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Abstract
The coupled Wright–Fisher diffusion is a multi-dimensional Wright–Fisher diffusion
for multi-locus and multi-allelic genetic frequencies, expressed as the strong solution
to a system of stochastic differential equations that are coupled in the drift, where the
pairwise interaction among loci ismodelled by an inter-locus selection. In this paper, an
ancestral process, which is dual to the coupledWright–Fisher diffusion, is derived. The
dual process corresponds to the block counting process of coupled ancestral selection
graphs, one for each locus. Jumps of the dual process arise from coalescence, muta-
tion, single-branching, which occur at one locus at the time, and double-branching,
which occur simultaneously at two loci. The coalescence and mutation rates have the
typical structure of the transition rates of the Kingman coalescent process. The single-
branching rate not only contains the one-locus selection parameters in a form that
generalises the rates of an ancestral selection graph, but it also contains the two-locus
selection parameters to include the effect of the pairwise interaction on the single
loci. The double-branching rate reflects the particular structure of pairwise selection
interactions of the coupled Wright–Fisher diffusion. Moreover, in the special case of
two loci, two alleles, with selection and parent independent mutation, the stationary
density for the coupled Wright–Fisher diffusion and the transition rates of the dual
process are obtained in an explicit form.
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1 Introduction

The coupled Wright–Fisher diffusion was introduced by Aurell et al. (2019) with
the purpose of analysing networks of loci in recombining populations of bacteria, or
more precisely, detecting couples of loci co-evolving under strong selective pressure
when the linkage disequilibrium is low across the genome. The model includes parent
dependent mutation, interlocus selection and free recombination.Mutation is assumed
to occur independently at each locus, while selection consists of first and second order
selective interaction among loci.

This particular type of assumptions on the selection and recombination structure
are suitable for example for some populations of bacteria, as showed in Skwark et al.
(2017), where the same type of assumptions are made. In Skwark et al. (2017), it
is explained that the high amount of homologous recombination in populations of
Streptococcus Pneumoniae, which results in low linkage disequilibrium across the
genome, makes this population ideal for detecting genes that evolve under shared
selection pressure. On the contrary, in other populations of bacteria, e.g. Streptococcus
Pyogenes, the low amount of homologous recombination makes it difficult to separate
couplings attributable to recombination from those attributable to selection and thus
the assumptions above are not suitable to study such populations.

The mathematical idea corresponding to these biological characteristics, is that the
recombination is high enough to be approximated with infinite recombination, which
would make the processes at each locus independent, and it is thus the selection only
that causes the coupling between the diffusions at the different loci.

Furthermore, it is assumed that selection acts on the individual loci and on pairs of
loci. The pairwise selection can be thought of as a network,where the vertices represent
the loci and the edges the possible interactions, as shown in Aurell et al. (2019). Of
course, the possible set of interactions could, in principle, be more complex than a
network, but considering pairwise interactions turns out to be useful to reveal certain
types of co-evolutionary patterns, see Skwark et al. (2017).

The model considers L different loci where, at each locus, a number of variants
(alleles) are possible. The allele types at locus l are labelled by 1, . . . , Ml , thus assum-
ing that the type space at each locus is finite. The population is haploid. The coupled
Wright–Fisher diffusion is obtained as theweak limit of a sequence of discreteWright–
Fisher models characterised by the assumption that the evolution of the population
at one locus is conditionally independent of the other loci given that the previous
generation at each locus is known, see Aurell et al. (2019) for details. It is based on
quasi-linkage equilibrium where the fitness coefficients, see Sect. 2, are inspired by
a Potts model, see Gao et al. (2019), Neher and Shraiman (2011), and generalise the
classical additive fitness under weak selection, see e.g. Bürger (2000, Ch. II), to the
multi-locus case. With two loci and without the fist order selection terms, the cou-
pled Wright–Fisher diffusion is reduced to a haploid version of the model with weak
selection, loose linkage in Ethier and Nagylaki (1989).

Here we state the definition of the diffusion as the solution of a system of stochastic
differential equations, without reference to the underlying discretemodel. The coupled
Wright–Fisher diffusion, X = {X(t), t ≥ 0}, represents the evolution of the vector of
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all frequencies of allele types at each locus. Let

X(l)(t) = (X (l)
1 (t), . . . , X (l)

Ml
(t))T

represent the vector of frequencies at locus l, with X (l)
i (t) being the frequency of allele

type i at locus l, then

X(t) = (X(1)(t)T, . . . ,X(L)(t)T)T.

The processX is the strong solution to the systemof stochastic differential equations

dX(t) = μ(X(t))dt + D(X(t))∇V (X(t))dt + D1/2(X(t))dW(t), (1)

where V is a specific quadratic function encoding the structure of the interactions,∇V
its gradient, while the mutation vectorμ and the diffusionmatrix D have the following
block structure,

μ(x) =
⎛
⎜⎝

μ(1)(x(1))
...

μ(L)(x(L))

⎞
⎟⎠ , D(x) =

⎛
⎜⎝

D(1)(x(1))

. . .

D(L)(x(L))

⎞
⎟⎠ ,

with μ(l) : RMl → R
Ml and D(l) : RMl → R

Ml×Ml . The functions V , μ and D are
described in detail in the next section. The processW = ((W(1))T, . . . , (W(L))T)T is
a multidimensional Brownian motion with W(l) having the dimension of X(l).

The system of SDEs (1) consists of L systems of equations for X(1), . . . ,X(L),
coupled by the drift term D ∇V . Note that, if ∇V = 0, there is no interaction among
the loci and the coupled Wright–Fisher diffusion consists of L independent Wright–
Fisher diffusions, that is, each X(l) solves

dX(l)(t) = μ(l)(X(l)(t))dt + D(l)1/2(X(l)(t)) dW(l)(t),

which is the SDE for a single-locus, multi-type Wright–Fisher diffusion with muta-
tions. In fact, the coupling of the loci is entirely due to selective interactions that are
described by the drift term D ∇V . Without the interaction drift term, the diffusion in
this paper, with L = 2, is reduced to the independent-loci model in Ethier and Grif-
fiths (1990). That is, the weak limit of a sequence ofmulti-locus neutralWright–Fisher
diffusions with recombination rate going to infinity. In the multi-locus case, the same
diffusion appears also in Griffiths et al. (2016, Sect. 3.3) as an example under free
recombination.

An interesting feature of the coupled Wright–Fisher diffusion, addressed by Aurell
et al. (2019) as one of the main motivations for its introduction, is its stationary density
which appeared, in a more general form, as a conjecture by Kimura over half a century
ago. Kimura (1955) suggests a Wright–Fisher model for multi-locus and multi-allelic
genetic frequencies and conjectures that the stationary density is of the form πem ,
where π is the product of Dirichlet densities and m is a generic mean fitness term.
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The coupled Wright–Fisher diffusion is constructed so that the quadratic function
V could replace the generic m. Indeed, under the assumption of parent independent
mutations, the stationary density, p, of the coupled Wright–Fisher diffusion is known
up to a normalising constant Z , and corresponds to the one conjectured by Kimura
with m = 2V ,

p ∝ πe2V , (2)

see Sect. 2 for the definition ofπ andV . In fact, the formof the stationary density, under
parent independent mutations, relies on the fact that the covariance of the diffusion
defines a Svirezhev–Shahshahani metric on the simplex, with respect to which the
drift is a gradient, see Bürger (2000, Appendix E.3).

In this paper a dual process for the coupled Wright–Fisher diffusion is studied.
In population genetics, Markov duality has proven its effectiveness in combining
information from two processes related to the same population: a diffusion process
modelling the evolution of frequencies of genetic types forward in time and a reverse-
time jump process modelling the ancestral history of a sample of individuals taken at
the present time. The simplest andmost well known duality relationship in this context
is the moment duality between the Wright–Fisher diffusion and the block counting
process of the Kingman coalescent.

The strength of Markov duality is that it provides a tool to analyse properties
of the population by combining knowledge about the forward-in-time process and
the backward-in-time process. Even when both processes are complicated, as often
happens when mutation, recombination or selection mechanisms are involved, some
known properties of one process can be used to analyse unknown properties of the
other process and vice versa, leading to further insights about the population.

Several duality relationships have been established between various generalisations
of the Wright–Fisher diffusion and the associated time reversed ancestral processes
generalising the coalescent process. For example, when the selection mechanism is
taken into account, the ancestral process associated to the Wright–Fisher diffusion is
the ancestral selection graph (ASG), see Krone and Neuhauser (1997), Neuhauser and
Krone (1997), which is closely related to the dual process in this paper when only
one locus is considered, see Sect. 4. Unlike the Kingman coalescent, which has a tree
structure, the ASG is branching and coalescing: the ancestral tree is replaced by an
ancestral graph containing true and virtual lineages and embedding the genealogy of
the sample of individuals. For a complete survey on duality for Markov processes, see
Jensen and Kurt (2014), and for a brief overview of duality in population genetics see
Griffiths et al. (2016) and the references therein.

In this paper, the main result concerns the derivation of a dual process for the
coupledWright–Fisher diffusion. The results show that, in this model, the dual process
corresponds to the block counting process of L coupled ASGs, one for each locus,
evolving simultaneously. Coalescence, mutation and single-branching, which is due
to selection acting on the single loci, occur at different times in the different ASGs,
whereas branching that is due to selection acting on pairs of loci, occurs simultaneously
in two ASGs. The latter type of branching is referred to as double-branching in this
paper. The main result in this paper is Theorem 1, which provides a description of the
transition rates of the pure jump Markov process, N = {N(t), t ≥ 0}, that is dual to
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the coupled Wright–Fisher diffusion, X, through the duality relationship

E [F(X(t),n)|X(0) = x] = E [F(x,N(t))|N(0) = n] , (3)

where F is a duality function, to be determined. The derivation uses a generator
approach as in Griffiths et al. (2016) and Etheridge and Griffiths (2009). It is based on
the duality relationship of the infinitesimal generators

LF(·,n)(x) = LD F(x, · )(n), (4)

whereL is the generator of the coupledWright–Fisher diffusion and LD the unknown
generator of the dual process. By proposing an appropriate duality function F , the
generator LD of the dual process can be identified, from which transition rates of the
dual process are obtained. Under mild conditions, which are verified in Sect. 6, the
method of duality (Ethier andKurtz 1986,Ch. 4), also used in e.g. Barbour et al. (2000),
Etheridge and Griffiths (2009) and Mano (2009), ensures that the duality relationship
of the generators (4) implies (3).

Understanding the structure of an ancestral process, N, which is dual to a diffusion
of theWright–Fisher type,X, plays a significant role in population genetics inference.
As is often the case, the available data consist of observations of the genetic types of
a sample of individuals at the present time, N(0) = n, whereas the evolution of the
process is not observed. This results in the likelihood function being intractable when
the size of the population is large. In order to compute the likelihood, one could, in
theory, condition on the genealogical history of the sample and then integrate over all
possible histories that are compatible with the sample. However, the domain of inte-
gration is so large that, in practice, numerical integration methods are useless even for
intermediate sized populations. Simulation-based methods are generally preferred. As
carefully explained by Stephens in Stephens (2007), naiveMonte Carlomethods based
on simulating the histories forward in time produce next to useless approximations of
the likelihood for problems involving samples of a more than few individuals. This is
due to the fact that only very few simulations contribute significantly to the approxima-
tion, while the contribution of the remaining simulations is negligible. Simulation- and
likelihood-based techniques that have proven to work for these problems are Markov
chain Monte Carlo, importance sampling and sequential Monte Carlo. All these meth-
ods rely on knowing, to some extent, the structure of the ancestral process in order
to approximate its backward dynamics, see e.g. Griffiths and Tavaré (1994), Koskela
et al. (2015, 2018), Stephens (2007), Stephens and Donnelly (2000, 2003) for details.

From the duality relation (3), it is also possible to derive an expansion of the transi-
tion distribution of the diffusion X, see Barbour et al. (2000), Etheridge and Griffiths
(2009), Griffiths et al. (2016), in terms of the limit of the transition densities of the
dual process N. In the absence of mutation, the duality relation (3) can also be used to
determine fixation probabilities. That is, the probability that the frequency of a given
allele at a given loci is equal to 1. Such probabilities may be studied by taking the
limit, as t → ∞, in (3) and considering the recurrence/transience properties of the
dual process N, see e.g. Foucart (2013), Griffiths et al. (2016), González Casanova
and Spanó (2018), Mano (2009) for studies of the Wright–Fisher process with selec-
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tion and frequency dependent selection, the multi-locus Wright–Fisher process with
recombination, theΛ-Wright–Fisher process with selection and theΞ -Wright–Fisher
process with frequency dependent selection, respectively.

The paper is outlined as follows. In Sect. 2 a background on the coupled Wright–
Fisher diffusion is provided. Section 3 outlines the general generator approach to
derive a dual process. In Sect. 4 the case of one locus, two allele types and parent
independent mutations is considered. In this case the dual process is related to the
ancestral selection graph, moreover, explicit formulas for the stationary density of the
diffusion and the transition rates of the dual process are obtained. The main result
is provided in Sect. 5, and proved in Sect. 6, where a dual process is derived in the
general multi-locus setting. The final Sect. 7 provides additional details in the case
of two loci, two alleles, selection and parent independent mutations, more precisely,
the transition rates of the dual process are expressed in terms of beta and confluent
hypergeometric functions.

2 Preliminaries on the coupledWright–Fisher diffusion

In this section the coupled Wright–Fisher diffusion is introduced and the explicit
expression for its infinitesimal generator is provided. The notation in this section
differs slightly from that in Aurell et al. (2019), where the frequency of the last allele
type at each locus is omitted, being a function of the other frequencies, whereas in
this paper an expanded version of the diffusion is considered, which includes all the
frequencies. Since the frequencies sum up to one the descriptions are equivalent. For
our purpose we find the expanded version more convenient to work with.

For a given integer L ≥ 1, the number of loci, let M1, . . . , ML be positive integers
representing the number of alleles at each locus. Put M = ∑L

l=1 Ml . A vector x ∈
[0, 1]M is interpreted as the concatenation of L vectors with lengths M1, . . . , ML , i.e.
x = ((x(1))T, . . . , (x(L))T)T with x(l) ∈ [0, 1]Ml , l = 1, . . . L , and the coordinate i in
vector x(l) is denoted by x (l)

i . Similarly, a matrix A ∈ R
M×M consists of L2 blocks

with dimensions (Ml × Mr )l,r=1,...,L . The block at position (l, r) is denoted by A(lr)

and its component at position (i, j) is denoted by by A(lr)
i j . Furthermore e(l)

i denotes

the unit vector in RM with the i th component of its lth building vector being equal to
1.

In the following, each of the terms appearing in (1) will be described, starting from
the interaction drift term. The quadratic function V : [0, 1]M → R is given by

V (x) = xTh + 1

2
xT Jx,

where h ∈ R
M+ and J ∈ R

M×M+ is a symmetric block matrix with the blocks on
the diagonal equal to zero matrices, i.e. J (ll) = 0 ∈ R

Ml×Ml and J (lr) = (J (rl))T

for all l, r = 1, . . . , L . The vector h and matrix J contain the selection parameters,
expressing, respectively, the one-locus selection and the selective interaction among
pairs of loci. In order to clarify the role of the selection parameters in terms of fitness,
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we may express the fitness coefficient of the haplotype σ = (i1, . . . , iL) as

wσ = 1 +
L∑

l=1

h(l)
il

+
L∑

l=1

L∑
r=1
l<r

J (rl)
il ir

. (5)

Note that ∇V (x) = h + Jx, since the matrix J is symmetric. Let g(x) =
D(x)∇V (x). Then, the components of g(x) are

g(l)
i (x) =

Ml∑
k=1

d(l)
ik (x(l))h̃(l)

k (x), with h̃(l)
k (x) = h(l)

k +
L∑

r=1
r �=l

Mr∑
m=1

J (lr)
km x (r)

m . (6)

The drift function μ models the mutations. It is assumed that mutations occur inde-
pendently at each locus, in particular, at the lth locus the mutation rate is θl

2 and the

probability matrix of mutations is P(l) = (P(l)
i j )i, j=1...,Ml . The transition rates of

mutations from type i to type j at locus l are thus u(l)
i j = θl

2 P(l)
i j . As in the standard

Wright–Fisher model with parent dependent mutations, the components of the drift
function are defined by

μ
(l)
i (x(l)) =

Ml∑
j=1

[u(l)
j i x (l)

j − u(l)
i j x (l)

i ]. (7)

Finally, the components of the diagonal block D(l)(x(l)) of the diffusion matrix D(x)
are defined by

d(l)
i j (x(l)) = x (l)

i (δi j − x (l)
j ) with δi j =

{
1 if i = j,

0 if i �= j,
(8)

which is characteristic for Wright–Fisher processes.
Having defined μ, D, and V , a compact definition of the coupled Wright–Fisher

diffusion can be given, in terms of its infinitesimal generator. The coupled Wright–
Fisher diffusion {X(t)}t≥0 is a M-dimensional diffusion process on the state space

S =
⎧⎨
⎩x ∈ [0, 1]M s.t.

Ml∑
i=1

x (l)
i = 1, ∀l = 1, . . . , L,

⎫⎬
⎭ ,

with generator

L f (x) =
L∑

l=1

⎡
⎣

Ml∑
i=1

(
μ

(l)
i (x(l)) + g(l)

i (x)
) ∂ f

∂x (l)
i

(x) + 1

2

Ml∑
i, j=1

d(l)
i j (x(l))

∂2 f

∂x (l)
i ∂x (l)

j

(x)

⎤
⎦ , (9)
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whereμ, g and d are given by (7), (6) and (8), respectively. The generatorL is defined
on the domain C2(S).

Before proceeding with the derivation of the dual process, the stationary density
(2) is explicitly presented. Consider representing the coupledWright–Fisher diffusion
on the state space

S̄ =
⎧⎨
⎩x̄ ∈ [0, 1]M−L s.t.

Ml−1∑
i=1

x̄ (l)
i ≤ 1 ∀l = 1, . . . , L

⎫⎬
⎭ ,

where

x̄ = (x̄ (1)
1 , . . . , x̄ (1)

M1−1, . . . , x̄ (L)
1 , . . . , x̄ (L)

ML−1)
T ∈ S̄

is identified with

x =
(

x̄ (1)
1 , . . . , x̄ (1)

M1−1, 1 −
M1−1∑
i=1

x̄ (1)
i , . . . , x̄ (L)

1 , . . . , x̄ (L)
ML−1, 1 −

ML−1∑
i=1

x̄ (L)
i

)T
∈ S.

If there are no interactions among loci, the coupled Wright–Fisher diffusion consists
of L independent Wright–Fisher diffusions and the stationary density is well known
when the mutations are parent independent. Wright himself proved that the stationary
distribution of a single-locus, multi-type Wright–Fisher diffusion with parent inde-
pendent mutations is Dirichlet, see Wright (1949). Therefore, the stationary density
of independent Wright–Fisher diffusions is the product of Dirichlet densities. More
precisely, let

π(x̄) =
L∏

l=1

πl(x̄(l)), with πl(x̄(l)) =
Ml−1∏
i=1

(x̄ (l)
i )2u(l)

i −1

⎛
⎝1 −

Ml−1∑
i=1

x̄ (l)
i

⎞
⎠

2u(l)
Ml

−1

,

whereπ(x̄) is the non-normalised stationary density of a coupledWright–Fisher diffu-
sionwith no interaction among loci. In the presence of interaction and assuming parent
independent mutations, i.e. u(l)

i j = u(l)
j , i, j = 1, . . . , Ml , l = 1, . . . , L , Aurell et al.

(2019) prove that there is an additional exponential factor in the stationary density,
that is

p(x̄) = 1

Z
π(x̄)e2V (x̄), (10)

withV defined on S̄ by naturally defining themissing frequencies as oneminus the sum
of the other frequencies at the same locus. The form of the stationary density is explicit
up to a normalising constant. In general, it is difficult to compute the normalising
constant Z explicitly, but under additional assumptions it canbe computednumerically,
as demonstrated in Sects. 4 and 7.
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3 Outline of the derivation of a dual process

To derive a process that is dual to the coupled Wright–Fisher diffusion, a generator
approach will be used as in Griffiths et al. (2016), where the authors find a dual
process for a multi-locus Wright–Fisher diffusion with recombination. In this section
the method will be explained, in general terms.

LetL be the generator of the diffusion process (9) andLD be the unknown generator
of a dual process. Suppose that the following relationship holds

LF(·,n)(x) = LD F(x, ·)(n), x ∈ S, n ∈ N
M , (11)

for some duality function F that needs to be determined. Using the relationship (11)
the transition rates of a dual process can be identified from its generator. To pursue
this approach, it is necessary to compute the left hand side of (11) by applying the
generator L to the duality function F , considered as a function of x, and rewrite it into
the form

LF(·,n)(x) =
∑
n̂

q(n, n̂)
[
F(x, n̂) − F(x,n)

]
, (12)

for some non-negative coefficients q(n, n̂), n̂ ∈ N
M , n̂ �= n. In light of the duality

relationship, expression (12) can be interpreted as the generator LD applied to the
duality function F , considered as a function of n. Consequently, the dual process
obtained in this way is a pure jump Markov process on the discrete space N

M with
transition rate matrix Q = (q(·, ·)), the off-diagonal elements being the non-negative
coefficients in (12) and the diagonal elements being chosen so that the sum of each
row is 0. The alleged duality relationship is validated once the transition rates and the
proper duality function are determined.

Consider the following proposal for the duality function, F . The inspiration for the
proposal comes from the duality function for the one-locus Wright–Fisher diffusion
with mutations, see e.g. Etheridge and Griffiths (2009) and Griffiths et al. (2016). It
can be generalised to the multi-locus setting by taking

F(x,n) = 1

k(n)

L∏
l=1

Ml∏
i=1

(x (l)
i )n(l)

i , (13)

for some function k : NM → R\{0} that is determined in the following. Note that
the duality function F(·,n) defined in (13) belongs to C∞(S), for all n ∈ N

M , and
thus it belongs to the domain of L. Let X̃ be distributed according to the stationary
distribution of the diffusion process {X(t)}t≥0, when such a distribution exists. Then

E

[
LF(X̃,n)

]
= 0. Therefore, by taking expectation under the stationary distribution

in (12), it follows that

∑
n̂

q(n, n̂)E
[

F(X̃, n̂) − F(X̃,n)
]

= 0,
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which implies that E
[

F(X̃, ·)
]
must be constant. The constant can be taken to be

equal to 1, and consequently,

k(n) = E

⎡
⎣

L∏
l=1

Ml∏
i=1

(X̃ (l)
i )n(l)

i

⎤
⎦ . (14)

Note that the existence of a stationary distribution for the diffusion is needed in order
to define the function k. Thus, in the following, it is assumed that such a distribution
exists. Furthermore, in order for the duality function F to be well defined, the function
k needs to be non-zero, which holds if

P(X̃ (l)
i = 0) = 0, i = 1, . . . , Ml , l = 1, . . . L. (15)

In many cases it is possible to verify that a stationary distribution exists and fulfils
(15). For example, as shown in the previous sections, when the mutations are parent
independent, the stationary density is known, see (10), and k(n) �= 0 for all n ∈ N

M .
More generally, condition (15) is satisfiedwhen the stationary distribution has a density
with respect to the Lebesgue measure. Even if a stationary density is not known in an
explicit form, classical techniques, see e.g. Khasminskii (1980), may be used to show
its existence and properties, using the Fokker–Planck equation in Aurell et al. (2019).

A relevant case, in which (15) is not verified, is the case of no mutations, θ = 0.
Nevertheless, it is still possible to derive a dual process in this case by defining the
function k in a simplerway that does not rely on a stationary distribution. Thederivation
of the dual process actually becomes simpler than the one outlined in this section. The
case of no mutations is treated separately in Sect. 5, Corollary 1. Elsewhere in the
paper it is assumed that a stationary distribution exists and satisfies (15).

To find the transition rates of the dual process, it remains to obtain an expression
of the form (12). In fact, it is sufficient to obtain an expression of the form

LF(·,n)(x) =
∑
n̂ �=n

q(n, n̂)F(x, n̂) + q(n,n)F(x,n), (16)

with the requirement that q(n, n̂) is positive for n̂ �= n (it will be soon clear that
q(n,n) is thus negative). Once (16) is obtained, it is possible to derive expression (12)
as follows. Rewriting (16) yields

LF(·,n)(x) =
∑
n̂ �=n

q(n, n̂)
[
F(x, n̂) − F(x,n)

]+
⎛
⎝∑

n̂ �=n

q(n, n̂) + q(n,n)

⎞
⎠ F(x,n).

(17)

Keeping in mind that E
[
LF(·,n)(X̃)

]
= 0 and that E

[
F(X̃, ·)

]
is constant, one can

apply the expectation with respect to the stationary distribution to get

∑
n̂ �=n

q(n, n̂) + q(n,n) = 0. (18)
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Therefore (17) implies (12) and it remains towriteLF as in (16) by finding the positive
coefficients q(n, n̂). Furthermore, (18) can be used to find a recursion formula for the
function k.

Throughout the rest of the paper, the emphasis will be on obtaining an expression
of the type (16). This approach is first illustrated in a simpler case (single locus), in
order to lighten the formulas and highlight the ideas, and is subsequently used in the
general case of the coupled Wright–Fisher diffusion. The simpler case turns out to be
closely related to a well known model: the ancestral selection graph.

4 The ancestral selection graph

When only one locus is considered, the coupled Wright–Fisher diffusion is simply a
one-locus Wright–Fisher diffusion with selection. Let L = 1 , M1 = 2 and assume
that mutations are parent independent, i.e. ui j = u j for i, j = 1, 2. The matrix of
pairwise selection parameters is the zero matrix and the quadratic function V becomes
linear

V (x) = h1x1 + h2x2.

Let j(i) be the index opposite to i ,

j(i) =
{
2 if i = 1

1 if i = 2
.

Then, the drift terms can be written as follows

μi (x) = ui x j(i) − u j(i)xi ,

gi (x) = hi xi (1 − xi ) − h j(i)xi x j(i), i = 1, 2.

The diffusion process solving (1) under the assumptions in this section is a two-types
Wright–Fisher diffusion with selection and parent independent mutations. It is known
that the genealogical process for this type of Wright–Fisher diffusion is embedded in
a graph with coalescing and branching structure, the ancestral selection graph (ASG),
studied byKrone andNeuhauser (1997) andNeuhauser andKrone (1997). In theASG,
first the coalescing-branching structure is constructed leaving types aside, then types
and mutations are superimposed on it. In contrast, here it is assumed that the types of
individuals in the sample n are known and mutations are included in the dual process
rather than superimposed afterwards. Our approach is similar to the one in Etheridge
and Griffiths (2009), where the authors derive a dual process for the finite population
size Moran model and use it to find the limiting transition rates of the dual process for
the diffusion.

Following the outline in Sect. 3, a dual process is derived as follows. By applying
the generator L to the duality function F in (13), rewriting the derivatives of F , and
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rearranging the terms yields

LF(·,n)(x) =
∑

i=1,2

(ui x j(i) − u j(i)xi )
ni

xi
F(x,n)

+
∑

i=1,2

xi (hi − hi xi − h j(i)x j(i))
ni

xi
F(x,n)

+ 1

2

∑
i=1,2

xi (1 − xi )
ni (ni − 1)

(xi )2
F(x,n) − x1x2

n1n2

x1x2
F(x,n)

=
∑

i=1,2

ni (ni − 1)

2

1

xi
F(x,n) +

∑
i=1,2

ui ni
x j(i)

xi
F(x,n)

−
∑

i=1,2

hi (ni + n j(i))xi F(x,n)

−
⎧⎨
⎩

n

2
(n − 1) +

∑
i=1,2

ni u j(i) −
∑

i=1,2

ni hi

⎫⎬
⎭ F(x,n),

where n = n1 + n2. To obtain an expression of the form (16) the expression in the
last display can be rewritten as follows. First replace xi = 1− x j(i) to obtain positive
coefficients for the selection terms, then use the identities, for i = 1, 2,

1

xi
F(x,n) = k(n − ei )

k(n)
F(x,n − ei ), (19)

x j(i)

xi
F(x,n) = k(n + e j(i) − ei )

k(n)
F(x,n + e j(i) − ei ), (20)

xi F(x,n) = k(n + ei )

k(n)
F(x,n + ei ), (21)

where ei , i = 1, 2, are the unit vectors in N
2. Finally, it yields,

LF(·,n)(x) =
∑

i=1,2

ni (ni − 1)

2

k(n − ei )

k(n)
F(x,n − ei )

+
∑

i=1,2

ui ni
k(n + e j(i) − ei )

k(n)
F(x,n + e j(i) − ei )

+
∑

i=1,2

h j(i)n
k(n + ei )

k(n)
F(x,n + ei )

−
⎧⎨
⎩

n

2
(n − 1) +

∑
i=1,2

ni u j(i) +
∑

i=1,2

n j(i)hi

⎫⎬
⎭ F(x,n),

(22)

which is the desired expression. As demonstrated in Sect. 3 the transition rates of a
dual process can be identified directly from this expression. Therefore the dual process
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for the Wright–Fisher diffusion considered in this section, with respect to F , is the
pure jump Markov process on the state space N2, with transition rates as follows. The
dual process, in state n, jumps to state

• n − ei , i = 1, 2, s.t. ni ≥ 2, at rate

q(n,n − ei ) = ni (ni − 1)

2

k(n − ei )

k(n)
;

[coalescence]

• n + e j(i) − ei , i = 1, 2, s.t. ni ≥ 1, at rate

q(n,n + e j(i) − ei ) = ui ni
k(n + e j(i) − ei )

k(n)
;

[mutation]

• n + ei , i = 1, 2, at rate

q(n,n + ei ) = h j(i)n
k(n + ei )

k(n)
.

[branching]

As anticipated, the dual process just described corresponds to the limiting process
in Etheridge and Griffiths (2009), which is the block counting process of the ancestral
selection graph with types and mutations included in the backward evolution. From
the transition rates q, it is observed that three types of events are possible for the dual
process:mutation, coalescence andbranching.Thefirst twoappear also in theKingman
coalescent, while the latter is a virtual addition to the true genealogical process that is
characteristic of the ASG. Seen forward in time, branching represents the event that
two potential parents are chosen and only the one carrying the advantageous allele
reproduces. Backward in time, when a branching happens, the individual splits into
two individuals: its true parent and its virtual (potential) parent.

To complete the identification of the transition rates, q(n,n) is defined as the coef-
ficient of F(x,n) in (22),

q(n,n) = −n

2
(n − 1) −

∑
i=1,2

ni u j(i) −
∑

i=1,2

n j(i)hi .

The equality (18) ensures that the sum of each row of the transition matrix is equal to
zero. Furthermore, by rewriting (18) in terms of the function k, a recursion formula
can be obtained as in Krone and Neuhauser (1997, Thm 5.2). The formula, which we
omit, is not useful in general to compute k explicitly, and even in the simpler case of
no selection, where the formula, in principle, could be used, it is computationally too
expensive for practical purposes.

In general it is not possible to find a closed-form expression for k and thus for
the transition rates. However, when the mutations are parent independent, as in this
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example, the stationary density is explicitly known up to a normalising constant Z and
thus k can be written as an integral with respect to the stationary density

k(n) = 1

Z

∫ 1

0
xn1+2u1−1(1 − x)n2+2u2−1e2[h1x+h2(1−x)]dx .

The integral above cannot be computed analytically but it is related to the confluent
hypergeometric function of the first kind, the Kummer function, which can be effi-
ciently computed numerically. The idea of using the Kummer function originates from
Aurell et al. (2019) and Krone and Neuhauser (1997), where it has been used to find,
respectively, a series representation for the normalising constant and a representation
for the expected allele frequency. Let 1F1 be the confluent hypergeometric function,
then, using its integral representation, it yields

k(n) = 1

Z
e2h2 B(n1 + 2u1, n2 + 2u2)1F1 (n1 + 2u1, n1 + 2u1 + n2 + 2u2, 2(h1 − h2)) ,

Z = e2h2 B(2u1, 2u2)1F1(2u1, 2u1 + 2u2, 2(h1 − h2)),

where B is the Beta function. See Abramowitz and Stegun (1970) for a complete
collection of definitions and properties of confluent hypergeometric functions.

5 Amulti-locus dual process

In this section a dual process for the coupled Wright–Fisher diffusion is derived in the
general multi-locus setting, L ≥ 1 and Ml ≥ 2, l = 1, . . . , L .

Theorem 1 Let X be the coupled Wright–Fisher diffusion with generator (9), where
μ, g and d are given by (7), (6) and (8), respectively. Assume a stationary distribution
for the diffusion exists and satisfies (15). Let k be given by (14) and let the duality
function F be given by (13). Then there exists a dual process N for X, in the sense of
(3), with respect to the duality function F, where N is the pure jump Markov process
on the state space N

M with the following transition rates. From the current state,
n ∈ N

M\{0}, N jumps to

• n − e(l)
i , i = 1, . . . Ml , l = 1, . . . , L, s.t. n(l)

i ≥ 2, at rate

q(n,n − e(l)
i ) = n(l)

i (n(l)
i − 1)

2

k(n − e(l)
i )

k(n)
;

[coalescence]
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• n − e(l)
i + e(l)

j , i, j = 1, . . . Ml , l = 1, . . . , L, s.t. i �= j, n(l)
i ≥ 1, at rate

q(n,n − e(l)
i + e(l)

j ) = n(l)
i u(l)

j i

k(n − e(l)
i + e(l)

j )

k(n)
;

[mutation]

• n + e(l)
j , j = 1, . . . Ml , l = 1, . . . , L, at rate

q(n,n + e(l)
j ) =

⎛
⎜⎜⎝n(l)

Ml∑
k=1
k �= j

h(l)
k +

L∑
r=1
r �=l

Mr∑
i=1

n(r)
i J (lr)

j i

⎞
⎟⎟⎠

k(n + e(l)
j )

k(n)
;

[single-branching]

• n + e(l)
j + e(r)

h , j = 1 . . . Ml , h = 1 . . . , Mr , l, r = 1, . . . , L, r > l, at rate

q(n,n + e(l)
j + e(r)

h ) =

⎛
⎜⎜⎝(n(l) + n(r))

Ml∑
k=1
k �= j

Mr∑
m=1
m �=h

J (lr)
km

⎞
⎟⎟⎠

k(n + e(l)
j + e(r)

h )

k(n)
;

[double-branching]

where n(l) = ∥∥n(l)
∥∥
1 =∑Ml

i=1 n(l)
i . Furthermore,

q(n,n) = −
L∑

l=1

⎛
⎜⎜⎝
1

2
n(l)(n(l) − 1) +

Ml∑
i, j=1
i �= j

n(l)
i u(l)

i j +
Ml∑

i=1

Ml∑
k=1
k �=i

n(l)
i h(l)

k +
L∑

r=1
r �=l

Ml∑
k=1

Mr∑
m=1

n(l) J (lr)
km

⎞
⎟⎟⎠ .

Note that the mutation and coalescence jumps involve one locus at the time. The
coalescence and mutation rates are similar to the transition rates of the Kingman coa-
lescent process with mutations, the only difference being the function k which, despite
having the same structure, is based on a different stationary density and depends on all
the loci, not only on the one where the jump takes place. The single-branching rate not
only contains the single-locus selection parameters in a form that generalises the rates
in Sect. 4, but it also contains the two-locus selection parameters to include the effect
of the pairwise interaction on the single locus. The single-branching also involve only
one locus at the time. Finally, the double-branching rate reflects the particular structure
of pairwise interactions of the coupled Wright–Fisher diffusion and it is, to the best
of our knowledge, a novel type of transition rate appearing in genealogical processes
related to Wright–Fisher diffusions. The double-branching represents simultaneous
branching at two different loci. As anticipated in the introduction, the dual process
can thus be interpreted as the block counting process of L coupled ASGs. Further-
more, if J = 0, the loci are independent since ∇V = h, and thus double-branching
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does not occur and the dual process consists of L independent ASGs, as in Etheridge
and Griffiths (2009) with −2

∑Ml
k=1
k �= j

h(l)
k corresponding to σ j .

The explicit parts of the transition rates, not depending on the function k, have a
very natural interpretation. As in the simpler case studied in Sect. 4, the basic principle
is that weak types branch at a higher rate. The difference is that, while in the simpler
case there are only two types, a viable type and a weaker type, here there are many
types and many loci all influencing each other’s branching rates. To understand this
behaviour in greater detail, some termswill be investigatedmore thoroughly. The term

n(l)
Ml∑

k=1
k �= j

h(l)
k ,

arises purely from the one-locus selection and contributes to the rate of adding a gene
of type j at locus l. It depends on the one-locus viability of the other allele types (all
except type j) at locus l, the higher their viability, the higher the rate of adding type
j , and of course it is also directly proportional to the number, n(l), of genes at locus l.
The rate of adding a couple of genes of type j at locus l and of type h at locus r is

related to the term

(n(l) + n(r))

Ml∑
k=1
k �= j

Mr∑
m=1
m �=h

J (lr)
km .

It depends on the viability of the other couples of allele types (all except couple j, h)
at loci l and r , the higher their viability, the higher the rate of adding type j and h
at locus l and r , respectively. Again the rate is directly proportional to the number,
n(l) + n(r), of genes at loci l and r .

Although the interpretation of some parts of the transition rates is straightforward,
the function k remains implicit, similar to the simpler Kingman coalescent process and
the ancestral selection graphwith parent dependent mutations.When themutations are
parent independent, the stationary density is known up to a normalising constant and
k can be expressed as an integral that sometimes can be easily computed numerically,
see Sects. 4 and 7, where a series representation of k involving Kummer and Beta
functions will be given. Nevertheless, even when the stationary distribution is not
explicitly known, but still exists, Theorem1provides informationon the structure of the
transition rates of the dual process that may be useful. As explained in the introduction,
many established inference methods for populations under various generalisations of
the Wright–Fisher diffusion rely on approximating the backward dynamics of the
associated genealogical process. Deriving a dual process for the coupled Wright–
Fisher diffusion is central to further investigations concerning the genealogy of a
sample and possibly provides a basis for the construction of inferencemethods inspired
by the existing methods described in the introduction.

In general, if the transition rates are not known explicitly, it might seem diffi-
cult to provide bounds for the dual process. However, its growth is controlled by a
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much simpler Markov chain. Indeed, the process ‖N(t)‖1 is a jump process onN\{0},
with possible jumps: +2, representing double-branching, +1, representing single-
branching and −1, representing coalescence. As is typical of genealogical processes
appearing in population genetics, the rate of negative (coalescent) jumps is at least
quadratic and the rate of positive (branching) jumps is at most linear, as shown in
details in (38) in the “Appendix”. This allows to construct a monotone coupling to
bound the jump chain of ‖N‖1 by a simpler Markov chain which is reported in the
“Appendix” as it could be useful for future work.

This section concludes with the extension of Theorem 1 to the case of nomutations,
Corollary 1, andwith two applications of the duality relationship. The first one is useful
to derive an expansion of the transition density of the diffusion and the second one to
study, in the absence of mutations, fixation/extinction probabilities of allele types.

The duality relation (3), which follows from Theorem 1, can be rewritten as

E [S(X(t),n)|X(0) = x] = E

[
S(X̃,n)

] ∑

m∈NM

pn,m(t)F(x,m),

where S(x,n) is the probability mass function of L independent multinomial random
variables with parameters x(1), . . . , x(L) and n(1), . . . , n(L), and pn,m(t) are the tran-
sition densities of the dual process N. By applying sample inversion as n → ∞, as in
Etheridge and Griffiths (2009); Griffiths et al. (2016), an expansion for the transition
density of X can be obtained in terms of the limit of the transition densities of N, the
stationary density ofX and the duality function F . This corresponds to identifying the
distribution of X(t) from its moments. The derivation of the expansion is essentially
similar to the one in Griffiths et al. (2016), a rigorous proof is left to future work.

In the case of no mutation, θl = 0, l = 1, . . . , L , the boundaries are absorbing
for the diffusion X. Any distribution that puts all its mass on one allele type for each
locus is an invariant distribution for the diffusion but does not satisfy assumption (15).
Nevertheless, as anticipated in Sect. 3, the derivation of a dual process in this case is
simpler than in the presence of mutations, as there is no need of relying on invariant
distributions to define the duality function. In fact, the duality function can be defined
explicitly by defining the function k to be equal to a product of multivariate Beta
functions,

k(n) =
L∏

l=1

B(n(l)) with B(n(l)) =
∏Ml

i=1 Γ (n(l)
i )

Γ (n(l))
. (23)

To get an intuition on why k is defined in this way, note that in the neutral one-locus
model with parent independent mutations k(n) = B(n+2u)

B(2u)
, where u is the vector of

mutation transition rates with u j = θ Pi j , and, as θ → 0, k(n) converges to B(n).
Using definition (23) for k, the transition rates of the dual process can be derived from
those in Theorem 1, see Sect. 6 for more details, to obtain the following

Corollary 1 Let X be defined as in Theorem 1 and assume θl = 0, l = 1, . . . , L. Then
there exists a dual process N for X, in the sense of (3), with respect to the duality

function F(x,n) = ∏L
l=1

1
B(n(l))

∏Ml
i=1(x (l)

i )n(l)
i . N is the pure jump Markov process

on the state space N
M with transition rates
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• q(n,n − e(l)
i ) = n(l)

i (n(l)−1)
2 , i = 1, . . . Ml , l = 1, . . . , L;

• q(n,n + e(l)
j ) = n(l)

j

∑Ml
k=1
k �= j

h(l)
k + n(l)

j

n(l)

∑L
r=1
r �=l

∑Mr
i=1 n(r)

i J (lr)
j i , j = 1, . . . Ml , l =

1, . . . , L;
• q(n,n+e(l)

j +e(r)
h ) = (n(l) +n(r))

n(l)
j n(r)

h

n(l)n(r)

∑Ml
k=1
k �= j

∑Mr
m=1
m �=h

J (lr)
km , j = 1 . . . Ml , h =

1 . . . , Mr , l, r = 1, . . . , L, r > l.

Note that, due to the absence of mutations, the transition rates in this case are fully
explicit. By Corollary 1, the duality relationship (3) can be rewritten as

E

⎡
⎣

L∏
l=1

Ml∏
i=1

X (l)
i (t)n(l)

i |X(0) = x

⎤
⎦ = E

⎡
⎣

L∏
l=1

B(n(l))

B(N(l)(t))

Ml∏
i=1

(x (l)
i )N (l)

i (t)|N(0) = n

⎤
⎦ ,

(24)
letting t → ∞ enables the study of fixation/extinction probabilities of allele types, as
in e.g. Etheridge and Griffiths (2009), Foucart (2013), González Casanova and Spanó
(2018), Griffiths et al. (2016) and Mano (2009).

6 Proofs of themain results

6.1 Proof of Theorem 1

Following the outline in Sect. 3, a dual process is derived as follows. By applying the
generator L to the duality function F in (13) each term in the expression for LF is
treated separately. As in Sect. 4, the terms arising from mutation and diffusion can be
easily rewritten in the required form. Summing the mutation terms over allele types
at locus l yields

Ml∑
i=1

μ
(l)
i (x(l))

∂ F

∂x (l)
i

(x,n) =
Ml∑

i, j=1
i �= j

n(l)
i u(l)

j i

x (l)
j

x (l)
i

F(x,n) −
Ml∑

i, j=1
i �= j

n(l)
i u(l)

i j F(x,n).

Using identity (20) at locus l the mutation terms can be rewritten in the desired form

Ml∑
i=1

μ
(l)
i (x(l))

∂ F

∂x (l)
i

(x,n)

=
Ml∑

i, j=1
i �= j

n(l)
i u(l)

j i

k(n − e(l)
i + e(l)

j )

k(n)
F(x,n − e(l)

i + e(l)
j ) −

Ml∑
i, j=1
i �= j

n(l)
i u(l)

i j F(x,n).

(25)
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For the diffusion terms, the diagonal and off-diagonal terms are written separately as

d(l)
i i (x(l))

∂2F

∂x (l)2
i

(x,n) = n(l)
i (n(l)

i − 1)
1

x (l)
i

F(x,n) − n(l)
i (n(l)

i − 1)F(x,n),

d(l)
i j (x(l))

∂2F

∂x (l)
i ∂x (l)

j

(x,n) = −n(l)
i n(l)

j F(x,n), i �= j .

Summing the diffusion terms at locus l and rearranging yields

1

2

Ml∑
i, j=1

d(l)
i j (x(l))

∂2F

∂x (l)
i ∂x (l)

j

(x,n) =
Ml∑

i=1

n(l)
i (n(l)

i − 1)

2

1

x (l)
i

F(x,n)

− 1

2
n(l)(n(l) − 1)F(x,n).

Now use identity (19) at locus l to obtain

1

2

Ml∑
i, j=1

d(l)
i j (x(l))

∂2F

∂x (l)
i ∂x (l)

j

(x,n) =
Ml∑

i=1

n(l)
i (n(l)

i − 1)

2

k(n − e(l)
i )

k(n)
F(x,n − e(l)

i )

− 1

2
n(l)(n(l) − 1)F(x,n).

(26)
Next, consider the interaction terms. Using the definition of g(l) and rewriting the
derivatives of F yields,

Ml∑
i=1

g(l)
i (x)

∂ F

∂x (l)
i

(x,n) =
Ml∑

i=1

Ml∑
k=1

n(l)
i h(l)

k (δik − x (l)
k )F(x,n)

︸ ︷︷ ︸
S1

+
L∑

r=1
r �=l

Ml∑
i=1

Ml∑
k=1

Mr∑
m=1

n(l)
i J (lr)

km (δik − x (l)
k )x (r)

m F(x,n)

︸ ︷︷ ︸
S2

.

(27)

Note that the first group of sums, S1, contains the one-locus selection parameters while
the second, S2, contains the pairwise selection parameters. Each of themwill be treated
separately. The one-locus selection term can be rearranged into

S1 =
Ml∑

i=1

n(l)
i h(l)

i F(x,n) −
Ml∑

i=1

Ml∑
k=1

n(l)
i h(l)

k x (l)
k F(x,n).
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As in Sect. 4, the fact that the sum of the frequencies at each locus equals one is used.
Since x (l)

k = 1 −∑Ml
j=1
j �=k

x (l)
j , the terms can be rearranged to obtain

S1 = −
Ml∑

i=1

Ml∑
k=1
k �=i

n(l)
i h(l)

k F(x,n) +
Ml∑
j=1

⎛
⎜⎜⎝n(l)

Ml∑
k=1
k �= j

h(l)
k

⎞
⎟⎟⎠ x (l)

j F(x,n).

The second part of (27) can be expressed as

S2 =
L∑

r=1
r �=l

Ml∑
i=1

Mr∑
m=1

n(l)
i J (lr)

im x (r)
m F(x,n) −

L∑
r=1
r �=l

Ml∑
k=1

Mr∑
m=1

n(l) J (lr)
km x (l)

k x (r)
m F(x,n).

This time the equality

− x (l)
k x (r)

m = −1 +
Ml∑
j=1

Mr∑
h=1

(1 − δhmδ jk)x (l)
j x (r)

h , (28)

will be used. To see that (28) holds, the fact that the frequencies sum up to one at each
locus is used multiple times, as follows,

−x (l)
k x (r)

m = −x (l)
k

⎛
⎜⎜⎝1 −

Mr∑
h=1
h �=m

x (r)
h

⎞
⎟⎟⎠

= −x (l)
k +

Mr∑
h=1

(1 − δhm)x (l)
k x (r)

h

= −1 +
Ml∑
j=1
j �=k

x (l)
j ·

Mr∑
h=1

x (r)
h +

Mr∑
h=1

(1 − δhm)x (l)
k x (r)

h

= −1 +
Ml∑
j=1

Mr∑
h=1

(1 − δ jk)x (l)
j x (r)

h +
Ml∑
j=1

Mr∑
h=1

δ jk(1 − δhm)x (l)
k x (r)

h

= −1 +
Ml∑
j=1

Mr∑
h=1

(1 − δhmδ jk)x (l)
j x (r)

h .
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Applying (28) in the expression for S2 and rearranging the terms, leads to

S2 = −
L∑

r=1
r �=l

Ml∑
k=1

Mr∑
m=1

n(l) J (lr)
km F(x,n) +

L∑
r=1
r �=l

Mr∑
m=1

⎛
⎝

Ml∑
i=1

n(l)
i J (lr)

im

⎞
⎠ x (r)

m F(x,n)

+
L∑

r=1
r �=l

Ml∑
j=1

Mr∑
h=1

⎛
⎜⎜⎝n(l)

Ml∑
k=1
k �= j

Mr∑
m=1
m �=h

J (lr)
km

⎞
⎟⎟⎠ x (l)

j x (r)
h F(x,n).

Summing over l and putting similar terms together yields

L∑
l=1

Ml∑
i=1

g(l)
i (x)

∂ F

∂x (l)
i

(x,n)

= −

⎛
⎜⎜⎝

L∑
l=1

Ml∑
i=1

Ml∑
k=1
k �=i

n(l)
i h(l)

k +
L∑

l=1

L∑
r=1
r �=l

Ml∑
k=1

Mr∑
m=1

n(l) J (lr)
km

⎞
⎟⎟⎠ F(x,n)

+
L∑

l=1

Ml∑
j=1

⎛
⎜⎜⎝n(l)

Ml∑
k=1
k �= j

h(l)
k +

L∑
r=1
r �=l

Mr∑
i=1

n(r)
i J (lr)

j i

⎞
⎟⎟⎠ x (l)

j F(x,n)

+
L∑

l=1

L∑
r=1
r>l

Ml∑
j=1

Mr∑
h=1

⎛
⎜⎜⎝(n(l) + n(r))

Ml∑
k=1
k �= j

Mr∑
m=1
m �=h

J (lr)
km

⎞
⎟⎟⎠ x (l)

j x (r)
h F(x,n).

Use the identities (21) at locus l and

x (l)
j x (r)

h F(x,n) = k(n + e(l)
j + e(r)

h )

k(n)
F(x,n + e(l)

j + e(r)
h )

for the mixed terms involving loci l and r , in order to rewrite the selection terms in
the desired form

L∑
l=1

Ml∑
i=1

g(l)
i (x)

∂ F

∂x (l)
i

(x,n) =

−

⎛
⎜⎜⎝

L∑
l=1

Ml∑
i=1

Ml∑
k=1
k �=i

n(l)
i h(l)

k +
L∑

l=1

L∑
r=1
r �=l

Ml∑
k=1

Mr∑
m=1

n(l) J (lr)
km

⎞
⎟⎟⎠ F(x,n)
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+
L∑

l=1

Ml∑
j=1

⎛
⎜⎜⎝n(l)

Ml∑
k=1
k �= j

h(l)
k +

L∑
r=1
r �=l

Mr∑
i=1

n(r)
i J (lr)

j i

⎞
⎟⎟⎠

k(n + e(l)
j )

k(n)
F(x,n + e(l)

j )

+
L∑

l=1

L∑
r=1
r>l

Ml∑
j=1

Mr∑
h=1

⎛
⎜⎜⎝(n(l) + n(r))

Ml∑
k=1
k �= j

Mr∑
m=1
m �=h

J (lr)
km

⎞
⎟⎟⎠

k(n + e(l)
j + e(r)

h )

k(n)
F(x,n + e(l)

j + e(r)
h ).

(29)

The terms arising frommutation (25), diffusion (26) and selection (29) are nowwritten
in form (16). It is finally possible to identify the transition rates of the dual process.

In order to complete the proof, the method of duality is applied, more precisely,
Corollary 4.4.13 in Ethier and Kurtz (1986), which amounts to verifying the following
conditions:

F(X(t),n) −
∫ t

0
LF(·,n)(X(s))ds and F(x,N(t)) −

∫ t

0
LD F(x, ·)(N(s))ds

are martingales and, for each T > 0, there exists an integrable random variable ΓT

such that

sup
0≤s,t≤T

|F(X(s),N(t))| ≤ ΓT , (30)

sup
0≤s,t≤T

|LF(·,N(t))(X(s))| = sup
0≤s,t≤T

∣∣∣LD F(X(s), ·)(N(t))
∣∣∣ ≤ ΓT , (31)

almost surely. First note that, as discussed in Sect. 3, F(·,n) belongs to the
domain of L, for all n ∈ N

M , and the integrability conditions (30)–(31) ensure
that F(x, ·) belongs to the domain of LD , for all x ∈ S, and that the processes
F(X(t),n) − ∫ t

0 LF(·,n)(X(s))ds and F(x,N(t)) − ∫ t
0 LD F(x, ·)(N(s))ds are inte-

grable. The martingale property trivially holds for both processes.
In order to complete the proof, following Barbour et al. (2000) to verify (30)–(31),

it is sufficient to show that there exists a function H : NM → [0,∞) such that

F(x,n) +
∣∣∣LDF(x, ·)(n)

∣∣∣ ≤ H(n), ∀(x,n) ∈ S × N
M , (32)

and
{

H(N(t ∧ τ j )), 0 ≤ t ≤ T , j ≥ 1
}
, where τ j = inf{s ≥ 0 : ‖N(s)‖1 ≥ j}, is

uniformly integrable, for all initial conditions, N(0) = n ∈ N
M , and all T ≥ 0. First,

bounds for F and LD F are provided.
The definition (14) of k and Jensen’s inequality yield

k(n) = E

⎡
⎣

L∏
l=1

Ml∏
i=1

(X̃ (l)
i )n(l)

i

⎤
⎦ ≥ E

⎡
⎢⎣
⎛
⎝

L∏
l=1

Ml∏
i=1

X̃ (l)
i

⎞
⎠

‖n‖1
⎤
⎥⎦ ≥ E

⎡
⎣

L∏
l=1

Ml∏
i=1

X̃ (l)
i

⎤
⎦

‖n‖1
.
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Denote E
[∏L

l=1
∏Ml

i=1 X̃ (l)
i

]−1
by a. Because of assumption (15), the latter expecta-

tion is non-zero and a is well defined, furthermore, a > 1. Consequently, using the
definition (13) of F , it follows that

F(x,n) ≤ a‖n‖1 . (33)

Moreover,

|LF(·,n)(x)| =
∣∣∣LD F(x, ·)(n)

∣∣∣ ≤
∑
n̂

|q(n, n̂)||F(x, n̂) − F(x,n)|

≤
∑
n̂

|q(n, n̂)|
[
a‖n‖1+2 + a‖n‖1

]

≤ b′′ ‖n‖21 a‖n‖1 , (34)

since
∥∥n̂∥∥1 ≤ ‖n‖1 + 2,

∑
n̂ |q(n, n̂)| = 2|q(n,n)|, and |q(n,n)| ≤ b′′′ ‖n‖21, for

some b′′′ > 0 and b′′ = 4b′′′a2. By (33) and (34), it is implied that inequality (32)
holds true with H(n) = b′ ‖n‖21 a‖n‖1 , for some b′ > 0. Consider now the following
representation formula for the expectation of H applied to the stopped dual process,

E
[
H(N(t ∧ τ j ))|N(0) = n

] = H(n) + E

[∫ t∧τ j

0
LD H(N(s))ds

]
. (35)

Using the inequalities (38) of the “Appendix”,

LD H(n) = b′
L∑

l=1

Ml∑
i=1

q(n,n − e(l)
i )
[
(‖n‖1 − 1)2a‖n‖1−1 − ‖n‖21 a‖n‖1

]

+ b′
L∑

l=1

Ml∑
i=1

q(n,n + e(l)
i )
[
(‖n‖1 + 1)2a‖n‖1+1 − ‖n‖21 a‖n‖1

]

+ b′
L∑

l=1

L∑
r=1
r>l

Ml∑
j=1

Mr∑
h=1

q(n,n + e(l)
j + e(r)

h )
[
(‖n‖1 + 2)2a‖n‖1+2 − ‖n‖21 a‖n‖1

]

≤ b′ ‖n‖1 a‖n‖1−1{c(‖n‖1 − 1)
[
(‖n‖1 − 1)2 − a ‖n‖21

]

+ ad
[
a(‖n‖1 + 1)2 + a2(‖n‖1 + 2)2 − 2 ‖n‖21

]}
≤ b,

where the last inequality holds since a > 1, for some b > 0, and all n ∈ N
M . The

inequality in the last display, together with (35), implies

E
[
H(N(t ∧ τ j ))|N(0) = n

] ≤ b′ ‖n‖21 a‖n‖1 + bT . (36)

Inequalities (32) and (36) finally ensure the method of duality can indeed be applied,
which guarantees that the duality relationship between the generators (11), proved in
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this section, implies the duality among the processes in the sense of (3). This completes
the proof of Theorem 1.

6.2 Proof of Corollary 1

Assume θl = 0, l = 1, . . . , L , and let k be defined as in (23). The rewriting of the
diffusion and selection terms in (26) and (29) remains valid, even if (15) is not satisfied
in this case. Furthermore, it is possible to explicitly calculate, for l, r = 1, . . . L, r �=
l, i, j = 1, . . . , Ml , h = 1, . . . , Mr ,

k(n − e(l)
i )

k(n)
= n(l) − 1

n(l)
i − 1

,
k(n + e(l)

j )

k(n)
= n(l)

j

n(l)
,

k(n + e(l)
j + e(r)

h )

k(n)
= n(l)

j n(r)
h

n(l)n(r)
.

Replacing these ratios in (26) and (29) yields an expression of the form (16) and
provides the expression for the transition rates. As outlined in Sect. 3 an expression
of the form (16) implies that the duality relationship between the generators of the
diffusion and its dual process holds if (18) is satisfied. Since a stationary distribution
that satisfies (15) does not exist, the argument in Sect. 3 for proving (18) cannot be
applied. However, direct calculation shows that

L∑
l=1

Ml∑
i=1

q(n,n − e(l)
i ) +

L∑
l=1

Ml∑
j=1

q(n,n + e(l)
j ) +

L∑
l=1

L∑
r=1
r>l

Ml∑
j=1

Mr∑
h=1

q(n,n + e(l)
j + e(r)

h )

=
L∑

l=1

⎛
⎜⎜⎝
1

2
n(l)(n(l) − 1) +

Ml∑
i=1

Ml∑
k=1
k �=i

n(l)
i h(l)

k +
L∑

r=1
r �=l

Ml∑
k=1

Mr∑
m=1

n(l) J (lr)
km

⎞
⎟⎟⎠ ,

which implies (18). Finally, the method of duality, using Corollary 4.4.3 in Ethier and
Kurtz (1986) as in the proof of Theorem 1, ensures the duality relationship between
the processes holds.

7 Two loci, two alleles, with pairwise selection and parent
independent mutation

In this section a particular example will be considered, where there are two loci,
L = 2, and two allele types at each locus, M1 = M2 = 2. The pairwise interactions
are represented by the matrix

J =

⎛
⎜⎜⎝
0 0 J1 0
0 0 0 J2
J1 0 0 0
0 J2 0 0

⎞
⎟⎟⎠ ,
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and there is no single-locus selection, h = 0. Furthermore, parent independent muta-
tions are assumed.

In this special case, the function k, in (14), and consequently the transition rates
of the dual process can be computed rather efficiently. The main difficulty in the
computation is that the normalising constant of the stationary density (10) is unknown.
It may be noted that computing the normalising constant and the function k are closely
related problems. In fact, by defining

I (a1, a2, b1, b2) =
∫ 1

0

∫ 1

0
xa1−1(1−x)a2−1yb1−1(1−y)b2−1e2[J1xy+J2(1−x)(1−y)]dxdy,

the normalising constant can be written as

Z = I (2u(1)
1 , 2u(1)

2 , 2u(2)
1 , 2u(2)

2 ),

and the function k as

k(n) = 1

Z
I (n(1)

1 + 2u(1)
1 , n(1)

2 + 2u(1)
2 , n(2)

1 + 2u(2)
1 , n(2)

2 + 2u(2)
2 ).

The integral I cannot be computed analytically, but it is possible to find a series rep-
resentation of it in terms of Beta and Kummer functions, which can be truncated to
numerically evaluate the function k. The following formula is derived by a straight-
forward, albeit cumbersome, application of definitions and properties of Kummer
functions

I (a1, a2, b1, b2)

= e2J2 B(a1, a2)
∞∑

n=0

[a1]n

[a1 + a2]n

(−2J2)n

n!

×
n∑

k=0

(
n

k

)(
− J1 + J2

J2

)k

B(k + b1, b2)1F1(k + b1, k + b1 + b2,−2J2),

where B is the Beta function, 1F1 is the Kummer function and [a]n = a(a+1) · · · (a+
n − 1), for n > 0, [a]0 = 1.

As an illustration, the stationary density of independent Wright–Fisher diffusions,
with J1 = J2 = 0, is compared to the stationary density of the coupled Wright–
Fisher diffusion, with J1 = J2 = 2, in Fig. 1. Both distributions have mutation rates
u(1)
1 = u(1)

2 = u(2)
1 = u(2)

2 = 0.8. On the left hand side the mutation strength keeps
the mass of the stationary distribution in the centre of the unit square. In contrast,
on the right hand side, while the mutation strength still tends to keep the mass in
the centre, the selection strength moves the mass towards the points (0, 0) and (1, 1),
which represent the most viable couples of allele types, i.e., 1, 1 and 2, 2.
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Fig. 1 Stationary density of a coupled Wright–Fisher diffusion for two loci, two alleles, with no interaction

(left) and non-zero interaction (right). Mutation parameters: u(1)
1 = u(1)

2 = u(2)
1 = u(2)

2 = 0.8. Double-
locus selection parameters: J1 = J2 = 0 (left), J1 = J2 = 2 (right)
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Appendix

In this section themonotone couplingmentioned in Sect. 5 is presented. Let {Ck}k∈N ⊂
N\{0}be the jumpchain of the processC(t) = ‖N(t)‖1,which represents the evolution
of the number of genes in the genealogical (dual) process. Let {Yk}k∈N ⊂ N be the
Markov chain with the following transition probabilities

P(Yk+1 = Yk − 1|Yk) = p(Yk), P(Yk+1 = Yk + 2|Yk) = 1 − p(Yk),

where p(m) = c(m−1)
c(m−1)+d , if m > 1, c, d are positive constants defined below in (38),

p(1) = p(2) and p(0) = 0.
As discussed in Sect. 5, and shown in some particular cases in Sects. 4 and 7,

the rates of the dual process are often not explicit, furthermore, the process C is not
Markovian because its transition probabilities depend on N. The aim of this appendix
is to construct a coupling between {Ck}k∈N and {Yk}k∈N such that

Ck ≤ Yk + 1, ∀k ∈ N.

123

http://creativecommons.org/licenses/by/4.0/


A dual process for the coupled Wright–Fisher diffusion Page 27 of 29 6

This monotone coupling provides upper bounds for expectations involving the number
of genes in the genealogical process that is dual to the coupledWright–Fisher diffusion.
TheMarkov chain Y , with explicit and simple transition probabilities, is easier to work
with than C .

Let {Nk}k∈N be the jump chain of the process N, in which only coalescence and
branching jumps are considered, in between these jumps the state of the process N
changes, because of an arbitrary number ofmutations, fromn tom, with‖m‖1 = ‖n‖1,
say with probability p(m|n). More precisely, givenCk andNk ,Ck+1 is equal toCk + j
with probability p j (Nk), j = −1, 1, 2, where

p j (n) =
∑

m:‖m‖1=‖n‖1
p′

j (m)p(m|n), with p′
j (m) = r j (m)

r−1(m) + r1(m) + r2(m)
,

(37)
and

r−1(n) =
L∑

l=1

Ml∑
i=1

n(l)
i >1

q(n,n − e(l)
i ),

r1(n) =
L∑

l=1

Ml∑
j=1

q(n,n + e(l)
j ),

r2(n) =
L∑

l,r=1
l �=r

Ml∑
j=1

Mr∑
j=1

q(n,n + e(l)
j + e(r)

h ).

The next step is to bound the transition probabilities of the chain C . First note that
definition (14) yields

k(n − e(l)
i ) ≥ k(n), k(n + e(l)

j ) ≤ k(n), k(n + e(l)
j + e(r)

h ) ≤ k(n).

It is then straightforward to show that

r−1(n) ≥ c ‖n‖1 (‖n‖1 − 1), r1(n) + r2(n) ≤ d ‖n‖1 , (38)

where c = 1
2
√

M
, d = 3 ‖J‖1 + ‖h‖1, and thus that

p′−1(n) ≥ p(‖n‖1), p′
1(n) + p′

2(n) ≤ 1 − p(‖n‖1).

This, together with (37), implies

p−1(n) ≥ p(‖n‖1), p1(n) + p2(n) ≤ 1 − p(‖n‖1). (39)

The inequalities above explain why it is possible to construct a monotone coupling of
C andY :C has a higher probability of coalescence jump thanY and a lower probability
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of branching jumps. Furthermore, inequalities (38) are used in the proof of Theorem 1
to provide bounds that justify the use of the method of duality.

The coupling is constructed step by step by couplingCk andYk for each k depending
on which one of the following cases occurs.

Case I: Ck = Yk . In this case Ck+1 and Yk+1 are coupled as follows, let U be a
standard uniform random variable, and set

Ck+1 =

⎧⎪⎨
⎪⎩

Ck − 1 if U ∈ [0, p−1(Nk)],
Ck + 1 if U ∈ (p−1(Nk), p−1(Nk) + p1(Nk)],
Ck + 2 if U ∈ (p−1(Nk) + p1(Nk), 1],

Yk+1 =
{

Yk − 1 if U ∈ [0, p(Yk)],
Yk + 2 if U ∈ (p(Yk), 1].

(40)

It is clear that, in this construction, the marginal distributions are preserved and addi-
tionally Ck+1 ≤ Yk+1 because of (39) and ‖Nk‖1 = Ck = Yk .

Case II: Ck < Yk . As long as this case occurs, let C and Y evolve independently.
Case III: Ck > Yk . Assume that k is first time this case occurs again after case II

(it cannot occur after case I) and note that Ck = Yk + 1 must hold. In this case Ck+1
and Yk+1 are coupled as in (40), the difference being that here ‖Nk‖1 = Ck = Yk + 1.
Since p is an increasing function, Ck+1 ≤ Yk+1 + 1 holds. This means that after one
step in case III, either case I occurs, or Ck+1 = Yk+1 + 1 and the latter coupling can
be applied again.

Note that coupling Ck and Yk impose implicitly a coupling onNk and Yk . Applying
the appropriate coupling at each step provides a coupling between the chain C and the
Markov chain Y such that Ck ≤ Yk + 1, ∀k ∈ N, assuming that C0 = Y0 = ‖N(0)‖1.
Furthermore, it is interesting to note that the first time C hits 1, which is the time the
genealogical process reaches the most recent common ancestor, is smaller or equal to
the first time Y hits 0. In fact, either C hits 1 before Y hits 0, or when Y hits 0 it must
be that C hits 1.
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