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Background: Amide proton transfer-weighted (ATPw) imaging is a novel MRI technique

that has been used to identify benign and malignant tumors. The present study evaluated

the role of APTw imaging in differentiating papillary thyroid carcinoma from predominantly

solid adenomatous nodule.

Methods: This study included 24 cases of solitary papillary thyroid carcinoma, and

20 cases of solid adenomatous nodules. Normal thyroid tissues were examined in 12

healthy subjects. The healthy subjects, eight cases of adenomatous nodule with cystic

degeneration, and 12 cases of thyroid goiter, were only considered in the descriptive

analysis, not included in our statistical analysis. The mean APTw value and the apparent

diffusion coefficients (ADCs) of papillary thyroid carcinoma and solid adenomatous

nodule were compared via a Mann-Whitney U test and receiver operating characteristic

(ROC)-curve analyses.

Results: The adenomatous nodule (3.3 ± 1.3%) exhibited significantly higher APTw

value (p < 0.05) than that of the papillary thyroid carcinoma (1.8 ± 0.7%). The optimal

cut-off value of the mean APTw value in differentiating papillary thyroid carcinoma from

adenomatous nodule was 3.15%, with a sensitivity of 60% and a specificity of 100%. The

mean ADC of papillary thyroid carcinoma (1.2 ± 0.2 × 10−3 mm2/s) was significantly

lower than that of adenomatous nodule (2.0 ± 0.4 × 10−3 mm2/s). The optimal cut-off

value of the mean ADC was 1.35 × 10−3 mm2/s, with a sensitivity of 100% and a

specificity of 75%. Based on the ROC-curve analysis of APT and ADC, the ADC showed

a higher area under the curve (AUC) than that of APT (AUCAPT = 0.84, AUCADC = 0.95).
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Conclusion: APTw imaging may be as useful as DWI for the differentiation of

papillary thyroid carcinoma from predominantly solid adenomatous nodule. Although the

sensitivity of ADC was greater than that of APT, APT had greater specificity.

Keywords: papillary thyroid carcinoma, predominantly solid thyroid adenomatous nodule, amide proton transfer

(APT), diffusion-weighted imaging (DWI), differentiation

INTRODUCTION

Thyroid nodules are becoming increasingly prevalent. Nodular
goiters and adenomas are the most common benign thyroid
nodules, and papillary thyroid carcinoma is the most common
malignant thyroid tumors (1). Nodular goiters and adenomas
are usually treated by clinical observation, especially in the
elderly. In contrast, the optimal treatment for papillary
thyroid carcinoma is surgical excision. Therefore, the precise
preoperative differentiation of nodular goiter or adenoma and
papillary thyroid carcinoma is of significant practical relevance.
Adenomas can occur alone or in combination with nodular
goiters. Their morphologies, signals, and enhancements are
similar, often resulting in difficult differential diagnoses. In
particular, solitary solid nodular goiters are challenging to
identify with adenomas. As such, we used adenomatous nodules
(2–4) to replace solitary solid nodular goiters or thyroid
adenomas in the present study.

Amide proton transfer-weighted (ATPw) imaging is a novel
magnetic resonance imaging (MRI) technique that can detect
mobile proteins and peptides that contain abundant amide
(-CO-NH-) chemical constituents (5, 6). The APTw values can
reflect the concentrations of mobile macromolecules, such as
proteins and peptides. Early reports of APTw imaging for cancer
assessment have focused on the brain. According to the previous
literature, high-grade gliomas show higher APTw values than
low-grade gliomas (7, 8), and APTw imaging is useful for
assessing tumor aggressiveness. Investigators in recent human
studies have reported preliminary APT findings in the breast
(9), prostate (10), cervix (11), rectum (12), and lung (13). APTw
values were higher in cancers than in normal tissues or benign
tumors, and APT levels varied between different malignant
tumors groups or different histological grades. Furthermore, APT
may provide additional information to improve the results of
diffusion-weighted imaging (DWI) or other MRI techniques.

The head-neck regions are challenging for molecular MRI
techniques because of magnetic field inhomogeneity, and motion
and such tissues are prone to artifacts. In a preliminary study
on the characterization of head and neck tumors which showed
the feasibility of performing APTw imaging in the head and
neck by using a technique adapted from the brain, the authors
hypothesized that malignant tumors have higher APT levels
than healthy tissues and benign tumors and that APT levels
differ among malignant tumor groups. They studied the patients
with nasopharyngeal undifferentiated carcinoma, squamous cell
carcinoma, non-Hodgkin’s lymphoma, and benign salivary gland
tumors (14, 15).

We previously reported on a study about patients with thyroid
tumors that showed the feasibility of performing APTw imaging

in the neck. The results showed that the APTw values of
malignant nodules of the thyroid are lower than that of benign
nodules, which is different from other tumors (16). However,
thyroid tumors are prone to cystic change (17), which have a
significant influence on the measurement of APTw values. Our
previous study samples were simply divided into benign groups
and malignant groups. Both the two groups contained different
pathological types, and cystic nodules were not excluded. We
want to explore the diagnostic performance of APTw imaging in
differentiating papillary thyroid carcinoma from predominantly
solid adenomatous nodule. Now we need to further group and
measure them accurately, calculate the threshold, sensitivity, and
specificity of APT and ADC to distinguish solid papillary thyroid
carcinoma and solid adenomatous nodule.

MATERIALS AND METHODS

Subjects
The local Institutional Review Board approved this study, and all
subjects gave written, informed consent before participation in
this study. Between 2018 and 2019, 24 biopsy-proven papillary
thyroid carcinomas, 28 cases of adenomatous nodule, and 12
cases of thyroid goiter underwentMRI exam. This study included
12 healthy subjects. The healthy subjects, 8 cases of adenomatous
nodules with cystic degeneration, and 12 cases of thyroid goiter
were only considered in the descriptive analysis, not included in
statistical analysis. Thus, 24 papillary carcinomas (15 females, 9
males; 41.16 ± 13.43 years old; range, 29–68 years old) and 20
adenomatous nodules (13 females, 7 males; 42.80 ± 10.20 years
old; range, 22–72 years old) were included in the study.

MRI Protocols
MR imaging was performed with a Philips 3-Tesla (3T) scanner
(Ingenia, 3.0 T; Philips Medical Systems, The Netherlands). A
16-channel head-neck coil was used for scanning. The patients
underwent T1- [repetition time (TR)/echo time (TE), 570/18ms]
and T2-weightedMR imaging [TR (ms)/TE (ms), 2,500/100] with
the section thickness of 4mm, an intersection gap of 1mm, field-
of-views of 20–25 cm, and an acquisition matrix of 256 × 224.
The scan time of T1WI is 85 s and the scan time of T2WI is 150 s.
Images were obtained in axial and coronal planes, following scout
images in the sagittal plane.

In addition to conventional MR imaging (T1-weighted
imaging, T2-weighted imaging, and Gd-enhanced T1-weighted
imaging), APTw sequences and reduced field-of-view (r-FOV)
diffusion-weighted sequences with different b values (0, 800
mm2/s) were acquired. Other parameters of DWIwere as follows:
field-of-views of 116 × 51 mm2; voxel size of 1.81 × 1.81 mm2;
slice thickness of 4mm; TR (ms)/TE (ms) of 3,687/62; scan time
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of 221 s. APTw imaging was performed using a 3-dimensional
(3D) turbo-spin-echo Dixon sequence with these parameters as
follows: slice thickness of 4.4mm, acquisition voxel size of 1.8
× 1.8 mm2, TR (ms)/TE (ms) of 4,108/5.9, scan time of 259 s,
and turbo spin-echo factor of 158. APTw imaging was performed
with seven saturation-frequency offsets (offsets = ± 2.7, ± 3.5,
± 4.3 ppm, and 1,540 ppm). The protocol was repeated three
times at ±3.5 ppm to increase the signal-to-noise ratio within
an appropriate time frame. Saturation radio-frequency pulses for
APTw imaging were implemented with an amplitude of 2µT and
a duration of 2 s. B0 maps were obtained with three acquisitions
at 3.5 ppm of different echo times. B0-corrected ATPw images
were reconstructed online.

Imaging Analysis of APT and Apparent
Diffusion Coefficients (ADCs)
The two radiologists conducting the present study determined
by consensus whether the APTw maps and ADC maps were
acceptable for statistical analysis. All images were interpreted by
two radiologists specializing in head and neck imaging. APTw
and ADC imaging were automatically generated via a Philips
post-processing workstation. We calculated the mean APTw
value and ADC value by drawing a region of interest (ROI).
The radiologists drew an ROI around the predominantly solid
thyroid nodules or drew a ROI on the central of one leaf of the
normal thyroid tissues on the APTw image and ADC map by
using the T2WI for reference, and then the mean APTw value
and mean ADC value was obtained from the ROI, as shown
in Table 2. The ROI analysis was repeated by two observers
to assess the inter-observer agreement. The two radiologists
processed the MR images independently. They were blinded to
the histopathologic data.

Statistical Analysis
The APTw values and ADC values of the papillary thyroid
carcinoma were compared with that of the thyroid adenomatous
nodules using a Mann-Whitney U test. The diagnostic
performances of significant APTw parameters for differentiating
the papillary thyroid carcinoma from the adenomatous nodules
were assessed by using ROC-curve analyses with the AUC.
The APTw threshold was acquired by calculating the Youden
index, which is the sum of the sensitivity and specificity −1,
and the APTw value corresponding to the point where the
Yoden index is the largest was considered the APTw threshold.
Then the sensitivity, specificity of the optimal thresholds
were calculated. Statistical analysis was performed using
SPSS software 21.0. All statistical tests were two-sided, and
a p-value of <0.05 was considered to indicate a statistically
significant difference.

RESULTS

The characteristics of the patients are shown in Table 1 and
the subjects selection flowchart is shown in Figure 1. We first
assessed the radiographic features of some interesting cases and
normal thyroids using several standards sequences (T1-weight
images, T2-weight images, Gd- T1-weight images, DWI) and

TABLE 1 | Patient characteristics and pathologies.

Pathology No. Female:male Age (years)

Adenomatous nodule 20 13:7 43 ± 10

Papillary carcinoma 24 15:9 41 ± 13

Total 44 28:16 42 ± 12

TABLE 2 | The APTw values and ADC values of thyroid nodules.

Pathology APTw value (%) ADC (mm2/s) Diameter (mm) p-value

Adenomatous nodule 3.3 ± 1.3 2.0 ± 0.4 24 ± 9 <0.001

Papillary carcinoma 1.8 ± 0.7 1.2 ± 0.2 11 ± 5

APTw sequences. Figure 2 shows the normal thyroid tissue
and diffuse goiter. They appear homogenously isointense on
APTWI, and their APTw values (normal thyroid, 2.15%; diffuse
goiter, 2.36%) are similar, and neither is very high. Figure 3
shows two thyroid nodules with cystic changes. The A cyst
rich in serous fluid and appeared hypointense on T1-weight
images (T1WI), hyperintense on T2-weight images (T2WI),
and hyperintense on APTWI (APTw values = 7.33%). The B
cyst is rich in thyroid colloid and appears hyperintense on
T1WI, hypointense on T2WI, hypointense on APTWI (APTw
values = 1.53%). The solid portion appears isointense on
T1WI and hyperintense on T2WI and APTWI (APTw values
= 3.56%).

Figure 4 shows two predominantly solid adenomatous
nodules. One is an atypical adenomatous nodule and appeared
mild enhancement on Gd-T1WI, mild hyperintense on an ADC
map, and isointense on APTWI (APTw values = 2.05%). The
other is a typical adenomatous nodule and exhibited strong
enhancement on Gd-T1WI and hyperintense on the ADC map
and APTWI (APTw values= 5.21%).

Figure 5 shows a typical solid adenomatous nodule and
a papillary thyroid carcinoma. The adenomatous nodule
appeared hyperintense on both the ADC map and T2WI,
and the mean APTw value was 6.10%. The papillary thyroid
carcinoma appeared hypointense on ADC map, heterogeneous
iso-/hypo-intensity on APTWI, and the mean APTw value
was 1.93%.

The intraclass correlation coefficients (ICC) showed excellent
observer agreement (ICCAPT = 0.92, ICCADC = 0.96, p < 0.01).
Table 2 and Figure 6 show the APTw values and ADC values
of thyroid nodules in this study, and there was a significant
difference in the APTw value and ADC of the papillary thyroid
carcinoma and adenomatous nodule. The adenomatous nodule
(3.3 ± 1.3%) exhibited higher APT-weighted signal intensities
than that of papillary carcinoma (1.8 ± 0.7%; p < 0.01).
The mean ADC of the papillary thyroid carcinoma (1.2 ±

0.2 × 10−3 mm2/s) was significantly lower than that of the
adenomatous nodule (2.0 ± 0.4 × 10−3 mm2/s; p < 0.01). The
optimal cut-off value of the mean APTw value in differentiating
papillary thyroid carcinoma from the adenomatous nodule was
3.15%, with a sensitivity of 60% and a specificity of 100%
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FIGURE 1 | Subject selection flowchart.

FIGURE 2 | (A1–A3) MR images of a normal thyroid, including T2WI (A1), Gd-T1WI (A2), and APTWI (A3). (B1–B3) MR images of diffuse goiter, including T2WI (B1),

ADC map (B2), and APTWI (B3).

(Figure 7). The mean ADC of the papillary thyroid carcinoma
was significantly lower than that of the adenomatous nodule.
The optimal cut-off value of the mean ADC in differentiating
papillary carcinoma from adenomatous nodule was 1.35 × 10−3

mm2/s, with a sensitivity of 100% and specificity of 75%. The
ROC curve analysis revealed that ADC exhibited a higher AUC
value compared to that of APT (AUCAPT = 0.84, AUCADC =

0.95). The r-FOV DWI showed a better diagnostic performance
than that of APTw imaging. Although the sensitivity of DWI
(100%) was significantly higher than that of APT (60%), the
specificity of APT (100%) was substantially higher than that
of ADC (75%).

DISCUSSION

In this study, we explored the diagnostic performance of using
APTw imaging to differentiate papillary thyroid carcinoma from
the solid adenomatous nodule. The aim was to differentiate
papillary thyroid carcinoma from adenomatous nodule so that
the patients with papillary thyroid carcinoma would be able to
receive appropriate treatment at an earlier stage while avoiding
unnecessary surgery in the patients with adenomatous nodules.
The present study showed a significant difference between the
ADC and APTw value of papillary thyroid carcinoma and
adenomatous nodule, in which the most adenomatous nodules
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FIGURE 3 | MR images of two predominantly cystic thyroid nodules, including T1WI (A1,B1), T2WI (A2,B2), and APTWI (A3,B3).

FIGURE 4 | Both (A,B) are predominantly solid adenomatous nodules on Gd-T1WI (A1,B1), ADC map (A2,B2), and APTWI (A3,B3).

had higher mean ADC and APTw value than papillary thyroid
carcinoma. It is not clear why adenomatous nodules have higher
APTw value than papillary thyroid carcinoma, as opposed to
other tumors.

Diffusion-weighted imaging provides a better characterization
of tissues because it can reflect the random motion of water
molecules, which is disturbed by intracellular macromolecules.
Previous studies have evaluated the role of diffusion-weighted
imaging in differentiating benign from malignant thyroid
nodules (18–24). The APTw values can reflect the concentrations
of mobile macromolecules, such as proteins and peptides. Our
previous studies on the thyroid established a positive correlation

between APTw values with ADC. Part of the reason for this
may be because the APTWI detects free protein rather than
solid proteins.

As shows in Figure 2, the APTw value of normal thyroid
tissue and diffuse goiters are similar, and neither is very high
despite relatively abundant colloid components in the diffuse
goiter. The components of the cystic thyroid zone consist
mainly of serous fluid, thyroid colloid (thyroglobulin), and
blood from different periods, and they exhibit characteristic
MR signals (25, 26). Serous fluid often appears hypointense
on T1WI and hyperintense on T2WI, similar to that of water.
Thyroid colloid contains macromolecular thyroglobulin, which
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FIGURE 5 | (A,B) Show a solid adenomatous nodule and a papillary thyroid carcinoma on the ADC map (A1,B1), T2WI (A2,B2), and the combination of T2WI and

APTWI (A3,B3).

FIGURE 6 | Box plot of the APT (%) and the ADC (mm2/s) of adenomatous nodule and papillary thyroid carcinoma.

shortens the T1 relaxation time and shows a homogenous
high signal on T1WI. Blood fluid from different periods
can display various heterogeneous signal intensities (27, 28).
Figure 3 exhibits a thyroid nodule with the cystic change,
and the components of the cystic thyroid zone consist
mainly of thyroid colloid, but the APTw value is low. It is
speculated that the thyroid colloid does not show a high signal
intensity on APTWI, and the reasons why the APTw value of
adenomatous nodule was higher than that of papillary thyroid
carcinoma is not that adenomatous nodule contains abundant
thyroid colloid.

In the present study, most solid adenomatous nodules showed
significantly high APTw value, but some were similar to normal
thyroid tissue. The typical adenomatous nodule that showed
high signal on the APTw image exhibited isointense on T1WI,
hyperintensity on T2WI, and strong enhancement on Gd-T1WI,
indicating that there is abundant microvessel on the typical
adenomatous nodule. The typical adenomatous nodule had a

high ADC value, indicating active water-molecule movement.
On the contrary, the atypical adenomatous nodule exhibited
isointense on the ADC map and slight enhancement on Gd-
T1WI, indicating the restricted water-molecule movement and
the less microvessel compared with typical adenomatous nodule
(29). The blood supply of papillary thyroid carcinoma is not
as abundant as in typical adenomatous nodule, and papillary
thyroid carcinoma has a high density of tumor cells, small
extracellular space, and high cytoplasmic viscosity (21, 30–
34). In conclusion, abundant blood supply may underlie why
adenomatous nodule has higher APTw value than papillary
thyroid carcinoma.

The present study had some limitations. First, the sample
size was small. Second, the head and neck are challenging
regions in which to perform functional MRIs because of field
inhomogeneity, relatively low signal-to-noise ratio, movement
artifacts, and difficulties with imaging fat suppression. Third,
some thyroid microcarcinomas may occur in adenomatous
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FIGURE 7 | ROC curves of APT, ADC, and the combination of APT and ADC

for differentiation between papillary thyroid carcinoma and adenomatous

nodule: the AUC was 0.95 (ADC), 0.95 (APT and ADC), and 0.835 (APT).

nodules. In addition, there is some biases because the ROIs
were drawn manually on the APTWI and ADC maps by
using the anatomic images for reference. The APT value of
adenomatous nodules is not absolutely higher than that of
papillary thyroid carcinoma, but it is because most papillary
carcinomas are relatively small when they are found. At this
stage, the papillary carcinoma has incompletely developed
blood vessels and relatively less blood vessels. If the supply
of blood vessels to the papillary cancer in the late stage
becomes rich, then like other malignant tumors, the APT value
of papillary thyroid carcinoma will increase and close to the
adenomatous nodule.

CONCLUSIONS

APTw imaging may be useful for the differentiation of papillary
thyroid carcinoma from predominantly solid adenomatous
nodule. DWI had higher accuracy and sensitivity but lower
specificity than APTw imaging. From our present results, we
hypothesize that plentiful blood supply may be the main reason
why the APTw value of the typical adenomatous nodule is higher
than that of papillary thyroid carcinoma.
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