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Gene expression can serve as a powerful predictor for disease progression and other
phenotypes. Consequently, microarrays, which capture gene expression genome-wide,
have been used widely over the past two decades to derive biomarker signatures for tasks
such as cancer grading, prognosticating the formation of metastases, survival, and others.
Each of these signatures was selected and optimized for a very specific phenotype, tissue
type, and experimental set-up. While all of these differences may naturally contribute to
very heterogeneous and different biomarker signatures, all cancers share characteristics
regardless of particular cell types or tissue as summarized in the hallmarks of cancer.
These commonalities could give rise to biomarker signatures, which perform well across
different phenotypes, cell and tissue types. Here, we explore this possibility by employing a
network-based approach for pan-cancer biomarker discovery. We implement a random
surfer model, which integrates interaction, expression, and phenotypic information to rank
genes by their suitability for outcome prediction. To evaluate our approach, we assembled
105 high-quality microarray datasets sampled from around 13,000 patients and covering
13 cancer types. We applied our approach (NetRank) to each dataset and aggregated
individual signatures into one compact signature of 50 genes. This signature stands out for
two reasons. First, in contrast to other signatures of the 105 datasets, it is performant
across nearly all cancer types and phenotypes. Second, It is interpretable, as the majority
of genes are linked to the hallmarks of cancer in general and proliferation specifically. Many
of the identified genes are cancer drivers with a known mutation burden linked to cancer.
Overall, our work demonstrates the power of network-based approaches to compose
robust, compact, and universal biomarker signatures for cancer outcome prediction.
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INTRODUCTION

Cancer is an uncontrollable growth of cells that can occur in nearly any organ of the human body.
Biomarkers help to improve cancer diagnosis and disease progression. A number of biomarkers are
in clinical use today, such as the Carbohydrate antigen 19-9 (CA19-9) for early detection of
pancreatic cancer (Koprowski et al., 1981), MYC for monitoring the prognosis of lymphoma and
leukemia, and ALK, for lung cancer (Targeted Cancer Therapies Fact Sheet—National Cancer

Edited by:
Ozlem Keskin,

Koç University, Turkey

Reviewed by:
Paolo Martini,

University of Brescia, Italy
Abel Gonzalez-Perez,

Pompeu Fabra University, Spain

*Correspondence:
Michael Schroeder

michael.schroeder@tu-dresden.de

Specialty section:
This article was submitted to

Network Bioinformatics,
a section of the journal

Frontiers in Bioinformatics

Received: 20 September 2021
Accepted: 16 February 2022
Published: 23 March 2022

Citation:
Al-Fatlawi A, Afrin N, Ozen C,

Malekian N and Schroeder M (2022)
NetRank Recovers Known Cancer

Hallmark Genes as Universal
Biomarker Signature for Cancer

Outcome Prediction.
Front. Bioinform. 2:780229.

doi: 10.3389/fbinf.2022.780229

Frontiers in Bioinformatics | www.frontiersin.org March 2022 | Volume 2 | Article 7802291

ORIGINAL RESEARCH
published: 23 March 2022

doi: 10.3389/fbinf.2022.780229

http://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2022.780229&domain=pdf&date_stamp=2022-03-23
https://www.frontiersin.org/articles/10.3389/fbinf.2022.780229/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.780229/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.780229/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.780229/full
http://creativecommons.org/licenses/by/4.0/
mailto:michael.schroeder@tu-dresden.de
https://doi.org/10.3389/fbinf.2022.780229
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2022.780229


Institute, 2021). Identifying highly accurate biomarkers is a
complex problem. CA19-9, for example, is well established in
pancreatic cancer but has only an accuracy of 70–80% (Al-Fatlawi
et al., 2021), whichmeans that it is not suitable for diagnosis on its
own, but only to monitor relapse after surgery. One way to
improve accuracy and robustness of the diagnoses is to
employ biomarker signatures instead of only using single
biomarkers. Key enabling technology for discovering
biomarker signatures is high-throughput screening techniques
such as microarray and deep sequencing. Whenmicroarrays were
introduced in the late 90s, a first high-impact study identified a
biomarker signature of 70 genes to estimate metastases after
breast cancer surgery (van ’t Veer et al., 2002). Today, this
signature is commercially available, and it is in wide use
internationally as MammaPrint.

Defining such a signature is a complex undertaking as there
are three requirements

1) Robustness: A signature should be robust to changes in the
data, and it must not be over-optimized for a specific dataset.
If the signature is applied independently to a dataset of a
similar phenotype, it should perform similarly to the original
dataset. If not, it could be overfitted and biased towards the
original data.

2) Compactness: A signature should be compact. If a signature
consists of thousands of genes, it becomes complicated to
understand how individual components of the signature
contribute to the prediction result.

3) Interpretability: A signature should be meaningful and
interpretable. The identified genes should be connected to
cancer, so that first steps can be taken to extend the correlation
between biomarker and phenotype towards a causal model
that explains how the biomarker links to the observed
phenotype.

In general, discovering a biomarker signature for specific
cancer and prediction is a daunting task due to combinatorial
explosion. If a genome screen obtains data for 20,000 genes
and a signature consists of 50 genes, then there are around 3.5 *
10150 possible signatures [C (20,000, 50) = 3.5 * 10150]. The vast
majority of these signatures will not be suitable for any
outcome prediction task. However, even if only a small
percentage of signatures are suitable, it is still a large
number. Consequently, many good signatures may exist.
The breast cancer signature introduced by van’t Veer was
complemented by a completely different signature for the
same task with similar performance (Paik et al., 2004; Ein-
Dor et al., 2006). This begs the question of how arbitrary the
choice of a good signature could be.

Should not one expect that biomarker signatures for similar
cancer types and outcome prediction tasks share some
similarities? This should be especially true as different cancers
share basic mechanisms such as survival, tumor growth, invasion,
and others (Hanahan andWeinberg, 2011). These principles were
summarized by Hanahan and Weinberg as hallmarks of cancer
(Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011).
They represent the biological properties acquired during the
multistage development of cancer, including sustaining

proliferative signaling, evading growth suppressors, resisting
cell death, and seven other principles. Linking biomarkers to
the hallmarks of cancer is one possibility for an interpretable
signature. This paper defines a universal biomarker signature for
cancer outcome prediction, which is robust, compact, and
interpretable by pursuing a network-based approach.

There is a long-standing tradition to use interaction networks
in biomarker discovery. Shi et al. developed a network-based
signature for colorectal cancer recurrence by integrating several
signatures and interaction networks (Shi et al., 2012). They
highlighted the dysregulated biological processes in colorectal
cancer recurrence. Dutkowski and coworkers combined gene
expression profiles and physical protein interaction maps of
embryonic tissue, metastatic breast cancer, and brain tumors
to provide global network modules pointing out representative
development and cancer programs (Dutkowski and Ideker,
2011). Winter et al. (Winter et al., 2012) developed a network-
based outcome prediction approach—NetRank and successfully
predicted patient survival using gene expression data. It ranks
genes according to their network connectivity and statistical
relevance using a modified formula for Google’s PageRank
algorithm. NetRank was also applied to several cancer
microarray datasets using transcription factor and protein-
protein interaction networks (Roy et al., 2014). The study
showed that integration of network information and gene
expression data provides more accurate outcome predictions
than classical methods on a par with signatures published by
the authors of the studies. Barter et al. used gene expression
microarray data from melanoma and ovarian cancer to predict
patient clinical outcomes through gene expression. They
compared three feature selection methods, including the most
commonly used single gene (based on differential gene expression
differences), gene-set (based on biological pathway or function),
and network-based approaches (based on protein-protein
interactions). The study also evaluated two network-based
feature-selection algorithms: NetRank and GeneRank. As a
result, they reported that NetRank was the most accurate for
identifying more stable gene expression signatures (Barter et al.,
2014).

We set out in this paper to collect 105 datasets covering 13
cancer types with different phenotypes. We proceed as depicted
in the graphical abstract of Figure 1. In the first step, we show that
biomarker signatures proposed by authors of the datasets do not
overlap, and hence they follow the pattern that was already
observed two decades ago when the two main breast cancer
signatures turned out to be entirely different. Next, we develop
our network-based approach by applying NetRank to the gene
expression and phenotype data using the String database network
(Szklarczyk et al., 2019), which covers over four million
interactions between more than 20,000 proteins. We evaluate
the performance of these signatures and compare the
composition of these against each other and against the
signatures originally proposed by the authors of the datasets.
In the last step, we combine the NetRank biomarker signatures of
each dataset into a global NetRank signature using majority
voting. We evaluate the performance of this signature in terms
of area under the curve for the cancer outcome prediction tasks
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and in terms of their relation to the hallmarks of cancer using an
evaluation set. Overall, we show that the NetRank signature is
robust, compact, and interpretable.

METHODS

Datasets
Microarray datasets were obtained as follows. PubMed was
queried in January 2021 for the keywords cancer and gene
expression. Dates were limited to 2000 to 2020. To obtain only

high-quality datasets, we filtered articles by impact factor
greater than 15 and obtained ca. 3,700 papers. These were
scanned manually for relevance to differential gene expression
leaving 1,288 articles. For these, we found 225 datasets in the
Gene Expression Omnibus database (Edgar et al., 2002). We
filtered out 120 datasets because of their missing phenotype
data (48), missing prob signals or few probes (35), missing
gene symbols (11), the small size of fewer than six samples, or
low quality indicated by many missing or NaN values (26). As a
result, we kept 105 datasets. As demonstrated in Figure 2, the
selected datasets comprise around 13,000 individuals for 13

FIGURE 1 |Overview biomarker discovery pipeline. NetRank identifies biomarker signatures by combining protein interactions from the String database with gene
expression data. NetRank is applied to each dataset individually. Every dataset was split into a feature selection set (70%) and an evaluation set (30%). NetRank was
applied to the first set. Principal component analysis was performed on the latter set using the selected features to evaluate the signatures in predicting the phenotype in
an independent set.
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cancer types with different phenotypes; Supplementary Table
S1 and Supplementary Sheets S1, S2. Each dataset was
normalized, evaluated, and studied individually, and then

their outcomes were compared. Individuals of 11 out of the
105 datasets were mice, so we humanized their gene symbols
using the R package biomaRt (Durinck et al., 2005).

FIGURE 2 | Microarray datasets. The 105 datasets are comprehensive, with around 13,000 samples from 13 cancer types, which each comprise a substantial
number of probe sets.
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Microarray Data Processing
The robust multi-array averaging (RMA) method was used for
background correction and normalization of the unnormalized
datasets using the affy package in R 3.6 (Gautier et al., 2004).
Affymetrix probes were mapped to gene symbols using the
provided functional annotation of each dataset. We excluded
the genes and samples with NaN values using the function
“goodSamplesGenes” provided by the WGCNA R package 1.6.9
(Langfelder and Horvath, 2008), which kept only the records that
have a minimum fraction of non-missing samples for a gene of
50%. We performed hierarchical cluster analysis and principal
components analysis to evaluate the distance between individuals
and remove the detected outliers using the R package stats 3.6.2 (R
Core Team., 2020). Finally, the Pearson standard correlation
coefficient and Fisher’s asymptotic p-value were determined
using a robust correlation measure implementation (Langfelder
and Horvath, 2008) in the R package WGCNA 1.6.9.

Protein-Protein Interaction Network
To calculate the connectivity of each protein, we used the protein-
protein interaction (PPI) STRING network (Szklarczyk et al., 2019).
The analysis was carried out using the R package STRINGdb_1.26-0
with database version 10. The STRING database contains above four
Mio interactions for more than 20,000 human proteins and above
fiveMio interactions for more than 22,000 mouse proteins. We have
not applied any filtering for the connections. The nodes’ connectivity
scores were normalized by dividing it by the maximum possible
connectivity score in the network.

NetRank
Our method is derived from the PageRank algorithm, which
Google uses to rank web pages in their search engine. NetRank
assumes a random surfer who navigates through a network of web
pages by following links with probability d or starting new
sessions on a random page with a probability of 1−d. The
random surfer visits a web page and randomly clicks on a link
visiting the next page. Consequently, pages, which are central and
well-connected, are visited more frequently by the random surfer
than pages on the periphery of the network.

While PageRank takes only the node connectivity into account
to designate ranking (Eq. 1), NetRank takes into account both
connectivity and statistical association of the genes with a specific
phenotype (Eq. 2).

rnj � (1 − d) + d∑ N
i�1

mij rn−1i

degreei
, 1≤ j≤N (1)

rnj � (1 − d)sj + d∑ N
i�1

mij rn−1i

degreei
, 1≤ j≤N (2)

r: the node (gene) ranking score
n: iteration
j: index of the current node
d: damping factor (ranging between 0 and 1)
s: Pearson correlation coefficients
degree: the sum of the output connectivities for connected

nodes

N: number of the total nodes
m: connectivity of connected nodes, mij � 1, if i and j are

connected and 0 otherwise.
In Eq. 2, the damping factor d balances the impact of the

network links (connectivity of the protein) with its statistical
significance. In our implementation, we kept the value of d fixed
(0.5) in all datasets to avoid any bias of having customized
parameters in each analysis.

Here, the random surfer model is applied to an interaction
network [such as the protein-protein interaction (PPI) network of
STRINGdb (Szklarczyk et al., 2019)]. It combines the connectivity
score with another score representing the correlation to the
phenotype. Instead of counting page visits as in PageRank,
NetRank initializes scores as the gene’s correlation to the
phenotype. When the surfer visits a node, its correlation is
distributed in equal parts to its neighbors. Then, its score is
updated with one contribution from the correlation and the other
from the neighbors’ scoring.

NetRank can be seen as method average across a network.
Instead of considering a value in isolation, it is combined with its
neighbors’ scores. In other words, two pieces of information are
required to rank the coding genes: a network of the interactions
between the genes and their statistical significance of association
with the phenotype. For evaluating the significance of association
between a phenotype and gene expression, we determined their
correlation. Fisher’s asymptotic p-value was determined using an
approximation to the true distribution. The advantage of Fisher’s
asymptotic p-value is that it is valid in small and large sample
sizes (Agresti, 1992). A p-value of 0.01 or below was considered
significant in the analysis. Supplementary Figure S1 shows the
pseudo-code for this procedure.

Data Splitting and Feature Selection
In our analysis, the NetRank algorithm was applied on only 70%
of each dataset (feature selection set), and we kept 30% unseen for
evaluating the approach (Figure 1). To keep the signatures
compact and avoid bias toward specific datasets, we specified a
threshold of 50 genes (maximum) for all datasets and selected
those that showed the highest-ranking and met the p-value
requirement below 0.01.

Outcome Prediction Using PCA
Principal component analysis was performed using Python 3.7.6
with core functions provided by scikit-learn (sklearn) 0.20.3
(Pedregosa et al., 2011). It was applied only on the datasets
with an adequate number of samples in each class in the test set
(i.e., at least four samples per class). In our analysis, out of 105
datasets, 60 had enough samples in the test set for clustering
(i.e., six samples). The area under the ROC curve (AUC) was
calculated using scikit-learn for the best component in the PCA
analysis.

Cancer Hallmarks Genes
The selected genes in our signature were manually searched on
the Cancer Hallmarks Genes (Zhang et al., 2020). Cancer
Hallmarks Genes dataset has a collection of 2,940 genes that
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are categorized into ten hallmarks. We searched for our genes in
each hallmark, and provided degree and betweenness centrality
information of the gene in different hallmark networks.

Biological Interpretation
We searched for possible existing drugs for our protein list in
ChEMBL (Gaulton et al., 2017) using the open-target project
(Koscielny et al., 2017) and provided the results. Moreover, we
check these genes in the Cancer Genome Atlas Data Portal (GDC,
2021).

RESULTS

This study explores the possibility of a universal cancer signature
arising from processes common to most cancers. Inspired by the
hallmarks of cancer, it investigates whether mechanisms such as
tumor growth or cancer survival and progression, which are
present in all cancers, can give rise to biomarker signatures, which
perform well in cancer outcome prediction tasks.

To this end, we devised a universal signature, which shows
good performance across many types of cancer in the cancer
outcome prediction tasks. The defined signature is compact

interpretable in that its genes have confirmed links to cancer,
the hallmarks of cancer in particular. The base for this goal is a
large dataset of gene expression data for cancer outcome
prediction tasks.

105 datasets cover 13,000 samples, 13 cancer types, and over
ten phenotypes. When collecting datasets for our study, we had
two goals: The collection had to be comprehensive, covering many
types of cancer and various outcome prediction tasks, and the data
had to be high quality. We addressed both aims by screening
scientific literature and focusing on high-impact publications. After
rigorous filtering as described in the methods section, we obtained
105 microarray datasets. These datasets ranged very substantially
in size from some specialized, small-scale studies with as little as six
samples (such as GSE73396 in liver cancer and GSE43444,
GSE17538 in colon cancer) to a large-scale multi-center study
to evaluate the use of microarrays in leukemia diagnosis with 2,096
samples (GSE13204). The average size per dataset is 73 samples. In
total, there were 12,900 samples.

Overall, the samples were very diverse in terms of cancer types
and phenotypes. The largest number of studies dealt with breast
cancer (25), followed by liver (17) and prostate, leukemia, lung,
and lymphoma with around ten each. Overall, 13 different types
of cancer are present (Figure 2). The overwhelming majority of

FIGURE 3 | Overlap of the author (green) and the NetRank (blue) signatures for 25 breast cancer datasets. Author signatures do generally not overlap (green vs.
green triangle in the bottom left). Author signatures hardly overlap with NetRank signatures (blue vs. green rectangle in the bottom right). NetRank signatures strongly
overlap (blue vs. blue triangle in top right).
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FIGURE 4 | Universal NetRank signature in different cancer and hallmarks. Top 50 most frequent genes in the 105 NetRank signatures. (A): Gene vs. cancer type.
The color indicates how frequently the gene was part of a NetRank signature. All genes were selected as biomarkers in several cancer types. Pancreatic cancer stands
out with hardly any genes present. (B): Break down the 50 genes of the universal NetRank signature by ten hallmarks of cancer. All hallmarks are captured by the
signature.
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datasets consisted of human samples, and however, 206 of the
12,900 samples were from mice. The phenotypes investigated in
the 105 studies also captured a broad range, including grading
(18), distinctive cancer-specific phenotypes such as epithelial cell
adhesion molecules in the liver and lymph node status in breast
cancer (16), cancer vs. non-cancer (12), metastasis status or
localization (12), subtypes (9), survival status or time (7),
mutation of genes or receptor (6), treatment effect (4), tumor
localization (4), remission or relapse (3), progression (1), and 13
others (Supplementary Sheets S2). This comprehensive mixture
ensures that easier tasks such as distinguishing healthy from
cancerous tissue as well as more complex tasks such as survival
are present.

Nearly all studies used standard microarrays, and every of the
13 cancer types has at least two datasets with over 40,000 probes.
Only three out of the 105 datasets have less than 10,000 probes.
The dataset with the smallest number of probes (1,756) is also the
largest dataset with 2,096 samples.

The datasets span a period of 13 years from 2005 to 2018, with
peaks between 2009 and 2012, which is in line with the
introduction of microarrays in the late 90s to early 00s and
the recent advent of low-cost deep sequencing as a new
technology superseding microarray.

We collected gene expression signatures that were proposed by
the authors of the datasets. Taken together, the 105 author
signatures comprise 4,343 genes. The signatures vary
immensely in size with the smallest consisting of only one

gene and the largest of 3,232 genes. The average number of
genes put forward by the authors of the datasets is therefore 41
(4,343/105). This is a similar order of magnitude as the highly
successful 70 gene signature underlying the Mammaprint breast
cancer signature (van ’t Veer et al., 2002). Therefore, we fixed the
size of signatures to be proposed by our methods to 50.

Author signatures are dissimilar. The starting point of our
analysis is how similar or dissimilar biomarker signatures are across
datasets and tasks. Given that we have 25 breast cancer datasets, one
could expect that the signatures for these datasets overlap. The
degree of similarity between the investigated phenotypes relates to
the degree of overlap. As shown in Figure 3 and Supplementary
Figure S2, the datasets hardly overlap. The only significant overlap
exists between datasets from the same study (GSE25066, GSE21653,
GSE11121, GSE20685, GSE21653, GSE3494) (Ko et al., 2013), which
was a meta-analysis on the role of ion channels as predictors. We
expanded these comparisons to all datasets (Supplementary Figure
S3) and found the same: Author signatures hardly overlap, and this
holds in particular for each of the 13 cancer types.

This finding was in agreement with the observation of Ein-Dor
et al., who observed the lack of similarity between signatures of
different studies for the same prediction task (Ein-Dor et al., 2006).
While pathways in different tissues are formed from specific genes and
proteins and while author signatures were introduced in this specific
context, we aim to highlight the commonalities of data sets. Besides
the significant contribution of the aforementioned signatures in
underlying the genetic information in each cancer and phenotype

FIGURE 5 | Comparison of prediction performance of correlation (blue), NetRank (red), and universal (yellow) NetRank signature. 105 datasets vs. performance
measured as AUC. All signatures achieve across all datasets a good AUC. The universal signature has a comparative performance to the correlation and NetRank
signature, which are optimized per dataset. All results can be found in Supplementary Sheets S2.
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type individually, there is a necessity for studying the shared genomic
process and biological phenomena in cancer generally, regardless of
particular cell types or tissue. This concept of generalization in
principles of cancer biology is highly inspired by the notion of

cancer hallmarks which helps in understanding the common
mechanisms of tumor growth and cancer survival and progression.

Standard correlation signatures are dissimilar. One trivial
reason why there is only so little overlap between the signatures

TABLE 1 | Universal NetRank signature genes and the hallmarks of cancer. Cancer Hallmarks: 1: Sustaining proliferative signaling; 2: Evading growth suppressors; 3:
Evading immune destruction; 4: Enabling replicative immortality; 5: Tumor-promoting inflammation; 6: Activating column and metastasis; 7: Inducing angiogenesis; 8:
Genome instability and mutation; 9: Resisting cell death; 10: Reprogramming energy metabolism. “# Cancer” parameter indicates how many cancers a particular gene was
found in the analysis. “√” means that the gene (row) is involved in one pathway of a specific hallmark of cancer (column). SUM shows how many genes are involved in a
particular cancer hallmark.

Gene
symbol

1 2 3 4 5 6 7 8 9 10

#
Cancer

LRRK2 — — — — — — — — — — 11
TGFB1 √ √ — √ — √ √ — √ √ 11
TOP2A — — — — — — — — — — 10
GART — — — — — — — — — — 10
IL6 √ — √ — √ — √ — √ √ 9
DECR1 — — — — — — — — — — 9
CAT — — — — — — — — √ √ 9
EGR1 — — — — — — — — — — 9
PDGFRB √ √ — — — √ √ — √ √ 9
PPARG √ — — — — — — — — √ 9
MAPK13 √ — √ √ √ √ √ — √ √ 9
BCL2 √ √ — — √ √ — — √ — 9
RAD51 — — — — — — — √ — — 9
HSPA5 — — — — — — — — — — 9
XPO1 — — — — — — — — — — 9
APP — — — — — — — — — — 9
CDK5 — — — — — — — — — — 9
TSPO — — — — — — — — — — 8
TP53 √ √ — √ — √ √ √ √ √ 8
SRC √ — √ — √ √ √ — √ — 8
JUN √ — √ √ √ √ — — √ — 8
ITGA2 √ — — — √ √ √ — √ — 8
FYN √ — √ — — √ — — √ — 8
MAPK3 √ √ √ √ √ √ √ — √ √ 8
ACTA2 — — — — — — — — — — 8
PLK1 — — — — — — — — √ √ 8
GMPS — — — — — — — — — — 8
CDK6 √ √ — — — — — √ √ — 8
GAPDH — — — — — — — — — √ 8
CDK1 — — — — — √ — √ √ — 8
FOS √ — √ — √ √ — — √ — 8
CDK2 √ — — — — — — √ √ √ 8
ISG15 — — — — — — — — — — 8
NRAS √ √ √ √ √ √ √ — √ √ 8
OASL — — — — — — — — — — 8
CDK4 √ — √ — — √ — √ √ — 8
RHOB — — — — — — — — — — 8
SMARCA2 — — — — — — — — — — 8
HSP90AB1 √ — — — — — — — √ — 8
PTEN √ √ — — — √ — √ √ √ 8
ACLY — — — — — — — — — √ 8
ACACA — — — — — — — — — √ 8
UMPS — — — — — — — — — — 8
HDAC1 √ √ — — — — — — — — 8
NOTCH1 √ √ — — — — — — — — 8
UBC √ — — — — — — — — — 7
CAD — — — — — — — — — — 7
ABL1 √ √ — — — √ — — √ — 7
ACTC1 — — — — — — — — — — 7
TLR4 √ — √ — √ √ √ — √ — 7
SUM 23 11 9 6 9 16 9 7 22 15 —
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proposed by the original authors of the datasets is that there may
have been differences in pre-processing and normalizing the data
and in the selection procedure for biomarkers. Therefore, we
processed all datasets in the samemanner (Section 2) and devised
a simple method to generate a biomarker signature per dataset.
We correlated each gene to the desired phenotype and combined
the top 50 genes with the best correlation into a signature.
Supplementary Figure S4 shows the pairwise overlap between
these signatures. Moreover, again, there is hardly any overlap.

NetRank signatures are similar. To focus on the common
cancer characteristics, we employed a network-based approach
which added a new aspect to the biomarker selection process. It
combines two forms of information in ranking biomarkers: first,
the gene’s correlation to the target phenotype as introduced
above; second, the interactions between these genes (Section 2).

After running NetRank on a dataset, we define the top 50
genes with the highest NetRank score and p-value lower than 0.01
as NetRank signature for this dataset. Strong overlap was found
between signatures of the same cancer type (see the overlap of
breast cancer signatures in Figure 3 and Supplementary Figure
S5). Considerable overlap was noted even between different
cancer types (Supplementary Figure S6). We specify the 50
most overlapped biomarkers within each cancer as a signature
for that cancer. Supplementary Sheets S3 present the signatures
of 13 cancer types used in further analysis to propose a universal
cancer signature.

NetRank is an outstanding feature selection technique. For
each dataset, we created a feature selection set (70%), whichNetRank
uses, while 30% were kept unseen to serve as an evaluation set
(Figure 1). In the evaluation process, to avoid over-optimization of
the outcome prediction with the signatures, we used a linear
dimension reduction technique (PCA) instead of more complex
non-linear methods such as machine learning with neural networks.
Using the independent evaluation set, we evaluated the features by
calculating the area under the ROC curve (AUC) of each dataset’s
best principal component in the PCA analysis. The closer the AUC
to 1, the better the predictive model.

Figure 5 and Supplementary Sheets S2 show that 74% of the
datasets were classified with AUC better than 0.80. Thus,
NetRank serves as an outstanding feature selection method in
bringing biologically meaningful features without causing a
considerable drop in performance.

We compared the performance of the NetRank’s features with
those chosen by the standard correction method. Statistically, the
standard correlation features performed slightly better (78% of
the datasets having AUC better than 0.80 compared to 74% for
the NetRank features). Importantly, NetRank features were
highly overlapped and biologically relevant.

Compact and robust universal biomarkers signature. Given
the strong overlap between the 13 NetRank signatures illustrated
in Supplementary Figure S6, we asked whether it is possible to
combine individual NetRank signatures for each dataset into one
universal NetRank signature for all datasets. We took a consensus
approach. We counted how often each of our genes was selected
in any of the 13 NetRank signatures. We defined the universal
biomarker signature as the top 50 genes, which appear most
frequently in any NetRank signature. These 50 biomarkers are

illustrated in Figure 4. Except for pancreatic and ovarian cancer,
they were associated with all types of cancer.

With 50 genes, the universal signature is compact, which leaves
the question of whether it is robust. The biomarkers in the universal
signature are special. Due to the network-based approach, they
comprise central and well-connected genes in the protein
interaction network. They emerged from a consensus method
and should therefore be widely applicable. To assess robustness,
we had to evaluate the predictive power of the universal signature
and define a baseline as a comparison. As a baseline, we selected the
standard correlation signature and the NetRank signature. Since
both are optimized for a dataset, we expect the universal signature to
perform less well than these two signatures.

We applied dimension reduction to the evaluation sets (30%)
using the 50 features of the universal biomarker signature. Then
we evaluated again by calculating the area under the ROC curve
(AUC). Given that biomarkers such as CA19-9, which is widely
used in pancreas cancer diagnosis, achieve 70–80%, we consider
an AUC of 0.80 success.

Overall, we found that the correlation signature has this
successful performance for 78% of datasets, the NetRank
signatures for 74%, and the universal signature for 66% (Figure 5
and Supplementary Sheets S2). A closer inspection reveals that
predicting survival time, disease grades, and progression was more
difficult than distinguishing cancer from control. Most of the cases
that have AUC below 0.80 were for these phenotypes (Figure 5). In
contrast, cancer versus non-cancer can be very well separated.

Overall, all three approaches produce satisfactory statistical
results for the majority of datasets. The key difference resides in
the number of different genes that are necessary. Across all 105
datasets, the correlation signatures consist of 3,812 different
genes, which is close to the 4,343 genes proposed in total by
the authors of the datasets. For each test, we used 50 of them that
are optimized for that dataset. In contrast, the union of all 105
NetRank signatures has already a reduced size of 1,770 genes, and
by definition, the universal signature comprises only 50 genes.
Therefore, the universal signature is a compact condensation of
the key genes’ performant across all data.

The universal biomarker signature relates to commercially
available signatures. First, the protein-protein interactions between
these biomarkers indicate their high connectivity and possible
functional interaction in biological processes (Supplementary
Figure S7). We compared our universal signature with currently
used tumor signatures as well. We found three genes (PLK1, TOP2A,
RAD51) are in common with Prolaris prostate cancer signature
(Crawford et al., 2014), two genes (BCL2 and GAPDH) with the
breast cancer signature Oncotype Dx (Paik et al., 2004), other two
genes (TP53, PTEN) with ColoNext (Colon Cancer Genetic Testing,
2021), one gene (GMPS) in common with the breast cancer signature
Mammaprint (van ’t Veer et al., 2002), and finally one gene (BCL2)
with the Prosigna breast cancer test PAM50 (Parker et al., 2009).

The universal biomarker signature recovers known cancer
hallmark genes. It is interpretable in the sense that it connects
well to the hallmarks of cancer, although this information was not
used to generate the universal signature. To assess this
connection, we used the Cancer Hallmarks Genes (CHG)
database designed by Zhang et al. (Zhang et al., 2020), which
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comprises 2,940 genes and their association to one or more
hallmarks. We searched the 50 genes in the universal signature
and found that 31 are listed in the hallmarks database (Table 1).
From the perspective of hallmarks, at least six genes in the
universal signature represented each of the ten hallmarks. The
most strongly represented hallmarks were “sustaining
proliferative signaling” (23 genes), “resisting cell death” (22
genes), and “activating invasion and metastasis.” (16 genes).
At the level of individual biomarkers, we found the five
biomarkers TGFβ1, MAPK13, TP53, MAPK3, and NRAS in at
least seven hallmarks and at least eight cancer types. They play
well-defined roles in particular cancers such as breast, liver, lung,
melanoma (Zarzynska, 2014; Cicenas et al., 2017; Silwal-Pandit
et al., 2017; Afrăsânie et al., 2019; Lee et al., 2020; Stolfi et al.,
2020). BCL2, as another example. Its gene rearrangements are
used for diagnosing and planning Lymphomas and Leukemias
(Targeted Cancer Therapies Fact Sheet—National Cancer
Institute, 2021). In our analysis, BCL2 was found in nine
cancers and involved in five hallmarks. Furthermore,
considering hallmark types and numbers, MAPK3 and NRAS
showed the same profile, and they were involved in 9 out of 10
cancer hallmarks. We have provided degree and betweenness
centrality information of the genes of universal signature in
different hallmark networks in Supplementary Table S2.

While 31 genes in the universal signature are linked to the
hallmarks, 19 are not. We investigated the 19 further and found
that four of these 19 genes are cancer drivers. It has been reported
that LRRK2 (leucine-rich repeat kinase 2) plays an adaptive role
between cancer and Parkinson’s disease and is defined as a new
target molecule for cancer therapy due to its increased kinase
activity (Warø and Aasly, 2018; Kim and Jeong, 2020). GMPS
guanine monophosphate synthetase is in the Mammaprint gene
list that composes known biomarkers for breast cancer defined by
Tian et al. (Tian et al., 2010). Other examples were TOP2A and
GART. TOP2A, as a DNA topology changer in various DNA
associated processes (i.e., replication, chromosome segregation,
recombination), is a well-known anti-cancer drug target. Almost
50% of chemotherapies include at least one of the TOP2A
inhibitors such as etoposide or doxorubicin (Nitiss, 2009).
GART gene is a trifunctional purine biosynthetic protein
adenosine-3, a part of nucleotide metabolism, specifically
purine metabolism. Cong et al. associated GART with poor
prognosis in hepatocellular carcinoma and reported it as a
liver cancer cell proliferation promoter (Cong et al., 2014).

The immediate and exciting result of the paper is that the use of
network information helps select biomarkers, which represent the
hallmarks of cancer, although this informationwas not explicitly used
in the generation of the biomarkers. Overall, we have demonstrated
that NetRank, which combines interaction, expression, and
phenotype data, can generate robust, compact, and interpretable
biomarkers signatures for cancer outcome prediction.

The universal biomarker signature picks cancer drivers and
drug targets. Evaluating the genes in the universal signature using the
Cancer Genome Atlas (TCGA) reveals that most have degrees of
somatic mutations in different cancers. We found simple somatic
mutation frequencies between 0.3% (TSPO) to 49.86% (TP53). In
addition, we found 14 genes (TP53, PTEN, NOTCH1, NRAS,

PDGFRB, ABL1, XPO1, HSP90AB1, PPARG, GMPS, JUN, CDK6,
BCL2, CDK4) that are also cancer driver genes. Driver genes are
defined as those genes that contain mutations that have been causally
implicated in cancer and explain how dysfunction of these genes
drives cancer) in the Cancer Gene Consensus database (Cancer Gene
Census). These results can be viewed in Supplementary Sheets S2.
Finally, some of our genes are already defined as drug targets for
some types of cancer. We found that most clinical trials, completed
or incomplete, targeted ABL1, BCL2, CDK1, CDK2, CDK5, FYN,
PDGFRB, PLK1, TOP2 for various types of leukemia.

DISCUSSION AND CONCLUSION

Biomarkers play a vital role in cancer diagnosis and treatment.
Composing suitable biomarker signatures is a complex problem as
it requires selecting a limited number of markers from a genome-
wide screen. Subsequently, many biomarker signatures reported in
the literature were context-specific and did not overlap. This is not
surprising as the pathways in different tissues are formed from
specific genes and proteins, and the author signatures were
introduced accordingly. In this work, we aimed to study shared
characteristics of different cancers, taking into account the shared
core functions of cancer in different organisms, whichwere defined as
hallmarks of cancer. The latter summarizes and groups these
characteristics in ten principles, namely: sustaining proliferative
signaling, evading growth suppressors, evading immune
destruction, enabling replicative immortality, tumor-promoting
inflammation, activating column and metastasis, inducing
angiogenesis, genome instability and mutation, resisting cell death,
reprogramming energy metabolism (Hanahan andWeinberg, 2011).

In this study, we addressed this imbalance and employed a
network-based method, NetRank, to identify robust biomarkers,
which perform across many cancer types and phenotypes. We
adapted a random surfer model, which incorporates gene
expression, large-scale interaction data, and phenotypic data
from the 105 datasets into a feature selection model applied to
the 105 datasets. The resulting biomarkers were aggregated and
focused on the most frequently selected ones. The result is a
universal biomarker signature of 50 genes, which is very compact
in comparison to the total of 4,343 distinct genes proposed in
signatures of the original data. Using PCA, the universal NetRank
signature showed very strong prediction performance across
nearly all cancer types except pancreas cancer and across all
phenotypes. Thus, this signature is compact, robust, and
performant, and it is linked to the hallmarks of cancer genes,
although this information was not incorporated in the model.
Over half of the genes in the NetRank signature are hallmark
genes. Furthermore, a large number are cancer driver genes with a
known mutation burden, and others are cancer drug targets.
Thus, the use of networks in phenotype prediction leads to
reliable, transferable, and interpretable biomarker signatures.

Pancreatic cancer and, to some extent, ovarian cancer are
exceptions as they have only a few shared biomarkers with the
other cancers. This is probably due to the complexity of the genetic
component of pancreatic cancer, which makes it not easily
explainable. It is widely accepted that other low penetrance genes
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play a role in pancreatic cancer (Milne et al., 2009; Klein and
Westenberger, 2012; Al-Fatlawi et al., 2021). When we looked
deeper into biomarker studies, including both pancreatic and
ovarian cancer, we realized that both pancreatic and ovarian
cancer are similar in terms of tissue structure, and both are
located in the endocrine system. It has been reported that the
biomarkers CA19-9 and CA125 are used to detect both cancer
types and that many studies have reported complexity in their
genetic components (Nolen and Lokshin, 2014). Unfortunately,
a satisfactory explanation for what makes these two organs so
special is still obscure (Ueland, 2017; Brezgyte et al., 2021).
However, there is an interesting study on this subject: In 2019,
Yeung and colleagues reported that both ovarian and pancreatic
cancer are surrounded by cancer-associated fibroblasts (CAF),
and CAF increases angiogenesis and metastasis in these cancers
by releasing the microfibril-associated protein 5 (MFAP5)
(Yeung et al., 2019). However, as can be seen, this protein is
not directly related to these two cancers, at least at the level of
the cellular transcriptome. This indicates that both ovarian and
pancreatic cancer are affected by microenvironmental factors
rather than intracellular factors. In this case, biomarker studies
related to these two cancer types need to be examined in terms of
microenvironmental factors also.

Regarding the data, our study includes the majority of human
data and a few mouse datasets. While including mouse datasets
does not significantly influence the study, it adds valuable
information and an indication of the study’s replicability.
Supplementary Sheets S2 shows that removing mouse
datasets has no notable influence on the results, as human
datasets mainly indicated the genes included in our universal
signature. For example, our best five genes: LRRK2, TGFB1,
TOP2A, GART, and IL6, were among the best 50 genes and
were significant in 16, 18, 31, 17, and 17 human datasets,
respectively, in comparison with only 4, 1, 3, 3, and 1 mouse
datasets.

This study builds on biomarker signatures discovered over the
last two decades from microarray data. This time period was
necessary to turn these signatures into commercial products used
in clinical practice. In the meantime, microarrays are superseded by
deep sequencing techniques. It is interesting to explore our approach
on RNA-Seq data. However, to date, microarray data is still much
more abundant than RNA-Seq data. As an estimate for the ratio of
microarray to RNA-Seq data, we queried PubMed for “microarray
cancer outcome prediction” and for “deep sequencing cancer
outcome prediction”. The former returned 19,000 papers, the
latter 3,000. The former spread out over the two decades with
1,500 papers per year and a recent decrease due to the advent of
RNA-Seq. The latter rises steeply peaking at 750 papers. In a few

years time, there will be sufficient RNA-Seq data to perform a similar
analysis on this type of data.

In summary, we have demonstrated that it is possible to compose
biomarker signatures that build on common principles of cancer and
subsequently perform well on many cancer types and prediction
tasks. This universal signature may serve as a starting point and as
one building block to develop highly optimised and precise
signatures for specific cancer types and outcome prediction tasks.
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