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ABSTRACT

DNA methylation is an important epigenetic modifi-
cation that has essential roles in cellular processes
including gene regulation, development and disease
and is widely dysregulated in most types of cancer.
Recent advances in sequencing technology have
enabled the measurement of DNA methylation at
single nucleotide resolution through methods such
as whole-genome bisulfite sequencing and reduced
representation bisulfite sequencing. In DNA methy-
lation studies, a key task is to identify differences
under distinct biological contexts, for example,
between tumor and normal tissue. A challenge in
sequencing studies is that the number of biological
replicates is often limited by the costs of
sequencing. The small number of replicates leads
to unstable variance estimation, which can reduce
accuracy to detect differentially methylated loci
(DML). Here we propose a novel statistical method
to detect DML when comparing two treatment
groups. The sequencing counts are described by a
lognormal-beta-binomial hierarchical model, which
provides a basis for information sharing across dif-
ferent CpG sites. A Wald test is developed for hy-
pothesis testing at each CpG site. Simulation results
show that the proposed method yields improved
DML detection compared to existing methods, par-
ticularly when the number of replicates is low. The
proposed method is implemented in the
Bioconductor package DSS.

INTRODUCTION

DNA methylation is an epigenetic modification that plays
an important role in normal development and gene regu-
lation (1–3). It involves the addition of a methyl group to

the 5-position of a cytosine of CpG dinucleotides, with
very rare cases that happen in CHG and CHH (H=A,
T or C) (4). Methylation of a cytosine within a gene
promoter region can repress gene expression by interfering
with the binding of transcription factors or by binding
proteins that inhibit transcription (5,6), while methylation
within gene bodies has a heterogeneous relationship with
gene expression (7–9). Given its influence on gene expres-
sion, both the biological consequences and causes of
changes in DNA methylation are of great interest, and a
common goal of DNA methylation studies is to identify
differentially methylated loci (DML) across different bio-
logical conditions.
Comparisons of DNA methylation across different con-

ditions have traditionally been performed at the candidate
gene level. However, methods for assessing whole-genome
methylation have recently improved substantially in terms
of accuracy, genomic coverage, resolution and affordabil-
ity. Current sequencing-based methods for methylation
analysis can be classified into two categories: enrich-
ment- (10) and bisulfite-conversion-based methods (11).
Enrichment-based methods such as MeDIP-seq (10),
MBD-seq (12,13) and methylCap-seq use different
methyl-binding proteins or antibodies to enrich for
methylated DNA fragments, followed by the application
of next-generation sequencing of the fragments and align-
ment to a reference genome to estimate methylation levels
at a 100–200-bp resolution. In contrast, bisulfite-conver-
sion-based methods such as whole-genome bisulfite
sequencing (BS-seq or MethylC-seq) (8,14) and reduced
representation bisulfite sequencing (RRBS) (15,16) allow
estimation of methylation proportions at a single-nucleo-
tide resolution. Treatment of DNA with sodium bisulfite
induces deamination and conversion of unmethylated
cytosines to uracil, which will be amplified as thymine,
while methylated cytosines are protected by the methyl
group and remain unchanged. Bisulfite sequencing data
can be analyzed by counting the number of sequencing
reads for each CpG site where either a thymine or a
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cytosine is observed. The count of thymine represents the
number of sequenced DNA strands that are unmethylated
(U) and the count of cytosine represents the number of
DNA strands that are methylated (M) at this CpG site. By
taking the ratio of methylated number (M) to the total
number of reads (M+U), the proportion of methylated
DNA can be calculated as M/(M+U). By this process,
DNA methylation proportions can be estimated at
single-nucleotide resolution with genome-wide coverage
via BS-seq, or with limited coverage (5–10% of all CpG
sites genome-wide) via RRBS.
Because BS-seq has become available only recently,

there is not yet a consensus on statistical approaches for
analyzing these data. In simple two-group comparisons,
existing methods such as Fisher’s exact tests [e.g. (4,17–
19)] or t-tests [e.g. (17,20)] are often applied to detect
DML. However, the use of Fisher’s exact test is problem-
atic in that it is typically carried out by summing read
counts across replicates in each group, a strategy which
implicitly assumes that the data are from the identical dis-
tribution and thus ignores variation among biological rep-
licates. This problem can be avoided by using a t-test to
compare the methylation proportions [estimated as M/
(M+U) for each replicate] across the two groups, but
this approach does not account for the variance of the
point estimates M/(M+U) and thus ignores information
on coverage depth. Moreover, given the prohibitive costs
of BS-seq experiments, there may not be sufficient obser-
vations for the asymptotic assumption of a t-distribution
to hold. For example, a recent RRBS study of DNA
methylation in the early mammalian embryo included
only 2–5 replicates per condition (21). The small sample
size also leads to unstable estimation of within-group
variance, and subsequently undesirable test results.
Recently several methods have been proposed for detect-
ing differentially methylated regions (DMRs) from whole-
genome BS-seq data (20,22,23). These methods first
estimate the mean methylation levels through smoothing,
and compare methylation across conditions via either a t-
test (BSmooth) (20) or a Wald test based on a generalized
linear-model framework (BiSeq) (22). Another recently
proposed method uses an adjusted �2-test (23) in which
a design effect parameter is calculated based on clustering
information and then used to adjust the methylation
counts and coverage. However, these methods face the
same problems described above in that the within-group
variance cannot be stably estimated when sample size
is small.
In this article, we present a novel statistical method for

DML detection that addresses the different sources of
variation and the small-sample problem. There are two
potential sources of variation in BS-seq data: technical
variation that reflects the measurement error resulting
from the sampling of DNA segments during sequencing,
and biological variation among replicates that reflects the
heterogeneity among samples in the same treatment group
(24,25). Our method is based on a Bayesian hierarchical
model that accounts for this hierarchy of variation
between and within replicates by employing a beta-
binomial model. Similar hierarchical models have been
proposed to analyze gene expression data, including a

gamma-Poisson distribution to model RNA-seq count
data (24,26–31), and recently, a beta-binomial distribution
to model differential gene expression in paired high-
throughput sequencing samples (32). To improve the per-
formance of our method when the number of replicates is
low, we employ a shrinkage approach; this strategy has
previously been shown to improve detection of differential
expression in microarray and RNA-seq studies
(24,28,30,31). With this approach, we borrow information
from CpG sites across the genome to stabilize the estima-
tion of the dispersion parameters. We then derive a com-
putationally efficient Wald test based on our model and
the shrunk dispersion parameter estimates. Our simulation
results show that by appropriately modeling the sources of
variation and borrowing information across the genome
to obtain stabilized dispersion parameter estimates, our
method leads to better performance to identify true
DML compared to existing methods, particularly when
the number of replicates is low.

MATERIALS AND METHODS

The Bayesian hierarchical model

To characterize the data, we propose the following
Bayesian hierarchical model, based on the beta-binomial
distribution. Notation for our model is as follows: at the
i-th CpG site, j-th group and k-th replicate, Xijk is the
number of reads that show methylation, Nijk is the total
number of reads that cover this position and pijk is the
underlying ‘true’ methylation proportion. Since the
process of sequencing involves the random sampling of
two kinds of reads—methylated or unmethylated,
Xijkjpijk,Nijk will follow a binomial distribution:

Xijkjpijk,Nijk � Binomial Nijk,pijk
� �

:

Since the true methylation proportions among repli-
cates can be anywhere between 0 and 1, we assume that
the proportions for each CpG site within each group of
replicates follow a beta distribution. The beta distribution
has long been a natural choice to model binomial propor-
tions as it is a conjugate distribution of the binomial dis-
tribution and is the most flexible distribution with a
support interval of [0,1].

pijk � Beta �ij,;ij
� �

:

Here the beta distribution is parameterized by mean
(denoted by �ij) and dispersion (denoted by ;ij).
Compared with the traditional parameterization of the
Beta (�,�) distribution, the parameters have the following
relationship:

� ¼
�

�+�
, ; ¼

1

�+�+1
:

In this hierarchical model, the biological variation
among replicates is captured by the beta distribution
and the variation due to the random sampling of DNA
segments during sequencing is captured by the binomial
distribution. The dispersion parameter ;ij captures the
variation of a CpG site’s methylation proportion relative
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to the group mean. We allow each CpG site within a single
condition (e.g. within cases, or controls) to have its own
dispersion. This is a flexible assumption because it allows
either different or common dispersions for both condi-
tions; however, our software also includes an option to
assume a common dispersion for cases and controls.

To combine information across all CpG sites, based on
the observed distribution of dispersion from a publicly
available RRBS dataset on mouse embryogenesis (21),
we assumed the following prior on ;ij:

;ij � log-normal ðm0j,r
2
0jÞ

where m0j and r20j are mean and variance parameters that
can be estimated from the data. For each CpG site in this
dataset, we applied a method of moments (MOM) estima-
tor to estimate the dispersion parameters. As shown in
Figure 1, the genome-wide distribution of logarithm dis-
persion parameter estimates is approximately Gaussian
with mean=–3.39 and SD=1.08, suggesting that the dis-
persion parameters can be well-described by a log-normal
distribution. However, simulations using dispersions from
different distributions also show that our proposed
method is robust to violations of this log-normal assump-
tion (Supplementary Figure S1).

Parameter estimation

To estimate the parameters of the prior distribution in a
general setting, we first use the MOM to estimate the dis-
persion parameters for all CpG sites, and then estimate
m0j and r20j as the mean and variance of the logarithm of

the dispersion estimates. The mean methylation levels are

estimated as �̂ij ¼

P
k
XijkP

k
Nijk

: Under the hierarchical model,

the conditional posterior distribution of ;ij satisfies:

log p ;ijjxijk,Nijk,�ij

� �� �
/
X
k

’ xijk+ ;
�1
ij � 1

� �
�ij

� �

+
X
k

’ Nijk � xijk+ ;
�1
ij � 1

� �
1� �ij

� �� �

�
X
k

’ Nijk+ ;
�1
ij � 1

� �� �
� n’ ;�1ij � 1

� �
�ij

� �

� n’ ;�1ij � 1
� �

1� �ij

� �� �
+n’ ;�1ij � 1

� �

� log ;ij
� �
� log r0j

� �
�

log ;ij
� �
�m0j

� �2
2r20j

:

A point estimate of ;ij can be obtained by maximizing this
conditional posterior likelihood. In practice, we use the
Newton–Raphson method after plugging in the estimates
of m0j, r

2
0j and �ij. Because we estimate m0j and r20j from

the data, the estimated ;ij is therefore an empirical Bayes
estimate, which shrinks toward the common prior mean.
Also notable is that the last line of the above equation
includes the penalty function� logð;ijÞ

� logðr0jÞ �
ðlogð;ijÞ�m0jÞ

2

2r2
0j

, which will penalize extremely

large ;ij in our estimation.

Statistical test procedure

After estimating the parameters for each group as
described above, hypothesis tests can be performed at
each CpG site to compare mean methylation levels
between two groups, e.g. test H0 : �i1 ¼ �i2: We propose
to use a Wald test. The variance of �̂ijis derived as follows.
First, the variance of Xijk is (based on beta-binomial
distribution):

var Xijk

� �
¼ Nijk�ij 1� �ij

� �
1+Nijk � 1
� �

;ij
� �

:

So,

var �̂ij

� �
¼ var

P
k XijkP
k Nijk

� 	

¼
1P
k Nijk

� 	2X
k

Nijk�ij 1� �ij

� �
1+Nijk � 1
� �

;ij
� �
 �

:

ð1:1Þ

The estimated variance of �ij can be obtained by
plugging in estimated values of �ij and ;ij to Equation
(1.1). For two-group comparisons, a Wald test of the
i-th CpG site is:

ti ¼
�̂i1 � �̂i2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vâri1+vâri2
p ð1:2Þ

where vârij ð j ¼ 1,2Þ is the estimated variance for group 1

or 2. It is not trivial to derive the null distribution of the

test statistics. However, based on simulation results which

suggest that the empirical null distribution of the test stat-

istics is approximately normal (Figure 5), it is possible to

calculate approximate P-values based on the normal

distribution.

log(estimated dispersion)
−7 −6 −5 −4 −3 −2 −1

Figure 1. Histogram of the logarithm of estimated CpG-specific disper-
sion (;ij, estimated by MOM) from mouse embryogenesis data (21) for
one chromosome. The solid line is the theoretical density curve for a
normal distribution with parameters estimated from logð;ijÞ: This dem-
onstrates that ;ij can be approximately modeled as a log-normal
distribution.
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Defining DMRs

Based on the calculated P-value at each CpG site, we im-
plemented a simple procedure in DSS for calling DMRs
based on the approximate Wald test P-values described
above. To call DMRs, the user needs to specify a P-
value threshold and a few other parameters. Called
DMRs must exceed a minimum length (100 bp by
default) and cover more than a minimum number of
CpG sites (three by default), and the percentage of CpG
sites in the DMR with P-values less than the threshold
must exceed a user-specified value (80% by default).
Regions satisfying the above criteria will be reported as
DMRs. Note that in this procedure, the correlation of the
P-values for proximal sites is not considered; incorpor-
ation of this information into the DMR detection
method is a direction of future research.

Simulations

We used simulation data to test the proposed method and
compare the results with existing methods. Simulations
are based on mouse embryogenesis data (Gene
Expression Omnibus accession GSE34864) from RRBS
experiments in a study on mouse embryogenesis (21).
For each simulation, we simulated 20 000 CpG sites for
replicates from two groups, where the number of repli-
cates per group is taken as 2, 3 or 5. We first computed
�ij for each of the CpG sites based on the average methy-
lation proportions from a set of 20 000 contiguous CpG
sites in the mouse embryogenesis data. For Type I error
simulations, we let �i1 ¼ �i2 for all CpG sites; for simula-
tions that included DML, we allowed �ij to vary between
groups for a randomly selected 5% of CpG sites in each
simulation. We next simulated the dispersion parameter ;ij
for each CpG site from a log-normal distribution with
parameters estimated from the data (mean=–3.39,
var=1.08) as described above. To check the robustness
of our model to departures from this distributional as-
sumption, we also performed simulations with ;ij drawn
from a Gamma distribution (with parameters estimated
from the data, shape=1.5, scale=0.02) and empirically
sampled from real data estimates. For coverage, we
simulated coverage depth (Nijk) for each CpG site and

replicate by sampling the coverage depth from real
RRBS data. Finally, for each replicate at each CpG site,
we then used �i, ;ij and Nijk to simulate methylated counts
for each CpG site based on the beta-binomial distribution.

For additional simulations based on a different genome,
parameters were estimated from a publicly available whole
genome Arabidopsis dataset (Gene Expression Omnibus
accession GSE38991). In this situation, a similar approach
was used for generating simulation data. Again, we used
log-normal (mean=–4.3, var=1.7), Gamma (shape=
0.43, scale=0.06) and empirical distributions to
generate dispersion parameter ;.

We also performed additional simulations using a dis-
tribution other than the assumed beta distribution to
generate methylation levels. In these simulations, methy-
lation levels of biological replicates within each treatment
group and CpG site were generated from a truncated
normal distribution. Each CpG site and group had its
own truncated normal distribution, with the parameters
estimated from the mouse embryogenesis data. Since
methylation levels range from 0 to 1, the boundaries of
each truncated normal distribution were set to be 0 and 1.

RESULTS

Simulations

Because true differential methylation status of CpG sites is
unknown in real data, simulation is needed to evaluate the
performance of different methods in a situation where the
true DML are known. For all simulations presented
below, we define our parameters to mimic the genomic
structure of real data (based on publically available data
from the mouse (21) or Arabidopsis genome), as described
in Materials and methods section.

We first assessed the estimation of dispersion param-
eters (;) in simulated data based on RBBS data from
the mouse genome (21). Plots of estimated dispersions
demonstrated reduced bias and avoidance of extreme
values compared to a naı̈ve MOM estimator, leading to
improved precision when shrinkage was used
(Supplementary Figure S2). Figure 2 shows that the
proposed method has much lower MSE than the naı̈ve
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Figure 2. Boxplots comparing the distribution of mean squared error (MSE) for dispersion estimates from the proposed shrinkage method and naı̈ve
MOM estimators on 100 simulations of 20 000 CpG sites, where dispersion � is randomly generated from the log-normal distribution. Each group
contains two replicates (left) or five replicates (right).
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method, and additional simulations demonstrate that the
proposed method is able to achieve lower MSE even if the
model is misspecified (Supplementary Figure S3).

We next applied our proposed Wald test procedure to
identify DML in a two-group comparison using simulated
data. For comparison, we used both the shrunk and the
naı̈ve dispersion estimates to compute the Wald test stat-
istics. This is a well-controlled comparison, since the only
difference between the two tests is the method of disper-
sion estimation. In addition, we included the following
methods in our comparison: (i) a two-group t-test based
on the point estimates M/(M+U), (ii) Fisher’s exact test
with data collapsed across biological replicates and (iii) a
newly developed adjusted �2-based method (23). Each
method produces a P-value for each CpG site, which
can be used to for ranking potential DML—an important
aspect of DML detection. Since DML detection is often
used as a hypothesis-generating tool, the goal is to have as
many true positives as possible in the top-ranked CpG
sites. Thus, we used the proportion of true DML among
top ranked loci (true discovery rate, or TDR) as a per-
formance measure in our simulations. As shown in
Figure 3 and Supplementary Figure S1, our proposed
method (Wald test with shrunk dispersion) has the
highest proportion of true positives among the top-
ranked CpG sites across simulation conditions that
varied the number of replicates (2, 3 or 5) and the true
underlying distribution of dispersion parameters (log-
normal, Gamma or empirical). When there are only two
replicates in each group, the proposed method signifi-
cantly out-performs all other methods. With five replicates
per group, the proposed method still provides the best
results, although the improvement is smaller since all
methods perform reasonably well in this case. These
results make sense because the benefit of borrowing infor-
mation across CpG sites is greater when there is less in-
formation for each CpG site. The comparison between the
results from Wald tests with different dispersion estimates
(shrunk versus naı̈ve) demonstrates that the shrinkage
procedure improves DML detection, especially when the
replicate number is small. It also shows that with larger
replicate numbers, the Wald test with naı̈ve dispersion

estimation may be a good choice since it is computation-
ally less intensive. In addition, we note that the TDR
curve is equivalent to an ROC curve magnified to focus
on the region of highest specificity. A traditional ROC
curve analysis is provided in Supplementary Figure S4,
where our proposed method also consistently shows the
best performance. Finally, to show the overlap of the
detected DML from different methods with the ‘true
DML’ in simulation study, a Venn Diagram generated
from the R package ‘VennDiagram’ (33) is shown in
Figure 4. The numbers in the method-specific areas of
the plot show that the other methods have relatively
large proportions of false positives among their sets of
identified DML compared to our proposed method. The
Wald test successfully avoids method-specific false posi-
tives, which indicates better detection accuracy.
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Figure 3. Comparison of TDR for different methods based on 100 simulations of 20 000 CpG sites. The proportion of true discovery among top
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Figure 4. Venn diagram of detected DML and true DML in simulation
study. Bonferroni-corrected P-value is applied as the cutoff to call
DML.
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The consistent improvement of our method over others
across different dispersion distributions in Figure 3 and
Supplementary Figure S1 demonstrates that our method
is robust to departures from the assumed log-normal dis-
tribution of dispersion parameters. To further investigate
robustness, we performed additional simulations where
simulation parameters were estimated from a publicly
available Arabidopsis genome instead of the mouse
genome. Based on several different distributions of disper-
sion parameters, our proposed method again achieves the
highest proportion of true positives among the top ranked
CpG sites (Supplementary Figure S5). We also performed
simulations that used a different generating distribution
for methylation proportions than the beta distribution
assumed by our model. In these simulations, methylation
levels of different replicates within each group and CpG
site were generated from a truncated normal distribution.
Our proposed method continues to show the best perform-
ance in DML detection (Supplementary Figure S6), ver-
ifying the robustness of our model to misspecified
distributional assumptions.
Statistical inference is another essential part of the

DML analysis. We propose to use the normal distribution
to derive P-values for the Wald test statistics. The histo-
gram and normal quantile–quantile (QQ) plot of Wald
test statistics (Figure 5) show that the statistics follow a
normal distribution very well in the middle of the distri-
bution, while the heavier tails correspond to the DML.
These results support the validity of using normal P-
values. Table 1 demonstrates that with two replicates in
each group, our method achieves appropriate rates of
Type I error for data simulated under the null hypothesis
ð�i1 ¼ �i2Þ, while the Wald test with naı̈ve dispersion esti-
mates is overly conservative and the other methods con-
sidered here are anti-conservative when the number of
replicates is low. Supplementary Figure S7 shows the dis-
tributions of P-values for data simulated under the null
hypothesis. Since the P-values should be uniformly
distributed under the null hypothesis, a �2 goodness-of-
fit test for uniformity of the P-values was performed
(Table 1, right column). Although all distributions
deviated significantly from uniformity, the results in

Table 1 and Supplementary Figure S7 demonstrate that
the P-values from the proposed method achieve the closest
fit to a uniform distribution while the naive Wald test
shows a strong depletion of P-values near 0 (conservative
bias) and the other methods yield an excess of P-values
near 0 (anti-conservative bias) and 1.

Real data analysis

We next applied our method to a publicly available
dataset from a study of mouse embryogenesis (21),
referred to as ‘mouse embryogenesis data’ hereafter. We
first focused on methylation differences between oocyte
and zygote cells (two replicates each) for 15 180 CpG
sites spanning �87Mb across a chromosome. Although
here we focus on a single chromosome from mouse em-
bryogenesis data for illustrative purposes, we have also
applied our method to perform this analysis for the
mouse whole genome (Supplementary Material 2) and a
whole-genome bisulfite sequencing study of Alzheimer’s
disease (AD) in humans (34) (Supplementary Material
3). In the mouse embryogenesis data, we applied our
method to test for DML between oocyte and zygote
cells and found that a majority of the CpG sites (57.4%)
were hypermethylated in oocytes (Figure 6), which is con-
sistent with the original findings (21). Manhattan-style
plots (Figure 7) show the distribution of –log10 P-values
from different methods across an arbitrarily chosen 14-

Table 1. Type I error simulation results

Method used Proportion of sites
with P< 0.05

Uniformity �2

statistics

Wald test with shrinkage 0.0546 695.45
Wald test with no shrinkage 0.0367 1944.81
T-test 0.0922 6909.86
Fisher’s exact test 0.1588 47 260.71
Adjusted �2 test 0.1734 6602.28

Based on 100 simulations of 20 000 CpG sites under the null hypothesis
ð�i1 ¼ �i2Þ, with two replicates in each group. Under the null hypoth-
esis, �5% of CG sites should be detected as DML if we use a
significance level of .05. To a uniform distribution, �2 statistics for
goodness-of-fit of P-values are also presented for each method.

Figure 5. Histogram (left) and normal QQ plot (right) of Wald test statistics from the simulated data.
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Mb region. The plots based on Fisher’s exact test and the
adjusted �2 test show a pattern that is consistent with the
anti-conservative bias demonstrated in Table 1 and
Supplementary Figure S7. Similarly, the Wald test with
naı̈ve dispersion estimates is consistent with the
demonstrated conservative bias. The proposed method,
shown in Table 1 to be unbiased, identified a number of
CpG sites associated with development stage at a very
stringent significance threshold that corresponds to
genome-wide significance after Bonferroni adjustment
for a million tests (P< 5� 10�8). Further simulations
based on the same data also confirm these anti-conserva-
tive and conservative biases. We used the mean and dis-
persion from the same 15 180 sites to simulate methylation
replicates under the null hypothesis (�i1 ¼ �i2 for all i).
Since these data were simulated under the null hypothesis,
all detected DML can be considered false positives. The
Wald test framework appears to control the false positive
rate appropriately, while the Fisher’s exact test and
adjusted �2 test yield relatively high proportions of false
positives (Supplementary Figure S8). Thus, it can be
assumed that the majority of the CpG sites identified as
significant via the Wald test are true positives, with a
notable improvement in the number of true positives
obtained using the Wald test with shrinkage compared
to the naive Wald test.

Overall distributions of P-values for the analyses in
Figure 7 is shown in Supplementary Figure S9. If the
test statistics are compared to the appropriate distribu-
tion, P-values should follow a uniform distribution
between 0 and 1 when the null hypothesis is true. Thus,
the distribution of P-values in a typical DML study
should be a mixture of the uniform distribution (reflecting
null results) and a peak near 0 (reflecting true DML).
Supplementary Figure S9 shows that our proposed
method yields an appropriate mixture of uniformly
distributed P-values and P-values near 0. In contrast,
the Fisher’s exact test and adjusted �2 test yield an
excess of P-values near 1 and a large pile-up of P-values
near 0 that is consistent with the anti-conservative bias

shown in Table 1 and Supplementary Figure S7.
This pattern is also supported by a Venn diagram
showing large numbers of method-specific DML
(Supplementary Figure S10).
For the comparison of DNA methylation levels between

oocyte and zygote, we find that the methylation levels are
higher in oocyte compared with zygote in most of the
DML. This is supported by the idea that active
demethylation is expected to occur before pronuclear
fusion or the completion of DNA synthesis. Moreover,
in the DML, methylation levels from oocyte are very
high (close to 100%). This is consistent with the original
findings by Smith et al. (21), who observed the same
pattern of methylation level distribution among the
identified DMR (Figure 2D in Smith et. al.). For compari-
son purpose, we applied all five methods to analyze
the same oocyte versus zygote data, and compared the
oocyte methylation levels from top DML called from
all methods. Supplementary Figure S11 shows that the
DML detected from our proposed method have
the highest oocyte methylation levels, indicating that the
proposed method has the best concordance with previous
findings.
For the Alzheimer’s disease data, we also applied all five

methods to analyze the whole genome. Manhattan-style
plots (Supplementary Material 3) show the distribution of
–log10 P-values from different methods across each
chromosome. The result is consistent with our findings
for the mouse embryogenesis data in that the noisy back-
grounds from t-test, Fisher’s exact test and the adjusted �2

test suggest an anti-conservative bias similar to that
demonstrated in Table 1. The Venn diagram
(Supplementary Figure S12) suggests that the t-test,
Fisher’s exact test, and the adjusted �2 test have many
method-specific false positives, as oppose to our
proposed methods. Compared with the Wald test with
naı̈ve dispersion estimation, more significant results are
observed for the Wald test with shrunk dispersion.
Overall, the proposed Wald test with shrunk dispersion
shows the best balance of sensitivity and specificity.
Using the genome-wide test results for each CpG site,
we detected DMRs as described in Materials and
methods section. With computed DMRs, we identified
nine genes whose transcriptional start site (TSS)
overlapped with one or more DMRs. A list of all nine
genes and their biological relevance is provided in
Supplementary Table S1. Further investigation of these
nine genes indicates that three have been previously
reported to be associated with AD or brain functions.
For example, FAM90A1 interacts with Amyloid
Precursor Protein (APP) gene (35); APP forms the
protein basis of the amyloid plaques found in the brains
of patients with Alzheimer disease. Mutations in the APP
gene have been associated with Alzheimer disease (36).
Other examples are PAX8 and PAX8-AS1, whose gene
family typically encode proteins involved in thyroid fol-
licular cell development and expression of thyroid-specific
genes (37). Thyroid hormone has been shown to be
involved in adult cognitive functions (38).
Finally, the proposed method is computationally effi-

cient. It takes �25 s to process a genomic region
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Figure 6. Histogram of differences in methylation proportion from
mouse embryogenesis data (21) (oocyte–zygote). In accordance with
the previous finding, a majority of CpG sites (57.4%) were
hypermethylated in oocyte samples.
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Figure 7. DML detection along the genome from mouse embryogenesis data (21). Negative logarithm of P-values for each tested CpG site, from five
different methods, is plotted against genomic coordinates for a 14-Mb region.
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containing �50 000 CpG sites, in a 2.80GHz 4-core CPU,
12 GB RAM PC environment. Run times for additional
scenarios are shown in Table 2. The computational time is
almost linear to the number of CpG sites being tested, and
is only slightly longer when there are more replicates.
Hence, for a typical RRBS dataset with 2 million CpGs,
the proposed method will take around 16min. For whole
genome BS-seq data that covers 30 million CpGs, the
method will take around 4 h on a single core, which is
still very reasonable.

DISCUSSION

In this article, we present a novel statistical method to
detect DML from single nucleotide resolution DNA-
methylation data for comparisons of two treatment
groups. The major contributions of this work are
twofold. First we propose a shrinkage procedure that
improves estimation of the dispersion parameters.
Second, we develop a Wald test procedure to account
for the coverage depth and within-group variance.

The crucial step in DML detection methods is the esti-
mation of within-group variance. Variance shrinkage has
been widely applied since the microarray days (39) and has
been shown to improve differential expression detection.
The data from sequencing experiments, however, are
commonly modeled using discrete distributions where
the variance is dependent on the mean. For these data,
shrinkage cannot be applied directly to the variance par-
ameters. Because our method assumes that the dispersion
at each CpG site is independent of the mean [as opposed
to some RNA-seq differential expression detection
methods which model the dispersion-mean relationship
(26,30)], we checked whether this assumption appears to
hold in the data. Supplementary Figure S12 shows that
there is no apparent trend in the relationship between the
dispersion and mean, suggesting that we can appropriately
apply shrinkage to the dispersion parameter. Previous
work focused on RNA-seq data has shown that the true
biological variance among replicates in these data can be
captured by the dispersion parameter, and several algo-
rithms were developed to shrink the estimated dispersion
parameters (24,26,27,30). This work adopts similar ideas.
The data are described by a hierarchical model in which
the observed counts are modeled with a beta-binomial dis-
tribution, and a log-normal prior is imposed on the dis-
persion parameters. Such a model allows information
sharing across different CpG sites and provides shrinkage
estimation of the dispersion parameters. Simulation

results demonstrate the improved estimation of dispersion
parameters, which subsequently leads to more accurate
DML detection.
In this article, tests are performed for each CpG site

independently. It has been reported that DNA-methyla-
tion levels are spatially correlated along the genome
(40,41). Using smoothing techniques that were developed
to borrow information from nearby CpG sites can
improve the estimation of mean methylation levels �ij

(20,22). Although our tests did not incorporate
smoothing, the method developed in this work can be
used in conjunction with smoothing. In the proposed
Wald test (Equation 1.2), the shrinkage procedure
improves the estimation of the denominator. Smoothing
could complement this strategy by improving the estima-
tion of the numerator, and we thus plan to integrate
smoothing with shrinkage estimation in future work.
However, we note that smoothing should only be
applied when the data are ‘dense’, e.g. when data are avail-
able for many nearby CpG sites. When the CpG sites are
sparse, which is common with RRBS or hydroxyl-methy-
lation (5hmC) experiments (where the CpG sites showing
5hmC are sparse) (42), smoothing could lead to bias in
point estimation and subsequently hurt DML detection.
The method proposed in this work focuses on differen-

tial methylation at individual CpG sites, but the improved
DML detection provided by our proposed method has the
potential to lead to improved DMR detection as well, and
a function for DMR detection based on the P-values
computed for each CpG site is also provided in the DSS
software package.
In conclusion, we have provided a useful framework,

approach and software for analysis of both genome-wide
and reduced representation bisulfite sequencing data. In
our simulations, this approach outperforms several other
commonly used approaches, especially when the number
of biological replicates is low. This improvement likely
occurs because our Bayesian approach fully utilizes the
hierarchical structure of read count data, in which
multiple reads are sequenced for each replicate and
multiple replicates are contained in each biological condi-
tion. The framework proposed here also has the potential
to be useful for more complex study designs; in future
work we plan to extend our model for two treatment
groups to multifactor experimental designs and studies
with continuous outcome variables.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 2. Runtime of DML detection software package

Two replicates Three replicates Five replicates

20 000 CpG sites 9.57 9.76 10.29
50 000 CpG sites 23.58 24.51 25.73
100 000 CpG sites 47.02 48.61 51.01

Processing times in seconds for methylation data in a 2.80-GHz 4-core
CPU, 12 GB RAM PC environment.
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