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Abstract
Vascular dementia (VaD) is the second most common form of dementia in the United States

and is characterized as a cerebral vessel vascular disease that leads to ischemic episodes.

Whereas the relationship between caspase-cleaved tau and neurofibrillary tangles (NFTs)

in Alzheimer’s disease (AD) has been previously described, whether caspase activation

and cleavage of tau occurs in VaD is presently unknown. To investigate a potential role for

caspase-cleaved tau in VaD, we analyzed seven confirmed cases of VaD by immunohis-

tochemistry utilizing a well-characterized antibody that specifically detects caspase-cleaved

tau truncated at Asp421. Application of this antibody (TauC3) revealed consistent labeling

within NFTs, dystrophic neurites within plaque-rich regions and corpora amylacea (CA) in

the human VaD brain. Labeling of CA by the TauC3 antibody was widespread throughout

the hippocampus proper, was significantly higher compared to age matched controls, and

co-localized with ubiquitin. Staining of the TauC3 antibody co-localized with MC-1, AT8,

and PHF-1 within NFTs. Quantitative analysis indicated that roughly 90% of PHF-1-labeled

NFTs contained caspase-cleaved tau. In addition, we documented the presence of active

caspase-3 within plaques, blood vessels and pretangle neurons that co-localized with

TauC3. Collectively, these data support a role for the activation of caspase-3 and proteolytic

cleavage of TauC3 in VaD providing further support for the involvement of this family of pro-

teases in NFT pathology.

Introduction
Vascular dementia (VaD) is the second leading cause of dementia in the USA, only trailing Alz-
heimer’s disease (AD) and accounting for 15–20 percent of all types of dementia [1]. It has
been estimated that 25–80% of all dementia cases show mixed pathologies between VaD and
AD, therefore, contributing to the difficulty in diagnosing pure VaD [2]. An additional con-
founding factor in diagnosing VaD is the lack of widely accepted neuropathological criteria for
VaD [3]. VaD is classified as a cerebral vessel vascular disease characterized by large and small

PLOSONE | DOI:10.1371/journal.pone.0132637 July 10, 2015 1 / 19

a11111

OPEN ACCESS

Citation: Day RJ, Mason MJ, Thomas C, Poon WW,
Rohn TT (2015) Caspase-Cleaved Tau Co-Localizes
with Early Tangle Markers in the Human Vascular
Dementia Brain. PLoS ONE 10(7): e0132637.
doi:10.1371/journal.pone.0132637

Editor: Hemant K. Paudel, McGill University
Department of Neurology and Neurosurgery,
CANADA

Received: October 17, 2014

Accepted: June 16, 2015

Published: July 10, 2015

Copyright: © 2015 Day et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Research reported in this manuscript was
supported by National Institutes of Health Grant
1R15AG042781-01A1 to TTR and AG016573 to
WWP. http://grants.nih.gov/grants/oer.htm. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0132637&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://grants.nih.gov/grants/oer.htm


infarcts, lacunes, hippocampal sclerosis, cerebral amyloid angiopathy (CAA) and white matter
lesions [4]. The cognitive decline that is associated with VaD is believed to be the result of cere-
bral ischemia secondarily to the vascular changes. Similarly to what is found in AD, amyloid
plaques, neurofibrillary pathology, and cholinergic deficits have also been documented in VaD,
albeit to a lower degree than what has been found in AD [5].

Behaviorally, patients with VaD show loss in executive functions as an initial symptom,
while in patients diagnosed with AD memory loss is often the earliest known symptom [6].
Additional symptoms of VaD include confusion, language deficits, restlessness and agitation,
gait disturbances and depression [7]. Risk factors for VaD are predominantly cardiovascular
and include, hypertension [8,9], hyperlipidemia [10], atherosclerosis [11], and diabetes [12–
14]. Additionally, stroke is an important risk factor for dementia [15,16] with lacunar stroke
the most common stroke subtype associated with VaD [17].

Similar to AD, neurofibrillary tangles (NFTs) are a common post-mortem finding in the
human VaD brain but are usually present in lower numbers than in AD [5]. In AD, NFTs are
composed of hyperphosphorylated forms of tau that accumulate within the entorhinal cortex
and CA1 subfield of the hippocampus [18–20]. Besides hyperphosphorylation, post-transla-
tional modifications of tau, including proteolysis have been shown to be an important step in
the evolution of NFTs. In this regard, numerous studies now support caspase cleavage of tau as
an important mechanism contributing to the evolution of NFTs [21,22]. Thus, caspase activa-
tion and the cleavage of tau after Asp421 is an early event preceding and possibly contributing
to NFT formation [23–26].

To date, whether caspase activation and cleavage of tau occurs in VaD is not known despite
the fact that ischemia is a well-known activator of apoptotic pathways and a major pathological
finding in VaD [4]. Therefore, the purpose of the current study was to investigate the role of
caspase-cleaved tau in post-mortem human VaD brain sections using a well-characterized anti-
body that detects caspase-cleaved tau truncated at Asp421 [24]. Our findings are supportive of a
role for the activation of caspase-3 and cleavage of tau in VaD, providing further support for
the involvement of this family of proteases in NFT pathology.

Materials and Methods

Immunohistochemistry
Autopsy brain tissue from seven neuropathologically confirmed VaD cases were studied. Case
demographics are presented in Table 1. Fixed hippocampal tissue sections used in this study
were provided by the Institute for Memory Impairments and Neurological Disorders at the
University of California, Irvine. Approval from Boise State University Institutional Review
Board was not obtained due to the exemption granted that all tissue sections were fixed and
received from University of California, Irvine. Brain tissue obtained from University of Califor-
nia, Irvine were anonymized and never identified except by case number. Tissue donors or
their next of kin provided informed signed consents to the Institute for Memory Impairments
and Neurological Disorders for the use of their tissues in research (IRB 2014–1526). Free-float-
ing 40 μm-thick sections were used for immunohistochemical studies as previously described
[27]. For bright-field labeling, sections were washed with 0.1 M Tris-buffered saline (TBS), pH
7.4, and then pretreated with 3% hydrogen peroxide in 10% methanol to block endogenous
peroxidase activity. Sections were subsequently washed in TBS with 0.1% Triton X-100 (TBS-
A) and then blocked for thirty minutes in TBS-A with 3% bovine serum albumin (TBS-B). Sec-
tions were further incubated overnight at room temperature with the TauC3 (mouse monoclo-
nal, 1:100). Following two washes with TBS-A and a wash in TBS-B, sections were incubated in
anti-rabbit or mouse biotinylated anti-IgG (1 hour) and then in avidin biotin complex (1 hour)
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(ABC, Elite Immunoperoxidase, Vector Laboratories, Burlingame, CA, USA). The primary
antibody was visualized using brown DAB substrate (Vector Laboratories). The periodic acid-
schiff (PAS) staining system was purchased from Sigma-Aldrich (St. Louis, MO) and was
employed according to the manufacturer’s instruction.

Immunofluorescence Microscopy
Primary antibodies utilized included the caspase-3-cleaved antibody (rabbit polyclonal, 1:50),
PHF-1 (mouse monoclonal, 1:1,000), anti-Aβ (clone 6E10) antibody (mouse, 1:400) and
TauC3 (mouse monoclonal, 1:100). The TauC3 antibody was purchased from EMDMillipore
(Billerica, MA), while PHF-1 was a generous gift from Dr. Peter Davies (Albert Einstein Col-
lege of Medicine, Bronx, NY). The anti-AβmAb 1560 (clone 6E10) was purchased from Cov-
ance (Dedham, MA). The cleaved caspase-3 (Asp175) antibody was purchased from Cell
Signaling (Danvers, MA). The AT8, Tau antibody (HT7) and ubiquitin monoclonal antibodies
were purchased from Pierce, ThermoFisher Scientific Inc. (Waltham, MA). With the exception
of anti-AβmAb 1560 (see below), no antigen retrieval methods were employed. For double-
label immunofluorescence co-localization studies, experiments were initiated by incubating in
primary antibody overnight followed by application of the ABC, Elite Immunoperoxidase kit
on day 2 (Vector Laboratories, Burlingame, CA, USA). In this case, instead of completing the
staining use DAB substrate, we employed Alex fluor 488-labeled tyramide (green, Ex/
Em = 495/519) that was purchased as part of the TSA kit #12 (Life technologies, Green Island,
NY). Following labeling with the primary antibody, sections were washed 3X in Tris buffer fol-
lowed by incubations in Tris A (15 minutes) and Tris B (30 minutes). Sections were then incu-
bated with the second primary antibody overnight at room temperature. On day 3, sections
were incubated with secondary biotinylated-SP (long spacer) AffiniPure goat anti-mouse or
rabbit IgG for 1 hour (Jackson Immuno Research Labs (West Grove, PA). This was followed by
incubation in streptavidin Alex Fluor 555 conjugate for 1 hour (Life technologies, Green Island,
NY). Following 3X washes in Tris buffer, sections were mounted and cover slipped using Pro-
Long Gold Antifade with DAPI (Life technologies). To determine if cross-reactivity to reagents
was a factor in double-labeling experiments, experiments were replicated with the antibodies in
reverse. To visualize beta-amyloid staining, sections were pretreated for 5 minutes in 95% for-
mic acid. To assess apoptosis, the Apoptag peroxidase kit was employed according to the man-
ufacturer’s instructions (EMDMillipore, Billerica, MA).

Table 1. Case Demographics. PMI, postmortem interval in hours; NPD, neuropathological diagnosis, ND, not determined.

Case Age Sex PMI NPD Braak and Braak Plaque Stage

1 83 M 3.75 VaD Stage 1 Stage A

2 75 F 10.5 VaD Stage 2 None

3 83 M 12.4 VaD Stage 3 None

4 74 M 2.6 VaD Stage 2 Stage A

5 73 M 4.3 VaD Stage 0 None

6 88 M 9.9 VaD ND Stage A

7 85 F 3.4 VaD Stage 3 Stage B

8 75 F 2.75 Normal Stage 2 None

9 78 M 6.00 Normal ND None

10 92 F 4.25 Normal Stage 0 None

11 69 M 6.60 Normal Stage 0 None

doi:10.1371/journal.pone.0132637.t001
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An Olympus BX60 microscope with fluorescence capability equipped with a MagnaFire SP
software system for photomicrography was employed for microscopic observation and photo-
micrography of the DAB-labeled and fluorescent sections. The fluorescent molecules were
excited with a 100-Wmercury lamp. Fluorescent-labeled molecules were detected using a filter
set having a 460–500-nm wavelength band pass excitation filter, a 505-nm dichroic beam split-
ter, and a 510–560-nm band pass emission filter.

Confocal microscopy
For confocal immunofluorescence imaging, the primary antibodies were visualized with sec-
ondary antibodies tagged with either Alexa Fluor 488 or Alexa Fluor 555 (Invitrogen, Carlsbad,
CA). Images were taken with a Zeiss LSM 510 Meta system combined with the Zeiss Axiovert
Observer Z1 inverted microscope and ZEN 2009 imaging software (Carl Zeiss, Inc., Thorn-
wood, NY). Confocal Z-stack and single plane images were acquired with an Argon (488 nm)
and a HeNe (543 nm) laser source. Z-stacks images were acquired using a 20x Plan-Apochro-
mat (NA 0.8) objective, emission band passes of 505–550 nm for the detection of the TauC3
(green channel, Alexa Fluor 488) and 550–600 nm for detection of PHF-1 (red channel, Alexa
Fluor 555). All images displayed are 2-D, maximal intensity projections generated acquired
Z-stacks. Single plane images were acquired with a 63x Plan-Apochromat oil-immersion objec-
tive (NA 1.4) with emission long pass of 505 nm for the detection of the TauC3 antibody
(green channel, Alexa Fluor 488) and 550–600 nm for the detection of PHF-1 (red channel,
Alexa Fluor 555).

Western blot analysis
Frozen tissue from either frontal cortex or cerebellum was homogenized in TPER buffer (Ther-
moFisher) and centrifuged (18,000 x g, 10 min). The soluble fraction was removed and protein
concentration was determined by the BCA method (Pierce). For each sample, 3 μg of protein
were separated by SDS-PAGE (TGX gels, BIO-RAD), transferred to nitrocellulose, and probed
with a monoclonal antibody to caspase-cleaved tau.

Statistical analysis
To determine the percent co-localization, a quantitative analysis was performed as described
previously [27] by taking 20X immunofluorescence, overlapping images from three different
fields in area CA1 in four separate VaD cases. Capturing was accomplished by using a 2.5x
photo eyepiece, and a Sony high resolution CCD video camera (XC-77). For example, to deter-
mine the percent co-localization between TauC3 and PHF-1, photographs were analyzed by
counting the number of TauC3, PHF-1-positive NFTs alone per 20X field for each case, and
the number of cells labeled with both PHF-1 and TauC3. Data are representative of the average
number (±S.D.) of each antibody alone or co-localized with both antibodies in each 20X field
(3 fields total for 4 different cases). Statistical differences in this study were determined using
Student’s two-tailed T-test employing Microsoft Office Excel. To determine any possible corre-
lations between the various groups, Pearson’s coefficients were determined using Microsoft
Office Excel.

Results

Caspase-cleaved tau immunoreactive pathology
To determine if caspase-cleavage of tau can be detected in VaD, an immunohistochemical
study utilizing the TauC3 antibody was performed utilizing fixed hippocampal brain sections
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from seven VaD cases. Case demographics for the VaD cases used in this study are presented
in Table 1. As an initial step, we screened all seven cases for TauC3 immunoreactivity using
bright-field microscopy. The TauC3 antibody reacts with caspase cleaved tau truncated at
Asp421 [24]. This antibody shows no reactivity with full-length tau or other tau C-terminal
truncations and is specific for NFTs, and caspase-cleaved tau within neuritic plaques and neu-
ropil threads [28]. Representative staining is depicted in Fig 1 indicating consistent labeling of
TauC3 within NFTs (Fig 1A and 1B, arrow) as well as within neuritic plaques (Fig 1B, arrow-
head) of the VaD brain. To determine any possible correlation of TauC3 labeling with NFTs,
we quantified the number of TauC3-positive tangles in 6/7 VaD cases in which the Braak &
Braak stage was known (Table 1). The results indicated a positive correlation between these
two variables (R2 = .070) (Fig 1C).

To confirm biochemically that the TauC3 antibody can detect caspase-cleaved tau truncated
at Asp421, Western blot analysis was performed. In this case we compared two different areas,
frontal cortex and cerebellum utilizing four different VaD cases. As shown in Fig 1, a band was
observed in all four cases, however, the intensity of the bands appeared stronger in frontal cor-
tex extracts as compared to cerebellum. Because beta-amyloid is thought to be a key initiator in
the activation of apoptotic pathways leading to the caspase-cleavage of tau [22], we also com-
pared two cases that pathologically were determined to have a significant beta-amyloid load
(Stage A) versus two cases that had minimal beta-amyloid deposition (See Table 1). In this case
the band corresponding to caspase-cleaved tau was more robust in those VaD cases with
greater beta-amyloid loads (compare lanes 1 and 2 versus 3 and 4, Fig 1D, top panel). As a
control, samples were also blotted with HT7, an antibody that detects full-length tau. In this
case, total tau appeared to be consistently expressed in each brain region (Fig 1D, bottom
panel).

In addition to the labeling of NFTs, application of the TauC3 antibody also revealed staining
of numerous round translucent structures (Fig 1E and 1F) within the dentate gyrus of the hip-
pocampus. In this regard, strong immunolabeling with the TauC3 antibody was observed in all
seven cases.

Identification of apparent corpora amylacea in VaD
Bright-field staining utilizing the TauC3 antibody consistently labeled the presence of numer-
ous round structures that were ring-like in appearance in the dentate gyrus (Fig 2A). To deter-
mine if labeling within these structures was specific to caspase-cleaved tau, similar experiments
were performed utilizing the anti-tau antibody HT7. Although this antibody labeled numerous
neurons in the dentate gyrus region of VaD cases, there was a complete lack of staining within
these round structures (Fig 2B). In addition, in age-matched control cases, these structures
were only infrequently observed following application of the TauC3 antibody (Fig 2C). Quanti-
tative analysis of these structures in the hippocampus revealed a statistically significant differ-
ence in the number of these structures between VaD and age matched controls (Fig 2D). In an
attempt to identify these structures, immunofluorescence double labeling was undertaken. Ini-
tially double labeling was performed with the TauC3 antibody and the nuclear stain DAPI. Co-
localization was not observed (Fig 2E–2G), providing evidence that the spherical structures
were not nuclei. To determine if labeled TauC3 structures were apoptotic cells, double labeling
was assessed together with Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL). As indicated in Fig 2H–2J, co-localization was not observed providing evidence
that these found structures are not apoptotic structures. Based on the morphological appear-
ance of these spherical, translucent structures, we hypothesize they represent corpora
amylacea (CA).
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Fig 1. Caspase-cleaved tau in the human vascular dementia brain. (A): Representative labeling from a VaD case utilizing the TauC3 antibody illustrating
staining in the hippocampus within apparent NFTs. (B):Representative staining in the hippocampus indicating labeling of TauC3 within neuritic plaques
(arrowhead), as well as apparent NFTs (arrow). (C):Correlation of TauC3 labeling with Braak & Braak stage. For six VaD cases in which the Braak & Braak
stage was known, the number of TauC3-positive NFTs was counted three separate times, averaged and then plotted versus Braak & Braak stage. A positive
correlation (R2 = .070) was observed between these two variables. (D): Western blot analysis utilizing the TauC3 antibody was carried out utilizing brain
extracts from the frontal cortex (FCTX) or cerebellum (CBL) of four VaD cases. Lanes 1 (Case 6, Table 1) and 2 (Case 4, Table 1) are VaD cases that had
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Confirmation of TauC3 labeling within corpora amylacea
To confirm these TauC3-positive structures were CA, we stained sections with PAS, a well
known specific marker for CA [29]. Labeling of CA with PAS was evident within the same
region, the dentate gyrus as for what we observed with TauC3 (arrows, Fig 3A). Additional
experiments were undertaken to assess whether these structures stained positive for ubiquitin,
another known marker for CA [30]. Application of an anti-ubiquitin antibody revealed an
identical staining pattern as compared to TauC3 (Fig 3B) and this same anti-ubiquitin antibody
strongly co-localized with TauC3 following double-label immunofluorescence studies (Fig 3C
and 3D). Taken together, Figs 2 and 3 supported the presence of truncated tau within CA of
the human VaD brain.

Co-localization of caspase-cleaved tau within NFTs
To determine the extent of co-localization of caspase-cleaved tau within NFTs, double-labeling
immunofluorescence experiments were carried out using PHF-1 as a general marker for NFTs.
Confocal analysis revealed strong co-localization with PHF-1 and TauC3 (Fig 4A–4C). A quan-
titative analysis indicated that approximately 90% of all identified PHF-1 labeled NFTs also
labeled with TauC3 (Fig 4E). Strong co-localization of PHF-1 with TauC3 was also observed
within CA located within the hippocampus proper of VaD cases (Fig 4F–4J).

Single-labeling of VaD cases revealed labeling of CA in close proximity
to NFTs
Experiments were also performed using only PHF-1 and bright-field microscopy. As shown in
Fig 5, single label immunohistochemical experiments with PHF-1 revealed typical labeling of
NFTs throughout the hippocampus (Fig 5A). In a subset of NFTs visualized at high magnifica-
tion, we noticed the appearance of circular structures of roughly the same size and shape as CA
in close proximity to PHF-1-labeled NFTs (arrows, B). That CA may be derived from a neuro-
nal source and represent intracellular inclusions was supported by the presence of labeled
structures of the same size and shape as CA within PHF-1 labeled neurons (arrow, Fig 5C). In
addition, we found numerous PHF-1-lableled CA within plaque-rich regions in the hippocam-
pus of the VaD brain (Fig 5D).

TauC3 co-localizes with early tangle markers in the VaD brain
Previous studies in AD have indicated that the C-terminal truncation of tau is an early event
that may facilitate NFT formation [23,24]. Therefore, to examine a similar possible relationship
in VaD, co-localization experiments were performed using MC-1 and AT8. MC-1 is a confor-
mational specific antibody that recognizes aberrant folded conformational changes in tau, one
of the earliest tau pathological events [31,32]. The antibody AT8 recognizes tau phosphorylated
at both serine 202 and threonine 205, which are the first residues to be hyperphosphorylated
[33,34]. PHF-1, in contrast, recognizes phosphorylation at serines 396 and 404 and reacts with
more mature hyperphosphorylated forms of tau found primarily within late-stage tangles [35].

Stage A plaque load, whereas lanes 3 (Case 3, Table 1) and 4 (Case 2, Table 1) were designated as having a plaque load of 0. A band at 50 kDa
corresponding to caspase-cleaved tau truncated at Asp421 was identified in the FCTX of all four VaD cases and two of four cases in the CBL. The bottom
panel of D depicts an identical experiment except transferred proteins were probed with HT7 (1:1,000), an antibody that detects total, full-length (FL) tau. (E
and F): Low (E) and high magnification (F) of representative labeling from a VaD case utilizing the TauC3 antibody illustrating staining in the dentate gyrus of
the hippocampus within numerous, round translucent structures. All scale bars represent 10 μm, except for Panel E, which represents 50 μm.

doi:10.1371/journal.pone.0132637.g001
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Fig 2. Identification of TauC3-labeled structures as apparent corpora amylacea in VaD. (A): Bright-field staining utilizing the TauC3 antibody in the
dentate gyrus of a representative VaD showing the presence of numerous round labeled structures that were ring-like in appearance (inset). (B):
Representative bright-field staining utilizing HT7, an anti-body to full-length Tau did not label these round structures although numerous neurons were
labeled. (C):Representative labeling of the TauC3 in an aged-matched control case indicating a relative paucity of labeling. Scale bars in Panels A-C
represent 50 μm. (D):Quantitative analysis of the number of round structures in the hippocampi indicated a significant difference between VaD cases (n = 7,
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As shown in Fig 6, double-label immunofluorescence studies utilizing either MC-1 (Fig 6A–6C)
or AT8 (Fig 6D–6F) led to strong co-localization with the TauC3 antibody. To assess the rela-
tionship between caspase-cleaved tau and full-length tau pathology, fluorescent double labeling
for TauC3 and the C-terminal-specific antibody Tau46 [36] was performed. The results
revealed a difference in subcellular localization between these two markers, suggesting that
both full-length tau (Tau46, green) and cleaved tau (TauC3, red) are present within the same
NFTs (Fig 6G–6I). Because the C-terminal epitope recognized by Tau46 has been shown to be
liberated by executioner caspases [23], these results confirm the specificity of the TauC3 anti-
body for the C-terminal cleavage site within tau.

It is noteworthy that although neither MC-1 nor AT8, labeled CA, application of the
T46 antibody immunolabeled a subset of CA that co-localized with the TauC3 antibody

±S.D.) and aged-matched controls (n = 4, ±S.D.), *p = .008. (E-G): Immunofluorescence double labeling in a representative VaD case utilizing TauC3 (red)
and the nuclear stain, DAPI (blue) indicated that the round circular structures labeled by TauC3 are not nuclei (merge, G). (H-J): Immunofluorescence double
labeling in a representative VaD case utilizing TauC3 (red) and TUNEL to label apoptotic cells (green) indicated that the round circular structures labeled by
TauC3 are not apoptotic cells by in large (merge, J). Scale bars in Panels E-J represent 10 μm.

doi:10.1371/journal.pone.0132637.g002

Fig 3. Confirmation of caspase-cleaved tau within corpora amylacea. (A): Representative bright field staining in a VaD hippocampal brain section
utilizing PAS that specifically labels CA in brain tissue. Labeled CA (magenta color, arrows) were in the vicinity of neurons in the granule cell layer of the
dentate gyrus that were counter-stained with hematoxylin. (B): Representative bright-field labeling of numerous CA in the hippocampus of a VaD case
utilizing an anti-ubiquitin, a specific marker for CA. (C and D): Representative immunofluorescence double-labeling in a VaD case at high magnification (C)
and low magnification (D) indicating the co-localization of ubiquitin (green) together with the TauC3 antibody (red) within CA. In Panel D, the nuclei were also
stained with nuclear stain, DAPI. All scale bars are equivalent to 10 μm except for Panel D, which represents 50 μm.

doi:10.1371/journal.pone.0132637.g003
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Fig 4. Co-localization of caspase-cleaved tau with NFTs in the VaD brain. (A-C): Representative images
from confocal immunofluorescence analysis in VaD utilizing TauC3 (green, A) and PHF-1 (red, B) with the
overlap image shown in Panel C. Notice the filamentous nature of staining of PHF-1 as compared to TauC3.
(D and E): Representative immunofluorescence double labeling (arrows, D) and quantification of NFTs (E)
double-labeled with TauC3 and PHF-1. Data show the number of NFTs labeled with TauC3 alone (blue bar),
PHF-1 alone (green bar) or NFTs that were labeled with both antibodies (red bar). NFTs were identified in a
20X field within hippocampi sections by immunofluorescence overlap microscopy (n = 3 fields for 4 different
VaD cases) ±S.E.M. *p = 5.46 x 10-7 between PHF-1 alone and TauC3 + PHF-1 and #p = 4.49 x 10-7
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(Fig 6J–6L). Representative staining of additional VaD cases with the antibodies in reverse
order gave similar results (S1 Fig).

Caspase-cleaved tau in neuropil threads within plaque-rich regions
In addition to labeling CA and NFTs, the TauC3 antibody appeared to label neuropil threads
within plaque rich regions in VaD cases (Fig 7A and 7B). To confirm the presence of caspase-
cleaved tau within neuropil threads of extracellular plaques, immunofluorescence double label-
ing was performed with the anti-Aβ (clone 6E10) antibody. As shown in Fig 7C–7E co localiza-
tion between TauC3 and 6E10 was evident within extracellular plaques. Unlike labeling within
NFTs, we did not observe consistent labeling of the TauC3 within neuropil threads within pla-
que-rich regions in all seven VaD cases examined (data not shown). Additional double-labeling
with anti-Aβ and TauC3 in another representative VaD case is shown in Fig 7F–7H.

Caspase-3 activation
In a final set of experiments we sought to determine whether active caspase-3 co-localizes with
TauC3 utilizing an antibody that specifically detects the active fragment of caspase-3 following
cleavage at aspartate 175 of the enzyme. We were unable to detect co-localization of the two
antibodies within fibrillar NFTs (Fig 8A–8F). However, we were able to detect faint caspase-3
labeling that co-localized with TauC3 within neurons that appeared morphologically to repre-
sent pretangles. Pretangles are defined as containing cytoplasmic tau immunoreactivity with-
out apparent formation of fibrillary structures [37]. Activated caspase-3 was also found in
plaques and blood vessels of the VaD brain (Fig 8D–8I). It is noteworthy, that labeling of pre-
tangles with the TauC3 antibody was the exception not the rule and in general resulted in a
much weaker immunofluorescence signal than TauC3 labeling of mature NFTs. Unlike for
TauC3, active caspase-3 labeling was never identified within CA (Fig 8E and 8F).

Discussion
VaD is the seconding leading cause of dementia in the USA, and has a higher negative predic-
tive value on survival in comparison with patients affected by AD [38]. Specific conditions that
increase the potential for strokes or microbleeds including hypertension, hyperlipidemia, and
atherosclerosis are important risk factors for VaD. Currently there is a lack of a widely accepted
neuropathological criteria for VaD [3]. It has been estimated that 25–80% of all dementia cases
show mixed pathologies between VaD and AD making it difficult to diagnose pure VaD [2].
Similarly to what is found in AD, amyloid plaques, neurofibrillary pathology, and cholinergic
deficits have also been documented in VaD, albeit to a lower degree then what is observed in
AD [5]. Although stroke is a well-known risk factor for VaD [16,17,39], whether the subse-
quent ischemia and potential activation of caspases occurs in VaD has not been investigated.
Therefore, the purpose of the current study was to investigate the potential activation of cas-
pases by examining caspase-cleaved tau in post-mortem human VaD brain sections using a
well-characterized antibody (TauC3) that detects caspase-cleaved tau truncated at Asp421 [24].

between TauC3 alone and TauC3 + PHF-1. Data indicated that roughly 90% of all labeled NFTS co-localized
with both antibodies. (F and G): Low- (F) and High-field (arrows, G) double immunofluorescence overlap
images of corpora amylacea within the dentate gyrus of a representative VaD case showing co-localization of
TauC3 (green) and PHF-1 (red). (H-J): High magnification confocal images representing labeling of corpora
amylacea with TauC3 (H), PHF-1 (I), and the merged image (J). Scale bars represent 10 μm in Panels D and
G and 50 μm for Panel F.

doi:10.1371/journal.pone.0132637.g004
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Screening seven pathologically confirmed cases of pure VaD (Table 1) with the TauC3 anti-
body revealed three consistent staining features: 1) labeling of TauC3 within NFTs; 2) identifi-
cation of caspase-cleaved tau within apparent corpora amylacea; 3) labeling of neuritic plaques.
NFTs are a common post-mortem finding in the human VaD brain but are usually present to a

Fig 5. PHF-1 labeling of corpora amylacea within the hippocampus of the VaD brain. (A): Representative bright-field DAB labeling from a VaD case
utilizing the PHF-1 antibody illustrating staining in the hippocampus within NFTs. (B): High magnification of a single PHF-labeled NFT indicated the presence
of small circular structures (arrows) of the same size and shape as CA in close proximity to the labeled neuron. (C): In this example, a PHF-labeled neuron
appeared to exhibit intracellular inclusions that were of the same size and shape as identified CA (arrow). (D): Numerous CA labeled with PHF-1 were
documented in plaque-rich regions within the hippocampal region of VaD cases. All scale bars represent 10 μm.

doi:10.1371/journal.pone.0132637.g005
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Fig 6. TauC3 co-localizes with early tangle markers in the VaD brain. (A-C): Representative images from double-label immunofluorescence analysis in
VaD utilizing the early pathological tau marker MC-1 (green, A) and TauC3 (red, B) with the overlap image shown in Panel C indicating co-localization of the
two markers (yellow). (D-F): Representative double-label immunofluorescence experiment utilizing the early tangle phosphorylated marker, AT8 (green, D)
and TauC3 (red, E) with the overlap image shown in Panel F. Strong co-localization between the two antibodies was observed in tangles, however, CA
(arrow, E and F) labeled with TauC3 only. (G-I): Identical to Panels A-C except double-label was accomplished utilizing Tau46 (green, G), a C-terminal
antibody to full-length tau. Note the distinct subcellular and fibrillary nature of the TauC3 antibody within the labeled neuron (H and I). (J-L): Identical to
Panels G-I except the panels depict the labeling by Tau46 of CA (arrows, J) that were also labeled with TauC3 (K and L). All scale bars represent 10 μm.

doi:10.1371/journal.pone.0132637.g006
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lower degree when compared to AD [5]. In AD, NFTs composed of hyperphosphorylated
forms of tau accumulate within the entorhinal cortex and CA1 subfield of the hippocampus
[18–20]. In addition to hyperphosphorylation, post-translational modifications of tau, includ-
ing proteolysis have been shown to be an important step in the formation of NFTs. In this
regard, numerous studies now support the caspase cleavage of tau as an important mechanism
contributing to the evolution of NFTs [21,22]. Thus, caspase activation and the cleavage of tau
after Asp421 is an early event preceding and possibly contributing to NFT formation [23–26].
Our findings are supportive of a role for caspase-cleavage of tau in VaD, providing further

Fig 7. Caspase-cleaved tau within neuritic plaques in the VaD brain. (A and B): Representative bright-field microscopy showing TauC3 labeling of
neuritic plaques at low-field (arrows, A) and at high magnification (arrow, B). (C-E): Representative immunofluorescence double labeling utilizing an anti-Aβ
(clone 6E10) antibody (green, C), TauC3 (red, B), and the merged image (C) indicating co-localization of two markers (yellow, arrowheads). The arrow in
Panel E reflects the labeling of a single NFT by TauC3 that is not labeled with the 6E10 antibody. (F-G): Identical to Panels C-E depicting labeling in an
additional VaD case. All scale bars represent 10 μm except Panel A, which represents 50 μm.

doi:10.1371/journal.pone.0132637.g007
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support for the involvement of this family of proteases in NFT pathology. To corroborate these
findings, we performed double-label experiments utilizing an antibody that detects active cas-
pase-3. Although labeling with this antibody was observed in plaques, blood vessels, and pre-
tangle neurons, we did not observe staining within fibrillar NFTs that labeled with PHF-1.
These findings suggest that caspase-3 activation precedes caspase-cleavage of tau, and is no
longer active in mature tangles, possibly due to turn over of the enzyme that is present in nomi-
nal concentrations within neurons. Our findings in VaD are in aligned with what has been
observed in AD, namely that caspase activation and cleavage of tau is an early event that con-
tributes to the evolution of NFTs [23–26]. One mechanism that may activate apoptotic
pathways in VaD is the presence of beta-amyloid. Previous studies have supported a role for

Fig 8. Caspase-3 activation in the VaD brain. (A-F): Representative immunofluorescence double labeling within the human VaD brain utilizing an antibody
to active caspase-3 (green, Panels A and D) and TauC3 (red, Panels B and E), with the overlap images shown in Panels C and F. Labeling of active caspase-
3 was evident within pretangles that co-localized with TauC3 (arrows, C). Co-localization of the two antibodies was also evident within plaques although
TauC3 gave a much weaker fluorescence signal (F). In fibrillary NFTs only TauC3 was present (arrowhead, C and arrow, F). (G-I): Representative
immunofluorescence double labeling with active caspase-3 (green, G) and the nuclear stain, DAPI (blue, H) indicating labeling within blood vessels of the
VaD brain (I). Note the appearance of cuboid, elongated nuclei that typically define endothelial cell nuclei (arrows, H). All scale bars represent 10 μm.

doi:10.1371/journal.pone.0132637.g008
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beta-amyloid in initiating the activation of apoptotic pathways leading to caspase-3 activation
and the C-terminal cleavage of tau [22–24]. In the present study, we were able to demonstrate
by Western blot analysis that caspase-cleaved tau was significantly greater in VaD cases in
which beta-amyloid deposition was confirmed post-mortem. These data would support that
caspase-cleaved tau links beta-amyloid deposition to NFT formation as has been previously
shown in AD [22–24]. Interesting, our Western blot analysis also revealed the presence of cas-
pase-cleaved tau in the cerebellum. This result may not be all that surprising considering that
cerebellar dysfunction has been postulated to play an important role in VaD [40]. In a previous
immunohistochemical study we demonstrated the presence of caspase-cleaved tau in the cere-
bellum of the Alzheimer’s disease brain despite the lack of beta-amyloid plaques in this region
[41]. In the present study, screening of the cerebellum for beta amyloid by immunohistochem-
istry did not reveal any deposition of beta-amyloid (data not shown). Therefore, the presence
of caspase-cleaved tau in the cerebellum of both the Alzheimer’s and vascular disease brain
does not appear to be directly related to the presence of beta-amyloid in this brain region.

In addition to NFTs, the TauC3 antibody consistently labeled numerous translucent round
structures in the dentate gyrus of the hippocampus proper. The lack of colocalization between
TauC3 and Terminal deoxynucleotidyl transferase dUTP nick end labeling as well as with
DAPI within these structures argue against these structures being apoptotic cells or nuclei.
Based on the morphological appearance as well as positive labeling with PAS and ubiquitin
antibodies we conclude that these structures are corpora amylacea (CA). CA are spherical, lam-
inated, basophilic to eosinophilic structures located in the subpial, periventricular and perivas-
cular regions [42,43]. It is note worthy, that the identified CA in the current study were not
found in these regions but instead were prominent in the granule cell layer of the hippocampus.
CA are inclusions found to accumulate in the central nervous system and are associated with
normal aging as well as neurodegeneration [42]. Reports have shown that approximately 4% of
the total weight of CA is composed of protein and that ubiquitin may be one of the primary
protein components [30]. The presence of ubiquitin suggests that the accumulation of altered
proteins may be involved in the pathogenesis of CA [30]. In addition to ubiquitin, studies have
found CA to be reactive with anti-tau and to be present in larger numbers in neurodegenerative
disease brains versus that of normal ageing brain [44–46]. Our results revealed the presence of
caspase-cleaved tau within CA in the dentate gyrus and the number of labeled CA were signifi-
cantly higher than what was observed in age-matched controls. Interesting, DAB staining of
VaD cases with PHF-1 revealed immunoreactivity in apparent CA that were localized near or
within labeled neurons (Fig 5). Our results are suggestive that CA originated as intracellular
neuronal inclusions and these findings are supported by previous studies [44,47]. We hypothe-
size that tau may be modified by post-translational processes that includes phosphorylation
and proteolysis and incorporated into these spherical structures. It has been suggested that CA
are involved in the sequestration of potentially hazardous products of cellular metabolism
including the presence of polymerized proteins [42,48]. Our data showing the presence of cas-
pase-cleaved tau as well as positive staining with PHF-1 would support this notion and suggests
that CA may play a protective role similar to what has been ascribed for Hirano bodies [49].

In conclusion, we investigated a potential role for caspase-cleaved tau in VaD utilizing a
well-characterized antibody that specifically detects caspase-cleaved tau truncated at Asp421.
We found that application of TauC3 revealed consistent labeling within NFTs, neuritic plaques,
and CA in the human VaD brain. The presence of caspase-cleaved tau within CA that were
regionally localized within the dentate gyrus is a novel finding. The localization of CA within
the hippocampus proper and not in perivascular regions is suggestive that they may be
involved in the disease pathogenesis. However, whether the presence of CA in VaD is contrib-
uting factor or simply a product of the disease process is not known and will require further
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investigation. Staining of the TauC3 antibody co-localized with PHF-1 within the majority of
NFTs and our data are suggestive that caspase activation precedes tau cleavage in NFTs. Collec-
tively, these data support a role for the activation of caspase-3 and proteolytic cleavage of
TauC3 in VaD providing further support for the involvement of this family of proteases in
NFT pathology.
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