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Understanding the relationships between the rates and dynamics of current wave

forms under voltage clamp conditions is essential for understanding phenomena such

as state-dependence and use-dependence, which are fundamental for the action of

drugs used as anti-epileptics, anti-arrhythmics, and anesthetics. In the present study,

we mathematically analyze models of blocking mechanisms. In previous experimental

studies of potassium channels we have shown that the effect of local anesthetics can be

explained by binding to channels in the open state. We therefore here examine models

that describe the effect of a blocking drug that binds to a non-inactivating channel in its

open state. Such binding induces an inactivation-like current decay at higher potential

steps. The amplitude of the induced peak depends on voltage and concentration of

blocking drug. In the present study, using analytical methods, we (i) derive a criterion for

the existence of a peak in the open probability time evolution for a model with an arbitrary

number of closed states, (ii) derive formula for the relative height of the peak amplitude,

and (iii) determine the voltage dependence of the relative peak height. Two findings are

apparent: (1) the dissociation (unbinding) rate constant is important for the existence of a

peak in the current waveform, while the association (binding) rate constant is not, and (2)

for a peak to exist it suffices that the dissociation rate must be smaller than the absolute

value of all eigenvalues to the kinetic matrix describing the model.

Keywords: ion channel block, voltage-clamp, dissociation rate constant, peak current, Markov chainmodel, Monte

Carlo simulation

INTRODUCTION

Understanding the relationships between the rates and dynamics of current wave forms under
voltage clamp conditions is essential for understanding phenomena such as state-dependence
and use-dependence, which are fundamental for the action of drugs used as anti-epileptics, anti-
arrhythmics, and anesthetics. In the present study, we mathematically analyze models of open
state blocking mechanisms previously suggested for the local anesthetic bupivacaine action on Kv
channels (Longobardo et al., 2001; Nilsson et al., 2003, 2008).

The dynamics of ion channels are generally considered to be memory-less (i.e., they possess the
Markov property) and can be analyzed in terms of Markov chains (Colquhoun and Hawkes, 1995).
We, therefore, explore Markov-chain type kinetic schemes, describing open state dependent drug-
binding. Both analytical and Monte Carlo methods are used. We derive criteria for the existence
of an induced current peak and formula for the peak height and its dependence on membrane
potential. It should be noted that similar serial Markov chains can be used to describe a number
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of other pharmacological processes, such as competitive binding
of antagonists or agonists, and, consequently, insights from the
present analysis can also be of value in these cases.

Two findings are apparent from this study: (i) the dissociation
(unbinding) rate constant is important for the existence of a peak
in the current waveform, while the association (binding) rate
constant is not, and (ii) for a peak to exist it suffices that the
dissociation rate must be smaller than the absolute value of all
eigenvalues to the kinetic matrix describing the model.

That the criterion is independent of the association rate (as
long as it is greater than zero) has the implication that the
concentration of the local anesthetic does not influence the
existence of a peaked waveform under voltage clamp.

METHODS

All ion channels, either voltage-gated or ligand-gated, open and
close randomly, and an accurate explanation of their behavior
must, therefore, be of a probabilistic character (Colquhoun and
Hawkes, 1995; Johnston and Wu, 1995). In this work, we use
analytical and Monte Carlo methods to analyze Markov chain
models of ion channels, describing the probability of the channel
being in each state. We investigate the following three-state
Markov scheme using analytical methods

C
α

⇄

β

O
γ

⇄

δ

B (1)

where C, O, and B denote closed, open and blocked states,
respectively, where α, β , γ , and δ denote rate constants, and
where γ includes the concentration of the blocking drug. We
used the terms κ x L and λ for γ and δ, respectively. We also
analyze extended versions of Scheme 1, namely

C
mα

⇄

β

. . .⇄ C
α

⇄

mβ

O
γ

⇄

δ

B (2)

This extended kinetic scheme describes a channel system with m
equal and independent gates in accordance with the Hodgkin-
Huxley formalism for Kv channels (as first noted by Richard
Fitzhugh, 1961). With this notation, the number of states in the
scheme is n = m+ 2.

RESULTS

The Existence of a Current Peak during
Voltage Clamp: Analysing a Three-State
Scheme
Time-dependent effects of bupivacaine on different Kv channels
at + 60mV at different concentrations have been analyzed in
several studies, using voltage clamp technique (see Gonzalez
et al., 2001; Nilsson et al., 2003). As can be inferred from these
studies, a current peak can be observed at higher voltages. The
voltage dependence of this induced peak, however, has been
surprisingly little studied (but see Gonzalez et al., 2001).

We seek to find sufficient and necessary prerequisites for the
existence of such a peak. We will first derive this for a three-state
scheme, then use similar techniques to derive criteria for the four-
state scheme, and in the Appendix for an n-state scheme. The
techniques are generally those of dynamical systems and matrix
algebra, which we (Gouwens et al., 2010; Zeberg et al., 2010, 2015;
Sahlholm et al., 2016) and others (for an overview see Koch,
2004; Izhikevich, 2007) have used extensively for analyzing these
systems. The differential equation for Scheme 1 written in matrix
form is x′ = Ax where

x(t) =





C(t)
O(t)
B(t)



 A =





−α β 0
α − (β + γ ) δ

0 γ −δ



 (3)

with the general solution

x (t) = c1V1e
r1t + c2V2e

r1t + c3V3e
r3t (4)

and where Vi and r1 are the eigenvectors and eigenvalues of
the transition matrix A. ci are constants dependent on the
initial conditions. Experimentally, voltage clamp experiments are
typically done with a strongly negative potential as an initial
condition, meaning that all ion channels are in the (first) closed
state, i.e.,

x(0)=





1
0
0



 (5)

We will now use the Putzer algorithm to solve O (t). The
Putzer Algorithm is a method for analytically evaluating matrix
exponentials using only eigenvalues and components in the
solution of a relatively simple linear system (Putzer, 1966). This
approach might seem a little bit cumbersome for solving the
three-state scheme but will later enable us to solve not just the
four-state model but also the general case (complete proof given
in the Appendix). By the Putzer algorithm, the solution to x′(t) =
Ax(t), where A is a 3× 3 matrix, can be written on the form

x (t) =
(

p1(t)M1 + p2(t)M2 + p3(t)M3

)

x(0) (6)

Where pi(t) andM1 are defined as follows. Define 3× 3 matrices
M1,M2, andM3 by the formula

M1 = I Mi = (A− ri−1I)Mi−1 i = 2, 3 (7)

and let the functions p1(t), p2(t), and p3(t) be given by solutions
to the differential system

p1
′(t) = rip1(t) p1 (0) = 1

p2
′ (t) = r2p2(t)+ p1(t) p2 (0) = 0

p3
′(t) = r3p3(t)+ p2 (t) p3 (0) = 0 (8)

Note that here the eigenvalues can be in any given order, and we
are not assuming that they are ordered in any particular way. We
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will now investigate p3. Solving the equation system above reveals
that

p3 (t) =
er1t

(r1 − r2) (r1 − r3)
+

er2t

(r2 − r1) (r2 − r3)

+
er3t

(r3 − r1) (r3 − r2)
(9)

Since er3t is only to be found in p3(t) we have that

c3V3e
r3t =

1

(r3 − r1) (r3 − r2)
M3x(0)e

r3t (10)

To get the pre-exponential factor c3V3 we write

M3x (0) = (A− r1I) (A− r2I) x (0)

= A (Ax (0)− r1x (0)− r1x (0))+ r1r2x (0)

= A





−α − r1 − r2
α

0



+





r1r2
0
0



 (11)

The result above will be a 3 × 1 vector. Since we are solving for
O (t), we are only interested in the second element of this vector.
After matrix multiplication, the pre-exponential factor to er3t in
the expression for O(t) is

α(−α − β − γ − r1 − r2)

(r3 − r1) (r3 − r2)
=

α(δ + r3)

(r3 − r1) (r3 − r2)
(12)

Since the sum of the eigenvalues of a matrix equals the trace, the
expression be further reduced as in Equation (12). One of the
eigenvalues is always zero so let r1 = 0, and assume without loss
of generality that r3 > r2. r3 is then the slowest decaying term
(note that all eigenvalues are non-positive). For some positive
value of t the following inequalities must hold

|c3V3| e
r3t > |c2V2| e

r2t (13)

why c3V3 will be the dominant term as t → ∞. Thus, a peak
will exist for O (t) if the slowest decaying term r3 has a positive
pre-exponential factor, i.e.,

α(δ + r3)

(r3 − r1) (r3 − r2)
> 0 (14)

By the assumption that r1 > r3 > r2 and that α is always positive
it follows that this is true exactly when δ + r3 < 0. Using Vieta’s
relationships in conjunction with the border condition, r3 = −δ

we can reduce δ + r3 < 0 to a simpler form. This is due to
the fact that there are three equations of the Vieta relationships
for det (A− rI) = 0 if A is a 3 × 3 matrix. In conjunction with
r3 = −δ we have four equations and three eigenvalues, why it is
possible to fully eliminate the eigenvalues. Some straight forward
algebra reveals that

δ + r3 < 0 ⇔ α > δ (15)

Thus a sufficient condition for a peak to exists in a three-state
scheme is that the opening rate constant α must be greater than
the dissociation rate constant δ.

The Existence of a Current Peak during
Voltage Clamp for a Four-State and n-State
Scheme
For the four-state model the solution to p4(t) is obtained by
solving the natural extended version of Equation (8), and by the
Putzer algorithm we have

c4V4e
r4t =

1

(r4 − r1) (r4 − r2) (r4 − r3)
M4x(0)e

r4t (16)

To get the pre-exponential factor c4V4 we write

M4x (0) = (A− r1I) (A− r2I) (A− r3I) x (0)

= A2









−2α − r1 − r2 − r3
2α
0
0









+ U (17)

where U is some vector with a zero on the third row (due to
the tri-diagonal nature of the matrix A, the number of non-
zero diagonals increase with two for each multiplication and we
can omit lower terms than A2). After matrix multiplication of
Equation (17) and taking the third element of the resulting vector
we obtain the pre-exponential factor to er4t in the expression for
O(t),

2α2(−3α − 3β − γ − r1 − r2 − r3)

(r4 − r1) (r4 − r2) (r4 − r3)

=
2α2(δ + r4)

(r4 − r1) (r4 − r2) (r4 − r3)
(18)

Again, the expression is reduced using the relationship between
the sum of eigenvalues and the trace. Nowwe can assumewithout
loss of generality that r4 > r3 > r2 and r1 = 0. As for the
three-state model, a peak will exist in the waveform if the pre-
exponential factor to the slowest decaying eigenvalue is positive.
This is true for a model with an arbitrary number of closed
states, since all eigenvalues are real. Then by a sign analysis, the
pre-exponential factor to er4t is positive if, and only if,

δ + r4 < 0 (19)

Again using the Vieta’s relationships this can be reduced to

δ + r4 < 0 ⇔ α > δ
3+ (β/α)+

√

1+ 6 (β/α)+ (β/α)2

4
(20)

For the interested reader the solution to the general case is given
in the Appendix. The technique used in the Appendix is the
same as for the three and four state model. It transpires that the
pre-exponential factor to ernt is

(n− 2)!αn−2(δ + rn)

(rn − r1) (rn − r2) . . . (rn − rn−1)
(21)
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Again, let rn > rn−1 > · · · > r2 and let r1 = 0. A similar
sign analysis can be performed, yielding that the pre-exponential
factor to the slowest decaying eigenvalue is positive exactly when

δ + rn < 0 (22)

If β = 0 this criterion is reduced to α > δ . We observe that
the influence of β seems to increase with the number of closed
states, whereas γ is not involved in the criterion for a peak. The
appendix includes a proof that the association rate γ does not
affect the criterion for a peak. Figure 1 shows regions associated
with the existence of a peak in the β − δ plane, scaled for α.

Peak Height as a Function of the Rate
Constants
To analyze the role of the rate constants in the height of the peak,
we introduce a factor ψ such that the peak probability Op can be
expressed as

Op = (1+ ψ) Oss (23)

where ψ is dependent on the rate constants and oss is the steady
state open probability in the presence of a blocking agent (see
Nilsson et al., 2003). For the three-state model the peak will have
its maximum at time

tp =
1

r3 − r2
ln

(

δ + r2
δ + r3

)

(24)

This formula was obtained by taking the time derivate of
the solution for O(t) (see Appendix, A18) and equating this
expression with zero. Taking O(tp) yields

ψ =

γ (δ − α)

(

r2+δ
r3+δ

)r2/(r3−r2)

δ(r3 + δ)
(25)

Using our analytical solution it is possible to analyze how extreme
values of the rate constants affect the peak height. Extreme values
are shown in Table 1.

In contrast to the criterion for the existence of a peak current,
which involves only two rate constants (i.e., α and δ), the peak
height depends on all rate constants of Equation (1) (i.e., α, β,

γ and δ). To facilitate the use of the derived relationships, we
can choose simplifying conditions for the system. Thus, assume
that we investigate the blocking effect at high voltage steps (i.e.,
assuming β = 0 and α > γ + δ) and at a concentration equal
to the Kd-value of the blocking agent (i.e., assuming γ = δ).
Algebraically, the following formula is obtained

ψ =

(α

δ
− 1

)1/(1−α/2δ)
(26)

Peak Height as a Function of the Voltage
To analyze how the voltage affects the amplitude of the induced
peak we used Monte Carlo simulations. Let α and β be described
according to Eyring-Polanyi rate theory (Evans and Polanyi,
1935; Eyring, 1935) as

α = ke(V−V1/2)/s (27)

β = ke−(V−V1/2)/s (28)

where k is the pre-exponential factor (or the characteristic
frequency factor), V1/2 is the potential for which α = β and s is
a slope factor describing the influence of the potential. Again, let
the concentration of blocking agent be at Kd-value (i.e., γ = δ).

Using Monte Carlo simulations in conjunction with analytical
tools, we found three different regions in the δ−V plane: (i) One
area, which we call A1, in which there is no open probability
peak; (ii) a second area, A2, in which there is a peak and the
relative amplitude (peak open probability relative to steady state
with no blocking agent) decreases with potential and (iii) a third
area, A3, in which there is a peak, but the relative amplitude
increases with potential, approaching a value of one. Area A1

TABLE 1 | Limits for ψ for various extremes.

i= ∞ i = 0

lim
α→i

ψ (α) γ
δ

0

lim
β→i

ψ (β) 0



















γ
δ

(

γ
α−δ

)

γ+δ
α−γ−δ

α ≤ γ + δ

γ
δ

(

α−δ
γ

)−
γ+δ
α−γ−δ

α ≥ γ + δ

lim
γ→i

ψ (γ ) α
δ
− 1 0

lim
δ→i

ψ (δ) 0 ∞

FIGURE 1 | Regions associated with a peak in the β − δ plane (α = 1). The existence of a peak was independent of the value of γ , as long as γ > 0, for all cases.

(A) One closed state (α > δ). (B) Two closed states. (C) Three closed states. (D) Four closed states.
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FIGURE 2 | Topologically equivalent regions in the rate-potential plane. The

three-state model (Equation 1) at Kd-concentration of the blocking drug (i.e.,

γ = δ). A1 represents an area in which there is no open probability peak and

the steady state value decreases with potential approaching a value of a half,

A2 represents an area in which there is a peak and the relative amplitude

decreases with potential and A3 represents an area in which there is a peak,

but the relative amplitude increases with potential, approaching a value of one.

was defined using the criteria obtained above, i.e. α > δ. The
border between A2 and A3 was obtained in the following way.
Using custom written software in Mathematica 11.0 (Wolfram
Inc.), we evenly assigned values using the built-in function
RandomReal in parameter space of the right half of Figure 2
and investigated the voltage dependence (see Equations 26–28).
The border between A2 and A3 were drawn using the built-
in function ContourPlot. Figure 2 shows the three topological
regions.

The findings in Figure 2 are to some extent congruent with
the findings of the relatively few experimental investigations
of local anesthetic effects on non-inactivating Kv channels (see
e.g. the effect of bupivacaine on Kv1.5 channels, described
by Gonzalez et al. (2001), where the relative peak amplitude
goes from a potential region where there is no peak, i.e.,
corresponding to A1, and to a potential region where the relative
peak increases with potential, i.e., corresponding to A3). Clearly
this issue requires further experimental investigations to be
clarified.

DISCUSSION

The present analysis was undertaken to derive general principles
of kinetics from the models of binding mechanisms. In previous
studies, we showed that the action of the local anesthetic
bupivacaine on a non-inactivating potassium channel could be
described byMarkov chainmodels, assuming that binding occurs
exclusively to channels in open state (Nilsson et al., 2003, 2008).

In the present study, we mathematically analyzed Markov
models, with special reference to the question of the existence of a
peak and its voltage dependence. We (i) derived the criterion for
the existence of a peak in the open probability time evolution for
an open-state binding kinetic scheme, comprising one and two
closed states (Schemes 1 and 2.1), (ii) derived the criterion for a
peak in an open-state kinetic scheme with an arbitrary number of
closed states, (iii) derived formula for the relative height and the
block of the peak amplitude for Scheme 1, and (iv) determined
(by Monte Carlo simulations) the voltage dependence of the
relative peak block for Scheme 1.

Contemplating these findings, we note the important role
that the dissociation rate constant plays for the open probability
peak features. Intuitively, one would have expected that the
on rate (γ) would be the key player in the existence of a
peak. Nevertheless, we find that the association (binding) rate
constant is the only rate constant that does not influence the
existence of a peak. In a three-state model (Scheme 1), the
existence of a peak is given by the simple relation α > δ

(i.e., the activation rate constant is greater than the dissociation
(unbinding) rate constant). If β = 0 (the deactivation rate
constant), this relationship holds for models with a higher
number of closed states. Generally, a peak exists if−rn > δ where
rn is the eigenvalues closest to zero (i.e. the slowest decaying
term).

Additionally, we could determine a topological region in the
dissociation rate–voltage plane for Scheme 1 that is characterized
by a decreasing block of the induced peak with potential.

Using analytical and Markov chain models that describe the
action of blocking drugs on ion channels, we could derive general
principles of linear three- and higher-state schemes. Thus, we
could show that the existence of a current peak for open state
binding schemesmainly depends on the dissociation (unbinding)
rate constant δ, the criterion for a scheme with one closed state
(Scheme 1) being α > δ (i.e., the activation rate constant should
be greater than the dissociation (unbinding) rate constant). We
could also show that different peak amplitude-voltage relations
characterize specific topological regions of the dissociation rate–
voltage plane for Scheme 1, a finding that still awaits experimental
corroboration.

Understanding the relationships between the rates and
the dynamics of the block of ion channels is essential for
understanding how more drugs modulate neuronal firing
patterns and thus how they function in pain, epilepsy, arrhythmia
and anesthesia; these insights are crucial when developing anti-
epileptic, anti-arrhythmic and anesthetic drugs. Furthermore, it
should be noted that many pharmacological processes other than
drug binding to ion channels are analysable in terms of serial
Markov chains, and thus, these pharmacological processes are
constrained by the mathematical expression derived from the
present study.
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