetic controls [119] and that ER stress may contribute
to IL-1f3 production, mild islet inflammation [120], and -
cell failure [118]. Our lab has recently shown that isolated
leukocytes from human subjects with metabolic syndrome,
compared to healthy subjects, have elevated levels of ER
stress markers and that there is an association between acute
and chronic dysglycemia and ER stress in humans [86].

Each of these trials is consistent with diabetes-associated ER
stress playing a clinically relevant role in the pathogenesis of
diabetic complications.

6. Targets for Potential
Therapeutic Intervention

The identification of a role for ER stress and/or the UPR
in the development and progression of diabetes-associated
atherosclerosis is significant, not only because it gives us
insight on an important disease process, but also because it
illuminates novel potential targets for therapeutic interven-
tion (Figure 3). Efforts to develop strategies to manipulate
the UPR have already begun, especially with respect to other
diseases and disorders in which ER stress is thought to play
a role. At least three general approaches have been used to
address this problem. The first involves reducing the levels of
ER stress directly by relieving the load of misfolded proteins
though the addition of chemical chaperones such as 4-
phenylbutyric acid (4-PBA), taurine-conjugated ursodeoxy-
cholic acid (TUDCA), or dimethyl sulfoxide (DMSO) [121—
123]. The mechanisms by which these small molecules
function to reduce ER stress levels are not well defined.
However, such strategies have been shown to be effective
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FiGure 3: Working model of diabetes-associated accelerated atherothrombosis. Chronic hyperglycemia leads to increased flux through the
hexosamine biosynthesis pathway (HBP) resulting in accumulation of UDP-N-acetylglucosamine (UDP-GIcNAc), a substrate for both O-
and N-linked protein glycosylation, as well as increased levels of ER stress. Disruptions in ER homeostasis lead to activation of the unfolded
protein response (UPR) and downstream effects including activation of glycogen synthase kinase (GSK)-3. Our results suggest that ER-
stress-induced GSK-3 induces proatherogenic processes leading to the accelerated development of atherothrombosis.

in vitro and in vivo, and 4-phenylbutyric acid has been shown
to attenuate atherosclerosis in an ApoE~~ mouse model
[124]. A second strategy is to augment the protective aspects
of the endogenous UPR. This has previously been accom-
plished through the over-expression of ER-resident protein
chaperones including GRP78. The third approach is to target
some of the detrimental downstream effects of ER stress.
Examples of this strategy include the use of salubrinal which
inhibits the phosphatase GADD34 from reactivating elF2aq,
thereby maintaining the PERK pathway-induced translation
block (Figure 1). Other possible targets for intervention
would include proinflammatory and/or proapoptotic factors
such as ASK1, p38MAPK, or GADDI153/CHOP. Indeed,
GADD153/CHOP-deficient mice are resistant to acceler-
ated atherosclerosis [125, 126]. Recently we have identified
glutamine:fructose-6-phosphate amidotransferase (GFAT)
and glycogen synthase kinase (GSK)-3 as two enzymes
involved in ER stress and potential targets for therapeutic
intervention.

6.1.  Glutamine:Fructose-6-phosphate  Amidotransferase
(GFAT). The potential role of glucosamine-induced ER
stress in diabetic atherogenesis highlights the importance of
glutamine:fructose-6-phosphate amidotransferase (GFAT),
the rate-limiting enzyme in the conversion of glucose
to glucosamine, also known as the hexosamine pathway
[127, 128]. A central role for GFAT activity in the ER stress
pathway is supported by our finding that inhibition of
GFAT attenuates glucose-induced ER stress [49] and that
overexpression of GFAT is sufficient to promote ER stress
in HepG2 cells cultured in normoglycemic conditions [86].
We are currently developing strategies to modulate GFAT

activity in vitro and in our mouse models. These tools will be
used to investigate the potential effects of regulating GFAT
activity on the UPR and on activation of proatherogenic
processes.

6.2. Glycogen Synthase Kinase (GSK)-3. The mechanisms
that link conditions of ER stress to the activation of
proatherogenic pathways are not known. GSK-3« and f3 are
two homologous serine/threonine kinases that are involved
in a diverse number of intracellular signaling pathways [129].
We have shown using small molecule inhibitors and GSK-
3a/~ and GSK-3B~/~ mouse embryonic fibroblasts that
GSK-3-deficiency attenuates ER-stress-induced apoptosis
and lipid accumulation [114, 130-132]. In vivo we have
shown that hyperglycemic mice fed a diet supplemented with
valproate, a compound that inhibits GSK-3 activity, have
reduced hepatic GSK-3 activity and reduced lesion volume at
the aortic sinus [114]. Together, the above findings support
our hypothesis that glucosamine-induced ER stress plays a
role in accelerated atherogenesis and identifies GSK-3 as a
potential target for antiatherogenic therapy. The limitation
of targeting GSK-3 arises from the central role that this
kinase plays in many diverse metabolic processes and the
possibility of detrimental side-effects of small molecular
inhibitors [118].

7. Conclusions

Because of the cardiovascular risks of diabetes and the
increasing prevalence of type 2 diabetes, it is essential
that we further our knowledge of how and why diabetes
mellitus and hyperglycemia promote cardiovascular disease.
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Currently, and for the near future, the primary strategy for
managing cardiovascular disease in the diabetic population
will be through the control of hyperglycemia and through the
treatment of associated complications such as hypertension
and dyslipidemia using established medications such as ACE
inhibitors, statins, and fibrates.

The continued identification and investigation of path-
ways linking hyperglycemia and diabetes mellitus to
atherosclerosis is important to the development of new and
effective antiatherosclerotic therapies that are tailored to
individuals with diabetes. A great deal of research has been
focused upon the role of hyperglycemia in the development
and progression of atherosclerosis in cell culture and animal
model systems. Several mechanisms have been identified
that appear to link glucose to proatherogenic processes. The
most promising of these, the polyol pathway, PKC activation,
the hexosamine pathway, and the AGE-RAGE interaction,
show potential and are actively being evaluated as targets
for putative antiatherogenic therapies. Thus far, however, all
interventions targeting the effects of hyperglycemia, includ-
ing direct glucose lowering, appear to show greater effect in
the treatment of microvascular complications than in the
control of macrovascular disease. This is likely due, at least
in part, to the complexities of atherosclerosis and current
limitations of the animal models available to researchers who
study the development and progression of atherosclerosis.
Additional studies are obviously required to further our
understanding of this important disease.
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