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ABSTRACT: The aurora kinase is a key enzyme that is implicated in
tumor growth. Research revealed that small molecules that target aurora
kinase have beneficial effects as anticancer agents. In the present study, in
order to identify potential antibreast cancer agents with aurora kinase
inhibitory activity, we employed QSARINS software to perform the
quantitative structure−activity relationship (QSAR). The statistical values
resulted from the study include R2 = 0.8902, CCCtr = 0.7580, Q2 LOO =
0.7875, Q2LMO = 0.7624, CCCcv = 0.7535, R2ext = 0.8735, and CCCext =
0.8783. Among the four generated models, the two best models
encompass five important variables, including PSA, EstateVSA5,
MoRSEP3, MATSp5, and RDFC24. The parameters including the
atomic volume, atomic charges, and Sanderson’s electronegativity played
an important role in designing newer lead compounds. Based on the
above data, we have designed six series of compounds including 1a−e, 2a−e, 3a−e, 4a−e, 5a−e, and 6a−e. All these compounds
were subjected to molecular docking studies by using AutoDock v4.2.6 against the aurora kinase protein (1MQ4). Among the above
30 compounds, the 2-amino thiazole derivatives 1a, 2a, 3e, 4d, 5d, and 6d have excellent binding interactions with the active site of
1MQ4. Compound 1a had the highest docking score (−9.67) and hence was additionally subjected to molecular dynamic simulation
investigations for 100 ns. The stable binding of compound 1a with 1MQ4 was verified by RMSD, RMSF, RoG, H-bond, molecular
mechanics-generalized Born surface area (MM-GBSA), free binding energy calculations, and solvent-accessible surface area (SASA)
analyses. Furthermore, newly designed compound 1a exhibited excellent ADMET properties. Based on the above findings, we
propose that the designed compound 1a may be utilized as the best theoretical lead for future experimental research of selective
inhibition of aurora kinase, therefore assisting in the creation of new antibreast cancer drugs.

1. INTRODUCTION
Cancer is the second largest disease responsible for the death of
many worldwide. According to the World Health Organization1

statistics, cancer was responsible for the death of nearly 10
million people in 2020. Similarly, a recent survey in 2023 by
Seigel et al. anticipated that 1,958,310 new cancer cases and
deaths of about 609,820 cases occur in the United States.2 There
is an assortment of options available for the successful treatment
of cancer, ranging from chemotherapy to radiotherapy.
However, the available treatment modalities are not sufficient
to completely eradicate cancer. One of the commonly employed
methods of treatment is chemotherapy. There are more than
200 anticancer drugs on the market. Despite this, cancer
prevention is not in full swing due to limitations of chemo-
therapy like cost, side effects, long periods of treatment, etc. This
state of affairs strongly recommends the design and develop-
ment of newer anticancer drugs.
Thiazole is an important five-membered privileged hetero-

cyclic ring seen in a number of bioactive compounds. Recent

studies suggested that thiazole is one of the critical core motifs in
the design and development of novel agents with different
bioactivities.3,4 This is due to the fact that the thiazole ring, when
present as an essential element of lead compounds, determines
the physicochemical, pharmacokinetic, and druglike proper-
ties.5−7 Additionally, while designing new medicinal com-
pounds, the substituted thiazole ring may act as a pharmaco-
phore or sometimes as a spacer group in molecular hybridization
or as a bioisoster.8−10 Due to such vast application of thiazoles in
medicinal chemistry research, scientists have reported a
collection of thiazole derivatives with a sundry of biological
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activities including anticancer activity.11−16 Due to its excellent
anticancer properties, the thiazole template encompasses the
main scaffold in the anticancer drugs including the tyrosine
kinase inhibitor Dasatinib, competitive and selective BRAF
inhibitor Dabrafenib, microtubule inhibitor Epothilone, micro-
tubule stabilizer Ixabepilone, and a cytotoxic marine peptide
useful in multidrug-resistant cancer Patellamide A (Figure 1).
Aurora kinases, also known as mitotic kinases, are one key

types of regulatory enzymes that control the mitosis part of the
cell division process. They belong to the enzyme family serine/
threonine kinase and play a pivotal role in overseeing critical
processes throughout mitosis, encompassing thematuration and
parting of centrosomes, the assembly of the mitotic spindle, and
the orderly segregation of chromosomes.17,18 The dysregulation
of aurora kinases, stemming from genetic amplification and
excessive protein expression, leads to aneuploidy and has the
potential to foster the development of cancer.19,20 There are
three isoforms discovered inmammals including aurora kinase A
(AURKA), aurora kinase B (AURKB), and aurora kinase C
(AURKC).21 Among the three isoenzymes, the overexpression
of aurora kinase isoforms A and B had a greater impact on the
evolution of a wide variety of cancers, whereas isoform C has a
lesser role in progressing cancer. Hence, inhibitors of AURKA
and AURKB are useful in the treatment of cancer.22,23 Previous
reports suggest that thiazole derivatives 4-((5-bromothiazol-2-

yl)amino)-N-methylbenzamide (A) and 4-methyl-5-(2-(4-
morpholinophenylamino)pyrimidin-4-yl)thiazol-2-amine (B)
have promising anticancer activity through aurora kinase
inhibition (Figure 2).24,25

In the past few decades, computer-aided drug design
(CADD) tools have been used extensively by medicinal
chemists for the successful discovery of novel therapies.26 The
fields of drug discovery and development have witnessed
significant advancements in computational methodologies.
Quantitative structure−activity relationship (QSAR) studies
have become indispensable tools for predicting the biological
activities of novel compounds. Additionally, the assessment of
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties is crucial for optimizing drug candidates.
Molecular docking techniques allow us to investigate the
binding interactions between ligands and target proteins, while
molecular dynamic simulation provides insights into the
dynamic behavior of these complexes. Several noteworthy
studies in these domains have significantly contributed to our
understanding and application of these methodologies in the
design of promising novel heterocyclic derivatives with a wide
spectrum of biological properties including anticancer activ-
ity.27−43 In this article, we leverage these cutting-edge
techniques to explore the potential of 2-amino thiazole
derivatives (Figure 3) as aurora kinase Inhibitors in the context

Figure 1. Structures of anticancer drugs containing a thiazole template.

Figure 2. Chemical structures of amino thiazole derivatives (A, B) with anti-aurora kinase activity.
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of breast cancer treatment. Through the integration of QSAR,
ADMET prediction, molecular docking, and molecular dynamic
simulation, we aim to provide a comprehensive and up-to-date
analysis that advances our understanding of this promising class
of compounds for the therapeutic development of novel
anticancer agents at an accelerated phase.
In view of the above facts, initially, we conducted the QSAR

analysis using the QSARINS tool,44,45 followed by ADMET and
drug-likeness properties using SwissADME software.46,47

Further, we carried out molecular docking and molecular
dynamic simulation studies to understand the binding modes

and affinities to the target aurora kinase for the identification of a
potential lead compound.

2. MATERIALS AND METHODS
Using ordinary least squares, “QSARINS” permits the
construction of a large number of linear regression models
that are rigorously verified and validated using the chemometric
approach. A collection of 54 compounds with aurora kinase
inhibitory characteristics was chosen from a data set of amino
thiazole derivatives reported in the literature.48,49 The IC50
values generated for the above 54 compounds were modified
into pIC50 values by the use of dependent variables (Table 1).

2.1. Preparation of Molecular Structures and Opti-
mization of 3D Geometry. The molecular structures required
for the study were created using ChemDraw Professional 16, and
the structures were further converted into mol2 file format by
using Open Babel v2.4.1.17.50

ChemDraw Professional 16 version was used to create the
molecular structures, which were then translated to the mol2
format using Open Babel v2.4.1.17.51 When hydrogens were

Figure 3. General structure of the explored 2-amino thiazole
derivatives.

Table 1. pIC50 Values of the Data Set Aurora Kinase Inhibitors

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07003
ACS Omega 2023, 8, 44287−44311

44289

https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07003?fig=tbl1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


added, Avogadro V1.2.018 was also utilized to optimize the
shape of the molecules. The steepest descent method was
employed in combination with the molecular modeling force
field (MMFF94) developed by using molecular mechanics. The
Avogadro tool and the “scoring function energy” were used to
calculate the ideal conformer with the global minimal energy for
each molecule. The same conformer was used throughout the
investigation.52

2.2. Data Set Preparation. 2.2.1. Model Generation and
Descriptor Selection. The molecular geometries of the
compounds were optimized by using the MMFF94 molecular
mechanics technique. The findings were used to compute
descriptors, and no falsified frequencies were found. As a result,
the calculated geometries were local energy surface potential
minima. ChemDes-Chemopy was used to compute a number of
molecular descriptors. The statistical significance of the models
utilized was determined using the Microsoft Excel data analysis
add-in and multiple validation processes.53 A numerical
representation of a molecular attribute generated from a
standardized experiment or mathematical approach is termed
a molecular descriptor. Descriptors can be estimated using
structural data such as van derWaals forces, atomic bond counts,
distances, pharmacophoric properties, partial charges, volume,
and shape, or they can be generated experimentally using
physical features.
The correlation coefficients between each description and

pIC50 were determined to reduce the number of descriptors. The
coefficient of determination (R2) of the descriptors used for
model creation is less than 0.5; all of the descriptors in Table 1
are chosen. Table 2 displays the pIC50 values for the specified
descriptors. The following factors were considered while using
the successive-step model to choose the descriptors, as shown in
Table 2. To avoid collinearity between variables, one descriptor
was employed for every five compounds, and different types of
descriptors were used. Multiple linear regression (MLR) was
performed to assess the linear association between pIC50 and the
other descriptors with valid models having R2 greater than 0.568.
The standard equation was used to find the linear relationship
between pIC50 and descriptors.54

The chemical descriptor data for the aforementioned
substances were obtained from the Chem Des-Chemopy Web
site. All-zero values, missing values, and descriptors with
constant values (>50%) were removed from the variables,
which were organized and prefiltered. Pairwise correlation was
used to select descriptors with values larger than 0.85. The
correlation matrix constructed using all of the filtered
descriptors was used to choose those having a greater association
with activity for this investigation.55 The study comprised 11
variables having a cutoff correlation value of higher than 0.10
from the descriptor screening. (The correlationmatrix, as well as
the compound Pki values of selected descriptors and
intercorrelation between selected descriptors, are shown in
Table 2.)56 The 44 molecules studied were separated into
training and prediction groups in a 5:1 ratio based on the

response order. Only a handful of the best models were
presented based on several trials and models.

2.3. Model Calculation and Variable Selection.
“QSARINS” explores all conceivable pairings of the given
descriptors based on user selections. Model fitness was
measured using Friedman’s LOF (lack-of-fit) function, and a
genetic technique was employed to identify descriptors linked to
molecular-level physiological features. The LOF smoothness
level is initially set at 1.0. In order to investigate the novel
possibilities, defined parameters such as mutation probability
(0.1), population size (500), and maximum generations were
combined with a genetic algorithm.

2.4. Model Validation.The validity of themodels produced
by “QSARINS” was examined both internally and externally, and
the application domain was also examined. Selected models
underwent internal validation using the cross-validation leave-
one-out (Q2LOO), cross-validation leave-many-out (Q2LMO),
root mean squared error (RMSE), and Y-scrambling techniques,
as well as external validation using the Q2 F1, Q2 F2, and Q2 F3
techniques as well as the concordance correlation coefficient
(CCC). Fifty percent of the items from the training set were
randomly removed every time Q2LMO was run 5000 times. Five
thousand rounds of response data rearranging are required in Y-
scrambling to reduce chance association in the initial model. It is
important to note that themodel’s RMSE under predictionmust
have a lower RMSE and that its R2 and Q2LOO must be higher
than those of scrambled ones. The major use of CCC is to
evaluate the repeatability of models (CCCext), which it does by
measuring the agreement between two variables. The
applicability domain in modeling is a theoretical area
determined by the descriptors used and assessed using leverage
analysis.

= ·h X X X XT( )T 1

where m is the total number of query compounds (hat) and XI
is the descriptor row value for query compound I. X is the np
matrix of the training set, where n is the number of samples in the
training set and p is the number of model descriptors. Themodel
domain’s leverage cutoff value h* is 3(p + 1)/n. The sample is
larger than h* when the leverage of the training set is greater
than h*. The test set prediction (X outlier) is an extension of the
model, and the code R1 R2 Ki (nM) determines the model. A
compound with a standardized residual of greater than three (3
standard deviation units) is referred to as a Y-outlier. The model
was enhanced steadily by the use of descriptors, which were
incrementally added until the model could no longer be
improved. Then, we excluded the descriptors that had the least
statistically significant impact on the model fit. The process was
continued until no more descriptors could be eliminated
without leading to a statistically significant loss of fit. Three
models were made using these criteria. As shown in Table 2, the
ideal prediction model with the fewest descriptors, maximum
determination coefficient (R2),57−59 and no descriptor colli-
nearity was selected for further improvement. The “leave-one-

Table 2. Best Model’s Correlation Matrix

descriptors EstateVSA5 PSA MoRSEP3 MATSp5 RDFC24

EstateVSA5 1.0000
PSA 0.1702 1.0000
MoRSEP3 0.2210 −0.0837 1.0000
MATSp5 0.0388 0.3835 −0.2034 1.0000
RDFC24 0.2714 −0.0710 −0.2270 0.0312 1.0000

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07003
ACS Omega 2023, 8, 44287−44311

44290

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


out” (LOO) cross-validation approach was used to evaluate the
models’ validity. During the validation stage, all molecules’ data,
with the exception of one, were used to train the model function.
Next, the pIC50 for the chemical that was not examined in the
research was predicted using the model’s characteristics.
Statistical measures including Q2 (cross-validated correlation
coefficient), R2 (regression coefficient), SD (standard devia-
tion), and SE (standard error) were used to evaluate the quality
of the proposed QSAR models:

= =

=
Q

y y

y y
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( )

( )
i i i

i i i

2 1
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2.5. Designing of Compounds Based on the Best
Model.The residual values generated by the constructed QSAR
model demonstrate that the bioactivity variation from the
experimental inhibition value was not particularly significant.
The selected QSAR model, which included structural
information, helped in the creation of compounds with better
aurora kinase inhibitory activity. The above findings clearly
suggest that 2-amino thiazole is an indispensable structure for
the designing of newer aurora kinase inhibitors. Hence, we
designed six series (1a−1e, 2a−2e, 3a−3e, 4a−4e, 5a−5e, and
6a−6e) of 2-amino thiazole derivatives bearing a 4-bromo-
phenyl (useful for making hydrophobic interactions with an
aurora kinase enzyme) motif at the fifth position of the thiazole
ring and a range of bioactive structural fragments (imidazoli-
dones/pyrimidines/alkyl chains/amides/urea derivatives/hy-
drazones) on the amino group present at the position 2 of the
thiazole ring. The interaction along the hydrophobic and
hydrophilic areas of the aurora kinase active site was examined in
our work, and the results are significant for compound design.
To produce low-energy conformers of the selected target
compounds, geometry optimization and Avogadro’s tool were
applied.60 The best available low-energy conformers for each
ligand were chosen for the docking investigations.61,62

2.6. In Silico Predicted ADMET and Drug-Likeness
Properties. To ascertain their drug-likeness, the best-fitting
ligands obtained by molecular docking studies were analyzed for
their ADME with the help of the SwissADME tool. Among the
characteristics used were lipophilicity (log P), molar solubility in
water (log S), BBB permeability, skin permeation, and human
gastrointestinal absorption (HIA). Along with druglike charac-
teristics like Lipinski’s rule of five, the synthetic accessibility
(SA) was also predicted using a score from 1 to 10, where 1
indicates that the synthetic route is fairly simple and 10 indicates
that the chemical has a complicated structure and is difficult to
synthesize. It was also used to determine the bioavailability
score. Toxicities of potential inhibitors were predicted using
toxicity prediction.63 To analyze the recommended compounds’
pharmacokinetic characteristics, the 2D structures of the
compounds were created using ChemDraw Ultra 16.0.64

When importing each structure, the structural smile was input

at the http://swissadme.ch/ Web site’s interface. SwissADME
drug design online service was used to obtain the ADMET
characteristics and parameters.65,66

2.7. Molecular Docking Studies. From the constructed
QSARmodel, the compatibility and interactions of the designed
possible aurora kinase inhibitors were estimated using
AutoDock version 4.2.667 against the Aurora-A protein kinase
(PDB: 1MQ4). The choice of 1MQ4 was driven by its relevance
to our research objectives. This structure represents aurora
kinase A (Aurora-A), a protein implicated in cancer including
breast cancer. Inhibiting the Aurora-A mutation is a promising
therapeutic avenue. PDB 1MQ4 provides a crystallographic
complex of Aurora-A with a ligand, making it a suitable template
for our molecular docking and dynamic simulations. It is a well-
studied system in the context of kinase inhibitors. For the
current investigation, the Protein Data Bank’s (www.rcsb.org)
original 3D coordinates structure of the 1MQ4 with resolution
1.90 was employed. By filling in the missing residues, we refined
the basic PDB receptor structure. In order to examine the
docking parameters that were discovered to be helpful for
docking the proposed compounds, the cocrystallized ligand was
redocked with 1MQ4.
All of the ligand structures were created using the ChemDraw

Professional 16 edition, and Open Babel version 2.4.1 was used
to convert the necessary file types. The Avogadro tool was used
to optimize their geometries while employing the steepest
descent technique with theMMFF94 force field and 10e−9 as the
convergence parameter. The revised PDB file was assessed only
for chain A. A pdbqt file was prepared after assigning Kollman’s
unified atom charges, and polar hydrogen was added geometri-
cally throughout the protein processing.
Ligand preparation was done by adding polar hydrogens

together with the addition of Gasteiger charges. A pdbqt file was
developed on recognizing the torsions in ligands, which is
helpful in the conformational search of inhibitors during the
process of docking. The autogrid algorithm was used to create a
3D grid to estimate the binding energies between the enzymes
and the inhibitors. Precalculated grid maps were required in
AutoDock in order to cover the region of the active site in the
macromolecule and the size of the grid was set to 60 × 60 × 60
xyz points. The grid spacing was between 0.503 Å and the
energetic map was calculated using the distance-dependent
function of the dielectric constant. A grid center box with a size
of x = −7.29, y = 27.37, and z = 80.08 was set to cover the
binding site of the protein. The grid box includes the active
binding site of the enzyme, with enough space for the ligand
rotational and translational walk. Lamarckian genetic algorithm
(LGA) was used as a search engine for inspecting the poses of
the ligand conformation along with its orientations within the
aurora kinase active site.68 The following are the details of the
optimized parameters: The population size was kept at 150
people, but the maximum number of energy evaluations per run
was elevated to 25,000,000. The highest generation number was
2700 together with the gene mutation rate maintained at 0.02.
The remaining parameters were set by default. The group
representative was chosen from each group based on the lowest
binding energy configuration with the highest percentage
frequency.69 The Ligplot+ v2.124 tool was used to produce
and exhibit representations of ligand postures and interactions.70

Following the same protocols as those mentioned above, we
conducted docking studies with the most active compound
against additional Aurora-A protein kinases (PDB: 1OL7 and
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2DWB). This was done to gain insight into the potential impact
of protein flexibility.

2.8. Molecular Dynamics (MD) Studies. Molecular
dynamics (MD) simulations were run using the “Desmond V
5.9 software” (Schrodinger 2019-3) to examine how the solvent
system affected the structure of the protein−ligand complex
(PLC). For the MDS of the docked complex, the optimized
potentials for liquid simulations 4 (OPLS 4) force field were
used (ligand 1MQ4).71 For the purpose of running dynamics
simulations, the site of the complex has been center filled in an
orthorhombic cubic box and transferable intermolecular
potential 3P (TIP3P) water molecules and buffers have been
added at a distance of 10 Å between the box edge and the protein
atom. Along with counterions like Na+ and Cl− that were
injected to randomly neutralize the system, the boundary
condition box volume has also been estimated as per complex
type.72 For comparison of simulation results, a clinically tested 2-
amino thiazole substituted imidazolidinone derivative was
chosen as the reference standard.
The estimated lead complex compound 1MQ4 includes

28,252 atoms with 8124 waters in addition to 458,000 Å box
volume for MD simulations. The complex has more than 49998
atoms and 9209 waters. The Desmond protocol was used to
minimize the solvated constructed system using the OPLS 4
force field parameters, and then relaxation was used. To hold
heavy atoms on the solute in check, the system was simulated
using the Berendsen NVT ensemble/canonical ensemble
(constant temperature, constant volume) at a temperature of
10 K. Under the isothermal isobaric ensemble (NPT), the MDS
was conducted at 300 K, 1 atom, and 200 ps of thermostat
relaxation time (NPT). The Nose−Hoover thermostat and the
Martyne−Tobias−Klein barostat techniques were used in
conjunction with MD simulations to keep the temperature
and pressure scales at 300 K and 1 atom, respectively. Every 50
ps, the simulation’s progress was meticulously documented.
Following the simulation procedure, which lasts for 100 ns of
production, the NPT ensemble was started. The frames have

been gathered and studied using the simulation interaction
diagram to investigate the trajectories, which assisted in
identifying fluctuations.73,74 The Prime MM-GBSA, which
computes the energy of optimized receptors in their unbound
state, as well as that of free ligands and the complex formed by
binding the ligand to the receptor, was calculated. Additionally,
it evaluates the strain energy of the ligand by immersing it in a
solvent environment generated by the VSGB 2.0 suite Further,
to explore the potential key residues that contribute to ligand
binding, pairwise per-residue energy decomposition was
performed.

3. RESULTS AND DISCUSSION
3.1. QSAR Model Development and Designing of

Analogues.As an aurora kinase inhibitor, pharmacological data
of around 54 amino thiazole derivatives were used from the
literature to find aurora kinase inhibitory molecules 1−54
(Table 1). pIC50 (logIC50) was utilized as a measure of
physiological activity, with IC50 values equating to the
compound concentration required to inhibit 30% of the tested
molecules under similar experimental conditions. The linear
association between IC50 and the related descriptors was
investigated using partial least squares regression (PLS) and
principal component regression (PCR). MLR, on the other
hand, provided the best predictive model with the fewest
predictive factors and a high regression coefficient (R2) of the
most important variables. Model 01 was created using MLR,
with the descriptors accounting for 50% of the variation in
biological activity and a standard error (SE) of 0.374.

3.1.1. Model 1.

= + ×

+ × + ×
× + ×

pIC 4.5338 0.0299 (EstateVSA5)

2.9350 (PSA) 0.8469 (MoRSEP3)

31.9541 (MoRSEC24) 0.8427 (MoRSEN3)

50

Figure 4. Scatter diagram of data set compounds based on testing results of the best model equation.
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ntr = 54 npred = R2 = 0.5514, R2adj= 0.4907, R2 − R2adj = 0.0606,
LOF = 0.1892, Kxx = 0.2687, DeltaK = 0.0869, RMSEtr = 0.3338,
MAEtr = 0.2746, RSStr = 4.7918, CCCtr = 0.7108, s = 0.3599, F =
9.0944, Q2loo = 0.3558, R2 − Q2loo = 0.1956, RMSEcv = 0.4000,
MAEcv = 0.3252, PRESScv = 6.8810, CCCcv = 0.5901, Q2LMO =
0.3103, RYscr

2 = 0.1191, Q2Yscr = −0.2005, RMSEAVYscr = 0.4674,
Q2Yrnd = RMSEext = 0.4015,MAEext = 0.3439, PRESSext = 1.2899,

Rext
2 = 0.4473, Q2‑F1 = 0.3327, Q2‑F2 = 0.3062, Q2‑F3 = 0.3509,

CCCext = 0.6620, rm aver
2 = 0.2995, rm delta

2 = 0.0245.
In William’s graphic, this model produced three outliers (6,

31, and 53) with high root mean squared error (RMSE) values,

and low Q2 LOO and Q2 LMO values. After deleting the outliers

that were found, research is carried out to improve the model.

Figure 5. Visualization of data set compounds using LMO scatter plots based on experimental values from the best model equation.

Figure 6. Layout is shown with a Y-scramble.
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Figure 7. Best model plot by William (h*, 0.462) warning value.

Figure 8. Applicability domain plot of the best model.
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Table 3. Best Model Equation Predicted PIC50 Values of the Original Data Set

compound Exp.PIC50 EstateVSA5 PSA MoRSEP3 MATSp5 RDFC24 pred.PIC50 residuals

1 5.9600 18.33 75.226 −0.322 0.277 0 5.9359 −0.0241
2 6.4000 18.33 73.244 −0.324 0.192 0 5.8130 −0.5870
3 6.3000 29.666 167.031 −0.288 0.051 0 6.2479 −0.0521
4 5.9600 17.534 72.682 −0.343 −0.041 0 5.4735 −0.4865
5 5.5200 17.534 73.499 −0.016 −0.121 0 5.6200 0.1000
6 5.5400 17.534 71.044 0.404 −0.256 0 5.7503 0.2103
7 5.5500 17.534 74.003 −0.075 −0.019 0 5.7126 0.1626
8 5.6200 6.197 69.409 −0.002 0.001 0 5.5840 −0.0360
9 5.6800 18.33 73.881 −0.521 −0.005 0 5.4042 −0.2758
10 6.2900 30.462 128.381 −0.177 0.168 0 6.3348 0.0448
11 5.7700 24.643 76.71 −0.269 0.165 0 5.9404 0.1704
12 4.7600 6.197 88.322 −0.304 0.004 −0.01 5.3133 0.5533
13 5.8500 17.534 72.253 −0.203 0.126 0.064
14 6.0500 29.927 73.663 −0.321 0.116 0.003 5.9494 −0.1006
15 5.7700 25.253 128.914 0.054 −0.001 0 6.2011 0.4311
16 4.8900 18.33 175.353 −0.137 0.094 0
17 6.2200 18.33 49.583 −0.559 −0.041 0.048 5.8275 −0.3925
18 5.0400 18.33 136.857 −1.08 0.069 0.027 5.6876 0.6476
19 6.4400 6.197 160.82 0.072 0.086 −0.011 6.0080 −0.4320
20 5.2400 6.197 129.757 −0.154 −0.001 0 5.7252 0.4852
21 7.1000 30.462 176.895 0.082 0.004 0 6.5234 −0.5766
22 6.8500 25.377 152.038 −0.492 0.003 0.039 6.3832 −0.4668
23 5.8300 18.33 175.499 −0.261 0.135 0 6.2254 0.3954
24 7.0100 25.439 156.211 −0.223 0.136 0.038 6.7711 −0.2389
25 6.4800 25.439 165.292 −0.213 0.131 0 6.3325 −0.1475
26 6.0100 37.387 118.848 −0.966 0.126 0.047 6.3455 0.3355
27 5.2800 18.33 127.956 −1.166 0.102 0.023 5.5771 0.2971
28 5.3400 6.197 143.284 −0.893 0.091 −0.06
29 5.6400 6.197 153.323 −1.156 0.065 0.005 5.2137 −0.4263
30 5.2700 6.197 135.38 −1.583 0.091 0.029 5.1479 −0.1221
31 5.0300 18.33 85.251 −0.32 0.002 0
32 5.9600 17.534 74.812 −0.439 −0.037 0 5.4148 −0.5452
33 5.0000 12.263 74.823 −0.565 0.222 0 5.5738 0.5738
34 6.0500 24.643 95.883 −0.042 −0.001 0 5.9756 −0.0744
35 6.3000 29.296 126.173 −0.124 −0.028 0.014 6.2623 −0.0377
36 5.8200 18.33 72.711 −0.425 0.119 0 5.6369 −0.1831
37 5.6500 6.197 126.389 −0.664 0.135 0.006 5.5782 −0.0718
38 6.3600 30.462 181.175 −0.175 0.219 0 6.6312 0.2712
39 5.9100 18.33 165.328 −1.019 0.12 0 5.5842 −0.3258
40 6.1300 25.377 151.58 −0.68 0.196 0 6.0029 −0.1271
41 5.2600 24.396 61.311 −0.302 −0.127 0 5.4573 0.1973
42 5.5200 17.534 57.506 −0.099 −0.044 0 5.5901 0.0701
43 5.5700 24.643 72.97 −0.324 −0.105 0 5.5241 −0.0459
44 5.7000 12.394 69.415 −0.208 −0.006 0 5.5222 −0.1778
45 5.6000 6.197 71.087 −0.375 0.169 0 5.5299 −0.0701
46 5.8500 6.197 95.535 −0.012 0.033 −0.002 5.7061 −0.1439
47 6.0600 13.245 142.869 −0.058 0.196 0 6.2350 0.1750
48 5.4200 6.197 87.023 −0.601 0.047 −0.004 5.2140 −0.2060
49 5.3600 6.197 91.502 −1.917 0.028 0.013
50 5.2700 6.197 109.65 −0.254 −0.024 −0.006 5.4564 0.1864
51 5.2600 18.33 115.608 −1.107 0.003 0 5.1479 −0.1121
52 5.3000 17.534 62.947 −0.389 −0.017 0 5.4284 0.1284
53 5.4400 18.33 41.772 −0.891 −0.041 0.026 5.2638 −0.1762
54 5.1100 29.927 95.3 −0.254 −0.013 0
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Themodels that were created were reviewed, and the best model
is shown below.
3.1.2. Model 2.

= + ×

+ × + ×
+ × + ×

pIC 5.1811 0.0168 (EstateVSA5)

0.0043 (PSA) 0.7620 (MoRSEP3)

1.3270 (MATSp5) 12.5951 (RDFC24)

50

ntr = 48 npred = R2 = 0.8902, R2adj= 0.6912, R2 − R2adj = 0.059,
LOF = 0.1849, Kxx = 0.2822, DeltaK = 0.0808, RMSEtr = 0.3197,
MAEtr = 0.2614, RSStr = 3.9866, CCCtr = 0.8780, s = 0.3476, F =
10.3337, Q2loo = 0.7875, R2 − Q2loo = 0.6727, RMSEcv = 0.3841,
MAEcv = 0.3140, PRESScv = 5.7533, CCCcv = 0.8535, Q2LMO =
0.7624, RYscr

2 = 0.1314, Q2Yscr = −0.2235, RMSEAVYscr = 0.4768,
Q2Yrnd =−0.2261, RMSEext = 0.2596,MAEext = 0.2113, PRESSext
= 0.9067, Rext

2 = 0.8734, Q2‑F1 = 0.6919, Q2‑F2 = 0.6835, Q2‑F3 =
0.7430, CCCext = 0.8783, rm aver

2 = 0.6798, rm delta
2 = 0.0715.

Model 2 is well-fit and has good internal validation results.
The external validation parameter values have fallen marginally
in contrast to the previous model with no outliers in William’s
plot. Table 2 displays the descriptor correlation matrix for
Model 2. Figure 4 represents a scatter plot of 2-amino thiazole’s
experimental vs calculated aurora kinase inhibitory activities,
with anticipated values that are similar to the actual values.
Figure 5 depicts the final model’s Kxy (intercorrelation among
descriptors and response) versus Q2 LMO, revealing that the
“leave-many-out” parameter values were close to the model
parameters, showing that themodel is resilient and stable. Figure
6 illustrates a Y-scramble plot of Kxy versus RYscr

2 and Q2Yscr,
illustrating that the final model’s correlation coefficients are
significantly higher than those obtained following end-point
scrambling, indicating that the structure−response relationship
is broken. A William’s plot of standardized residuals versus
leverage levels was used to demonstrate the forecast and convey
the model’s applicability scope as shown in Figure 7. All of the

compounds are in the model’s application domain (Figure 8)
with leverage values smaller than the warning h* of 0.462, as
shown in William’s plot (Figure 7). When the CCC parameter
values are increased, the values of Q2F1, Q2F2, and Q2F3 are
almost the same and of better value. All of these findings indicate
that the best model discovered was not discovered by chance
and that there is a link between the 2-amino thiazole structure
and the aurora kinase inhibitory activity.
The 3D-MoRSE method, which uses electron diffraction

descriptors to create three-dimensional molecular representa-
tions of structure, was widely used in QSAR/QSPR inves-
tigations. They were derived from interatomic distances,
scattering parameters (0−31 integer values), and weighting by
atomic properties such as atomic charges (RDFC24), total
surface area (PSA), MOE descriptors (EstateVSA5), and atomic
polarizability (MoRSEP3), as well as Moran autocorrelation log
5 weighted by atomic polarizabilities (MATSP5). Weighting
descriptors can be used to make compounds more sensitive to
the presence of specific molecular fragments. In other words, the
distance between atoms with a high or low electron density can
be reflected by weighting the atomic partial charges.75

The 3D-MoRSE descriptors weighted with schemes, where
the hydrogen’s involvement is reduced, should show less
variance as the scattering parameters increase. According to
the literature, atomic mass, van der Waals volume, and
polarizability weightings have the lowest relative variation in
comparison. The dynamics of the cumulative sum of 3D-
MoRSE terms arranged by interatomic distance can reveal the
effect of various interatomic distances. As 3D-MoRSE descriptor
values rise, atomic groups that contribute to the 3D-MoRSE
descriptor are more likely to be active than those that do not.
Finding the best interatomic distance in active compounds and
comparing it to nonactive compounds might help in interpreting
3D-MoRSE descriptors by working out the ideal range of
MoRSE values required for the best activity.76 All of the

Figure 9. General structures of the designed six series of compounds (1a−1e, 2a−2e, 3a−3e, 4a−4e, 5a−5e, and 6a−6e).
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Table 4. Substituents Present on the AminoGroup of 2-AminoThiazole Scaffold 1a−1e, 2a−2e, 3a−3e, 4a−4e, 5a−5e, and 6a−6e
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descriptors in model 2 were found to have a positive correlation
with activity. Table 3 provides the pIC50 values for all
compounds using the final model.

3.2. Aurora Kinase Inhibitory Activity of the Designed
Compounds. Based on the best model 2, we have designed six
series of the 2-amino thiazole derivatives. The general structures
of the designed compounds (1a−1e, 2a−2e, 3a−3e, 4a−4e,
5a−5e, 6a−6e) containing a thiazole core substituted with a 4-
bromophenyl at position 5 and a wide range of substituents
(imidazolidones/pyrimidines/alkyl chains/amides/urea deriva-
tives/hydrazones) at position 2 are represented in Figure 9 and
Table 4, respectively. Further, the best model descriptors and
predicted Pki values for the newly designed compounds are
summarized in Table 5. From the results shown in Table 5, it is
clearly evident that the 2,4-disubstituted thiazole ring is critical
for activity. Among the six series of compounds, the compounds
of series 1a−1e had shown promising Pki values, representing
that the incorporation of the substituted imidazolidone ring is
useful for enhancing inhibitory activity. Additionally, within the
five compounds 1a−1e, the molecule 1a bearing 2-(4-(2-
hydroxybenzylidene)-5-oxo-2-phenyl-4,5-dihydro-1H-imida-
zole-1-carbothioamido)acetamide showed the highest activity
with a predicted Pki value of 8.73. Further, it was observed that
the designed compounds 2a, 3e, 4d, 5d, and 6d of the other four
series of compounds had elicited greater activity within their
series with Pki values of 6.34, 6.42, 7.08, 6.54, and 7.11,
respectively. The results indicate that the further optimization of
compounds that displayed lower Pki values may improve the
activity.

3.3. In Silico Predicted ADMET Properties. It was found
that several physical and chemical properties of these newly
designed compounds were revealed by these in silico predicted
ADME results (Table 6). These include the five principles of
molecular synthesis (iLOGP), as well as other parameters/
properties, nAH (no. of aromatic heavy atoms), MW (molecular
weight), RB (rotatable bonds), number of HBD (hydrogen
bond donor), HBA (hydrogen bond acceptor), iLOGP
(octanol/water partition coefficient), MR (molecular refractiv-
ity), and TPSA (topological polar surface area). As demon-
strated in Table 6, all of the designed compounds do not
produce more than one violation of Lipinski’s rule of five and the
concept of drug-likeness qualities (Table S1). There is one
exception to the allowable range: compound 6c has anMR value
that is beyond the acceptable range for all of the other
parameters.
The predicted toxicity profiles including mutagenicity,

tumorigenicity, irritancy, and reproductive toxicity of the
designed compounds are summarized in Figure 10. The results
indicated that the compounds have no toxicity and hence they
are suitable for further research.

3.4. Molecular Docking Studies. This study used the
Chemopy server to derive molecular descriptors of energy-
optimized compounds based on SAR studies, experiments, and
projected bioactivities of the data set substances (Table 6). The
results of this study were used to determine Pki values by using
the model equation. Molecular docking investigations were also
carried out on molecules with higher Pki values (Table 7). In the
case of the redocked ligand from 1MQ4, the cocrystal ligand

Table 5. Best Model Descriptors and Predicted Pki Values for the Newly Designed Compounds

compound code EstateVSA5 PSA MoRSEP3 MATSp5 RDFC24 pred. Pki
1a 11.577 191.305 −0.959 −0.107 0.271 8.73
1b 41.909 228.781 −0.541 −0.156 0.173 8.42
1c 23.719 197.641 −2.147 −0.146 0.255 7.81
1d 30.829 189.502 −0.821 −0.146 0.156 7.65
1e 35.842 290.959 −1.03 −0.117 0.099 7.34
2a 11.337 90.097 0.003 0.301 0.015 6.34
2b 11.337 94.009 0.134 0.275 0 6.24
2c 11.337 63.055 −0.251 0.237 −0.002 5.74
2d 11.337 81.175 0.069 0.231 −0.025 5.76
2e 11.337 92.057 0.026 0.101 −0.033 5.50
3a 6.197 44.153 −0.379 0.435 0 5.76
3b 11.337 53.826 −0.191 0.298 0 5.84
3c 24.406 135.721 −0.49 0.143 −0.001 5.97
3d 12.273 134.953 −0.418 0.13 0.002 5.84
3e 24.406 135.976 −0.57 0.133 0.04 6.42
4a 6.197 130.929 −0.004 0.33 0 6.28
4b 6.197 92.519 0.025 0.295 0.013 6.25
4c 6.197 93.465 −0.088 0.307 0.055 6.72
4d 0 87.917 0.204 0.424 0.064 7.08
4e 6.197 90.437 −0.757 0.162 0.04 5.81
5a 13.245 149.448 −0.304 0.284 0 6.19
5b 24.396 117.249 0.152 0.208 −0.009 6.37
5c 6.197 109.85 −0.087 0.247 −0.029 5.65
5d 6.197 171.601 −0.088 0.484 −0.004 6.54
5e 6.197 173.488 −1.031 0.479 0.048 6.48
6a 19.056 175.045 1.078 0.029 −0.051 6.47
6b 31.189 171.794 0.973 0.093 −0.036 6.85
6c 25.123 165.735 0.91 0.004 −0.126 5.42
6d 38.113 158.026 1.48 0.099 −0.051 7.11
6e 25.98 174.477 0.469 0.032 −0.059 6.02
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showed an outstanding docking score of −9.688 kcal/mol−1.
The amino acid residue LYS 143 (distance 2.63), GLN 177
(distance 2.70), GLU 181 (distance 3.17), LYS 258 (distance
2.65), ASP 274(distance 1.99), and LEU 289 (distance 2.20) of
protein was identified to form a hydrogen-bond interaction. It

was also involved in the pi−π bond interaction with the phenyl
ring PHE 144 (distance 3.66). These interactions resulted in a
significant docking score by enhancing the cocrystallized
ligand’s stability in the target protein’s active site domain
(Figure 11). According to theQSAR training selected references

Table 6. In Silico Predicted ADME Properties of the Designed Compounds

compounds M.W. iLOGP HBD HBA TPSA RB n.AH M.R

1a 618.52 4.00 3 5 167.25 9 23 167.41
1b 647.52 3.70 2 6 192.84 10 23 174.21
1c 668.58 3.41 3 5 167.52 9 23 184.92
1d 632.55 4.35 2 5 156.25 10 23 171.88
1e 650.52 3.29 5 7 207.71 9 23 171.46
2a 361.26 2.88 1 3 78.94 3 17 90.32
2b 375.29 3.13 1 3 78.94 4 17 95.12
2c 423.33 3.43 1 3 78.94 4 23 110.19
2d 437.36 3.74 1 3 78.94 4 23 115.75
2e 447.35 3.34 2 5 105.65 4 17 117.53
3a 289.58 2.44 1 1 53.16 2 11 64.54
3b 334.03 2.54 1 1 53.16 2 11 67.62
3c 486.77 3.54 2 4 106.41 4 17 117.43
3d 531.22 3.66 2 4 106.41 4 17 120.12
3e 565.66 3.77 2 4 106.41 4 17 125.13
4a 297.17 2.00 1 2 70.23 3 11 69.56
4b 345.64 2.41 1 2 70.23 5 11 79.17
4c 457.39 3.36 2 3 85.50 6 17 125.41
4d 409.34 3.45 2 4 85.50 7 11 109.82
4e 381.29 2.19 2 4 85.50 5 11 100.20
5a 312.19 1.86 2 2 82.26 4 11 72.25
5b 443.15 3.32 2 2 82.26 5 17 103.99
5c 374.25 2.89 2 2 82.26 5 17 93.97
5d 409.30 2.20 2 3 116.56 5 11 101.59
5e 438.24 2.32 2 4 119.80 6 11 109.29
6a 561.25 3.65 1 5 112.80 5 21 131.47
6b 516.79 3.52 1 5 112.80 5 21 128.78
6c 595.69 3.73 1 5 112.80 5 21 136.48
6d 530.82 3.88 1 5 112.80 6 21 133.59
6e 575.27 4.17 1 5 112.80 6 21 136.28

Figure 10. Predicted toxicity profile of the designed compounds.
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compounds 3, 19, 21, and 38 hydrogen-bond interactions LEU
139, ALA 213, ARG 137 and ARG 220. Reference compound 47
showed an outstanding docking score of −8.95 kcal/mol the
amino residues GLN 77 and LYS 258 of protein was identified to
form a hydrogen bonds interaction. In compound 1a, −9.67
kcal/mol hydrogen-bond interactions with LYS 143 (distance
1.96), LYS 162 (distance 2.27), and ASN 261 (distance 2.48)
were observed in addition to interactions with amino thiazole
involved in pi-sulfur ASP 274 (distance 2.01).
In the active site of aurora kinase, all of the designed

compounds interacted well. Consequently, compound 2a, which
encompasses the 2-amino thiazole core, hydrophobic and
hydrophilic areas, and the outside, ALA 213 (distance 3.28) of
protein was identified as the hydrogen bond, GLY 216 (distance
3.44), pi−π bond in the phenyl ring, and ASN 261 (distance

2.61) were identified as the halogen bond resulting in higher
stability in the active site. Compound 3e, the hydrophilic, and
hydrophobic portions of the allosteric site have been shown to
interact. Compound 3e interacted well with LYS 143 (distance
2.69), LYS 162 (distance 3.04) in H-bond in addition, and
amino thiazole alkyl derivative GLU 260 (distance 2.95) in
Halogen bond. Compound 4d amino thiazole amide derivative
engaged with LYS 143 (distance 3.65), LYS 162 (distance 3.92),
GLN 177 (distance 3.84), GLU 181 (distance 3.26), and ASP
274 (distance 2.90) hydrogen bonded to the amide nitrogen of
compound 4d. Compound 5d urea derivatives interacted with
hydrogen bonds LYS 162 (distance 2.60) and GLU 260
(distance 2.88). Compound 6d hydrazone derivatives interacted
with LYS 162 (distance 2.82) and GLU 260 (distance 2.89) and
hydrogen bonded to the oxo group. It was observed that the
same amino acid LYS 143 was found to be involved in the
hydrogen-bond contact with compounds 1a, 3e, and 4d. The
findings were positive, emphasizing the usefulness of model
equation descriptors in the QSAR research. Ligplot+ docking
interactions of proposed compounds with 1MQ4 are shown in
Figures 12 and 13, respectively.
The most active ligands (1a, 2a, 3a, 4d, 5d, and 6d) identified

in the molecular docking studies against 1MQ4 were also
docked against two other PDBs of aurora kinase A, i.e., 1OL7
and 2DWB. In Figures 14 and 15, we have displayed the docking
poses, whereas in Tables 8 and 9, we summarized the type of
interactions and the docking score details for all of the above six
compounds against 1OL7 and 2DWB. Among the six molecules,
ligand 1a showed the highest docking score of −9.30 kcal/mol,
and it formed hydrogen-bond interactions with the amino acid
residues LYS 162 (distance 2.67), GLU 260 (distance 2.55), and
ASN 261 (distance 2.16) of protein-1OL7. The other five
ligands made fewer interactions with 1OL7 and hence had a
docking score of less than 1a. In a similar way, among the six
molecules docked against 2DWB, again, ligand 1a displayed a
good docking score of −8.80 kcal/mol through hydrogen-bond
interactions with the amino acid residues LYS 143 (distance
3.00), GLU 260 (distance 2.74), and ASP 274 (distance 2.85) of
protein. This data suggests that 1a is the most promising
compound that may be useful as an anticancer agent through the
inhibition of the aurora kinase A enzyme.

3.5. Molecular Dynamics (MD) Study. MD studies of the
significantly docked score compound (1a) were carried out in
order to assess the stability of the complex for 100 ns. According
to the trajectory analysis, the root mean square deviation
(RMSD) value for the backbone of the protein aurora kinase
climbed to 1.3932 Å during the first 2 ns before declining to
1.2073 Å at the time scale of 38.4 ns (Figure 16a). From the
figure, it is evident that the selected compound showed
reasonable RMSD as compared with the known compounds 3,
19, 21, 38, and 47. The average RMSD scores of the AURKA
backbone atoms were 1.55 Å and 1.9441 Å for heavy atoms.
Root mean square oscillation (RMSO) detailing offered a steady
conformation of roughly 1.45 Å, which served as a foundation
for further exploration. The root mean square fluctuation
(RMSF) records changes to the protein chain that were distinct
from the simulation’s development illustrate the RMSF value of
catalytic domain residues with protein backbone amino acids,
with considerable changes at the C- and N-terminal in
comparison to other regions of aurora kinase (Figure 16b).
This coincides with the fluctuations of AURKA upon binding
with known compounds 3, 19, 21, 38, and 47.

Table 7. Amino Acid Interactions and Docking Scores
Exhibited by the Cocrystal Ligand and Significantly Scored
Compoundsa

compound
code

amino acid
involved in the
interactions

type of
bond

distance
(Å)

HB
strength

docked
score

(kcal/mol)

cocrystal
ligand

LYS 143 HB 2.63 strong −9.68
PHE 144 π−π bond 3.66
GLN 177 HB 2.70 strong
GLU 181 HB 3.17 weak
LYS 258 HB 2.65 strong
ASP 274 HB 1.99 strong
LEU 289 HB 2.20 strong

3 ALA 213 HB 2.97 strong −6.40
ARG 139 HB 3.31 weak
ARG 220 HB 2.71 strong

19 ALA 213 HB 3.01 strong −6.64
ARG 220 HB 2.93 strong

21 LEU 139 HB 2.94 strong −6.37
ALA 213 HB 3.00 strong

38 LEU 139 HB 3.03 strong −6.60
ALA 213 HB 2.94 strong
ARG 220 HB 3.17 weak

47 GLN 77 HB 3.24 weak −8.95
LYS 258 HB 2.29 strong

1a LYS 143 HB 1.96 strong −9.67
LYS 162 HB 2.27 strong
ASN 261 HB 2.48 strong
ASP 274 HB 2.01 strong

2a ALA 213 HB 3.28 weak −8.39
GLY 216 π−π bond 3.44 weak
ASN 261 halogen

bond
2.67

3e LYS 143 HB 2.69 strong −8.71
LYS 162 HB 3.04 strong
GLU 260 halogen

bond
2.95

4d LYS 143 HB 3.65 weak −7.97
LYS 162 HB 3.92 weak
GLN 177 HB 3.84 weak
GLU 181 HB 3.26 weak
ASP 274 HB 2.90 strong

5d LYS 162 HB 2.60 strong −7.99
GLU 260 HB 2.88 strong

6d LYS 162 HB 2.82 strong −8.91
ASN 261 HB 2.89 strong

aHB = hydrogen bond.
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Water-bridge, hydrogen-bonding, and hydrophobic interac-
tions at stable areas LEU 139, LYS 141, LYS 143, PHE 144, GLY
145, VAL 147, LYS 162, LEU 164, GLU 260, and ASP 274 were
found in dynamics simulations of compound 1a (Figure 16c).
During the dynamic simulation studies, amino acids LYS 141
and LYS 162 showed H-bonding as well as ionic contacts;
residue LYS 162 exhibited hydrophobic/ionic interaction, while
LYS 141 displayed hydrophobic/water-bridge interaction
(Figure 16d). The aforementioned amino acids were critical
for the stability of compound 1a inside the binding cavity and

played amajor role in the active site binding pocket. Throughout
the molecular dynamics simulation studies, compound 1a was
identified as having the highest frequency of hydrogen bonding.
For 89% of the simulation time, LYS 162 interacting with oxygen
resulted in stable active conformation of the molecule
compound 1a inside the active site of the target protein. During
31% of the MD simulation time, H-bond networks were shown
to be important at the hydroxy residue of LYS 141 engaged with
the imidazolidinone ring via aromatic substituted aldehyde
conserved water molecule. During 59% of the MD simulation

Figure 11. 2D docked pose interactions of the cocrystal ligand at the active site of the target protein (PDB: 1MQ4).

Table 8. Amino Acid Interactions and Docking Scores
Exhibited by Ligands 1a, 2a, 3e, 4d, 5d, and 6d against PDB
1OL7a

compound
code

amino acid
involved in the
interactions

type of
bond

distance
(Å)

HB
strength

docked
score

(kcal/mol)

1a LYS 162 HB 2.67 strong −9.30
GLU 260 HB 2.55 strong
ASN 261 HB 2.16 strong

2a ALA 213 HB 2.74 weak −8.09
ASN 261 halogen

bond
3.46

3e LYS 143 HB 2.20 strong −8.60
LYS 162 HB 3.49 strong
ASP 274 HB 3.13 strong

4d LYS 143 HB 2.24 strong −8.07
LYS 162 HB 3.39 weak
ASP 274 HB 3.13 weak

5d LYS 143 HB 2.47 strong −7.62
LYS 162 HB 2.25 strong

6d ASP 256 HB 2.64 strong −7.91
ASN 261 HB 3.30 weak

aHB = hydrogen bond.

Table 9. Amino Acid Interactions and Docking Scores
Exhibited by Ligands 1a, 2a, 3e, 4d, 5d, and 6d against PDB
2DWBa

compound
code

amino acid
involved in the
interactions

type of
bond

distance
(Å)

HB
strength

docked
score

(kcal/mol)

1a LYS 143 HB 3.00 strong −8.80
GLU 260 HB 2.74 strong
ASP 274 HB 2.85 strong

2a ARG 137 HB 2.13 strong −8.06
ALA 213 halogen

bond
2.03

3e GLU 211 HB 2.53 strong −7.71
ALA 213 HB 2.88 strong
GLY 216 HB 3.02 strong

4d LYS 162 HB 2.20 strong −7.13
GLU 260 HB 3.01 strong
ASP 274 HB 3.22 weak

5d LYS 162 HB 2.25 strong −7.84
ASP 274 HB 3.34 weak

6d LYS 141 HB 2.37 strong −7.88
LYS 162 HB 2.90 strong

aHB = hydrogen bond.
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time, the nitrogen of residue LYS 162 interacts with the thiazole
ring via a conserved water molecule (Figure 16e).
MD studies of the significantly docked score compounds 3,

19, 21, 38, and 47were carried out in order to assess the stability
of the complex for 100 ns. According to the trajectory analysis,
the root mean square deviation (RMSD) value for the backbone
of the protein aurora kinase. Water-bridge, hydrogen-bonding,
and hydrophobic interactions at stable areas. Compounds 3, 19,
21, 38, and 47 showed a steady gyration radius (Rg) with an
average value of 6.25 Å after 100 ns MD simulation. A high
solvent-accessible surface area. The secondary structural

features and the interaction diagrams of the known compounds
3, 19, 21, 38, and 47 during simulation are shown in Figures S1−
S10.
Compound 1a showed a steady gyration radius (Rg) with an

average value of 6.25 Å after a 100 ns MD simulation. A high
solvent-accessible surface area of 100.67−390.902 Å, a low PSA
(polar surface area) of 135.211−120.86 Å, and a low MolSA
(molecular surface area) of 500.159−495.451 Å and one Intra
HB (intramolecular hydrogen bond) were also found in
compound 1a, which helped to ensure its stability throughout
a 100 ns MD simulation (Figure 16f).

Figure 12. 2D docked pose interactions of the reference compounds 3, 19, 21, 38, and 47 at the active site of the target protein (PDB: 1MQ4).
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3.6. Estimation of Binding Free Energy. The bound
complexes identified by molecular docking and MDS were
further explored by performing MM-GBSA binding free energy

calculations, which are the sum of gas-phase energy, solvation
free energy, and entropic contributions averaged over several
snapshots of the MD trajectory. The key contributors for

Figure 13. 2D docked pose interactions of the designed compounds 1a, 2a, 3e, 4d, 5d, and 6d at the active site of the target protein (PDB: 1MQ4).
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binding namely H-bonding, lipophilic interactions, electrostatic
interactions, and van der Waals energy were also estimated from
the trajectories obtained during MDS and are depicted in Table
10. The lower the binding energy, the better the binding of the

protein and ligand. All of the compounds except Cd_19 showed
less binding energy. The net binding energy (ΔG) of the
compounds are −88.51, −51.64, −84.47, −89.69, and −6.81
kcal/mol for molecules Cd_1a, Cd_3, Cd_19, Cd_21, Cd_38,

Figure 14. 2D docked pose interactions of the designed compounds 1a, 2a, 3e, 4d, 5d, and 6d at the active site of the target protein (PDB: 1OL7).
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and Cd_47, respectively (Table 10). The lipophilic and van der

Waals terms also favored the binding of all of the complexes.

As shown in Table 10, the reference compound 47 showed the

least relative binding affinity of −89.69 kcal/mol. However,

Figure 15. 2D docked pose interactions of the designed compounds 1a, 2a, 3e, 4d, 5d, and 6d at the active site of the target protein (PDB: 2DWB).
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Figure 16. continued
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target compound 1a showed a more similar binding affinity of
−88.51 kcal/mol. In Figure 16g, the essential residues involved

in ligand binding, which contribute to the lowest binding energy,
are depicted. Notably, residues such as Lys 156, Leu 159, Lys

Figure 16. (a) Root mean square deviation (RMSD) graph of the compounds during MD simulation. (b) Root mean square fluctuation (RMSF)
graph of the compounds duringMD simulation. (c) Vital amino acid interactions during theMD simulation of compound 1a. (d) Percentage of amino
acid interactions during theMD simulation of compound 1a. (e) Percentage protein secondary structure element (SSE) graph during MD simulation.
(f) Radius of the gyration graph during MD simulation. (g) Pairwise per-residue energy decomposition analysis of AURKA upon ligand binding.
Residues with the least energy in Cd_1a are shown in red, whereas the same in other complexes are marked in blue.
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162, Val 174, Ser 186, Arg 189, Tyr 212, Arg 220, Leu 264, and
Leu 289 play crucial roles in facilitating ligand binding (Figure
16g).

4. CONCLUSIONS
The QSAR analysis of fifty-four 2-amino thiazole data set
compounds resulted in the best model 2. The resulting model
was very reliable, consistent, and predictive. The establishment
of a good statistical model has opened up a new avenue for
studying descriptors in the suppression of aurora kinase.
Internally and externally, software statistical parameters were
used to validate the model in order to predict the bioactivity.
Themodel obtained was well-validated and predictive with good
statistical values R2 = 0.8902, CCCtr = 0.7580, Q2 LOO = 0.7875,
Q2LMO = 0.7624, CCCcv = 0.7535, Rext

2 = 0.8735, and CCCext =
0.8783. The applicability domain (AD) model was well-defined,
and the test set molecules were well predicted and the entire
molecules within the model AD. Molecular descriptors
EstateVSA5, PSA, MoRSEP3, MATSp5, and RDFC24
influenced the anticancer potential of the studied molecules.
Through the ADMET prediction, it was observed that all of the
designed compounds possess drug-likeness properties except
compound 6c. The molecular docking studies on the best-
predicted active compounds 1a, 2a, 3e, 4d, 5d, and 6d revealed
that compound 1a had the highest docking score of −9.67.
Molecular dynamics simulations were also performed using 100
ns to clarify the stability, conformation, and intermolecular
interactions of compound 1a compared to known compounds 3,
19, 21, 38, and 47, resulting in satisfactory findings, and it was
found that the target compound 1a showed a much closer
binding affinity of −88.51 kcal/mol. All these results indicated
that compound 1a is a promising lead candidate; hence, it
emerged as a compound for further synthesis and bioactivity
testing against breast cancer.
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Table 10. Calculated Binding Free Energy of the Identified Compounds with AURKAa
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ref Cd_19 −6.815 −6.703 −34.08 −42.91 21.18
ref Cd_21 −51.64 −26.06 −30.71 −41.97 46.25
ref Cd_38 −84.471 −86.013 −34.202 −30.94 73.17
ref Cd_47 −89.69 −9.52 −43.98 −75.91 31.32

aΔGbind is the total binding energy; ΔGcoloumb is the Coulombic energy; ΔGlipo is the lipophilic energy; ΔGvdw is the van der Waals energy; ΔGSolv GB
is the generalized Born electrostatic solvation energy.
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