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Abstract

The control architecture underlying human reaching has been established, at least in broad outline. However, despite
extensive research, the control architecture underlying human locomotion remains unclear. Some studies show evidence of
high-level control focused on lower-limb trajectories; others suggest that nonlinear oscillators such as lower-level rhythmic
central pattern generators (CPGs) play a significant role. To resolve this ambiguity, we reasoned that if a nonlinear oscillator
contributes to locomotor control, human walking should exhibit dynamic entrainment to periodic mechanical perturbation;
entrainment is a distinctive behavior of nonlinear oscillators. Here we present the first behavioral evidence that nonlinear
neuro-mechanical oscillators contribute to the production of human walking, albeit weakly. As unimpaired human subjects
walked at constant speed, we applied periodic torque pulses to the ankle at periods different from their preferred cadence.
The gait period of 18 out of 19 subjects entrained to this mechanical perturbation, converging to match that of the
perturbation. Significantly, entrainment occurred only if the perturbation period was close to subjects’ preferred walking
cadence: it exhibited a narrow basin of entrainment. Further, regardless of the phase within the walking cycle at which
perturbation was initiated, subjects’ gait synchronized or phase-locked with the mechanical perturbation at a phase of gait
where it assisted propulsion. These results were affected neither by auditory feedback nor by a distractor task. However, the
convergence to phase-locking was slow. These characteristics indicate that nonlinear neuro-mechanical oscillators make at
most a modest contribution to human walking. Our results suggest that human locomotor control is not organized as in
reaching to meet a predominantly kinematic specification, but is hierarchically organized with a semi-autonomous
peripheral oscillator operating under episodic supervisory control.
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Introduction

Despite extensive research, the control of human locomotion
remains unclear. Walking in unimpaired adults is characterized by
a remarkably repeatable spatial trajectory of the foot [1]. In
response to surface irregularity in the form of small obstacles,
subjects adjusted their minimum toe clearance using subtle
adjustments of lower-limb kinematics [2]. Patients with spinal
cord injury (SCI) who recovered following body-weight supported
treadmill training generated a foot trajectory that closely matched
the normal pattern, although they used very different joint
coordination patterns to do so [3]. These observations suggest
that supra-spinal processes predominate, adjusting peripheral
muscle activation and joint recruitment to control the kinematics
of the foot. Discrete reaching with the hand is similar: horizontal-
plane hand paths are predominantly straight and hand speed
profiles are remarkably invariant to reaching direction, load
carried and movement speed [4,5]. Following exposure to
mechanical perturbations, subjects adapt largely to restore hand
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kinematics [6,7]. Following exposure to visual distortions, subjects
adapt largely to restore the visual appearance of the controlled-
point (cursor) kinematics [8,9]. These and many other studies
indicate that muscle activations are adjusted as needed to meet a
centrally-planned kinematic specification.

Insofar as the foot is the lower-limb “end-effector”, loosely
analogous to the hand, the control architecture for locomotion
appears similar to that observed in upper-limb reaching. However,
locomotion is a predominantly rhythmic activity and neural
control of rhythmic movement is substantially different from
discrete reaching. Rhythmic behavior is very old phylogenetically
and available evidence indicates that oscillations are a primitive
element of biological motor control. The relation between discrete
and rhythmic movements has been studied extensively [10,11,12].
Unimpaired humans executing discrete movements activate
substantially more brain regions than when they execute rhythmic
movements [13]. The difference impacts the acquisition of skilled
behavior: learning eye-hand coordination to compensate for visual
field distortion is slower for rhythmic movements and transfers
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poorly to discrete reaching, whereas adaptation learned from
discrete reaches transfers well to rhythmic movements [14]. These
observations suggest that the control of rhythmic actions may be
situated deeper in the central nervous system (CNS) perhaps with
prominent contributions from the spinal cord. Observations of
fictive locomotion in non-human vertebrates provide unequivocal
evidence that neural circuits capable of generating sustained
rhythmic activity exist in the spinal cord isolated from its
periphery, though sensory feedback is known to play a key role
[15,16,17,18,19,20,21]. For unimpaired humans, continuous leg
muscle vibration produced locomotor-like stepping movements,
and spinal electromagnetic stimulation applied to unimpaired
human vertebrae induced involuntary locomotor-like movements
[22,23]. That suggests the existence of a rhythmic central pattern
generator (CPG) in the human spinal cord that may contribute to
generating locomotor activity, though feedback related to limb
loading, hip extension or the skin of the foot also play important
roles [16,24,25].

The relative contribution of rhythmic pattern generation to
unimpaired human locomotion remains unclear. Human infants
exhibit a primitive rhythmic stepping reflex but it typically
disappears at about 6 weeks after birth without training [26].
When independent walking emerges at about a year old, it does
not initially exhibit the rhythmic pattern of mature walking and
this cannot be ascribed to immature postural control [27]. The
locomotor-like  movements evoked by stimuli to unimpaired
human subjects were observed in a gravity-neutral position, unlike
normal walking, rendering it difficult to assess how those results
would apply to upright walking [22,23]. In this paper we report
behavioral experiments with unimpaired human subjects that
attempted to (1) test whether a neuro-mechanical oscillator
contributes to level walking and (2) assess the strength of its
contribution.

Robustly sustained oscillation can only emerge from a nonlinear
dynamical system. While a linear spring interacting with a mass
without friction (the classic simple harmonic oscillator) exhibits
oscillatory behavior, it is neither stable (the system will not return
to its original oscillation after perturbation) nor robust (infinites-
imal changes in friction will prevent sustained oscillation).
Robustly sustained oscillation emerges as a limit ¢ycle attractor from
nonlinear dynamical systems such as relaxation oscillators [28].
Nonlinear limit cycle oscillators not only encapsulate the robust
and stable rhythmic motion of periphery in human walking; they
also serve as competent models of neural rhythmic pattern
generators [29,30,31]. One of their distinctive characteristics is
that they may exhibit dynamic entrainment (an observation credited to
Christiaan Huygens in 1665): under certain conditions they will
synchronize their period of oscillation to that of an imposed
perturbation, phase-locking to establish a particular phase relation
with it [32]. Usually entrainment occurs only for a limited range of
perturbation frequencies; it exhibits a finite basin of entrainment. In
fact, entrainment to periodic mechanical perturbation has been
reported in several non-human vertebrates which show clear
evidence of spinal pattern generators [17,33,34,35].

We reasoned that if a nonlinear limit-cycle oscillator plays a
significant role in normal human locomotion, entrainment to
periodic mechanical perturbation should be observable. Con-
versely, if human locomotion is predominantly controlled to meet
a centrally-specified time course of kinematics (such as the
trajectory of the foot) then entrainment to mechanical perturba-
tion should not be observed under modest mechanical perturba-
tion; human walking should try to preserve the specified kinematic
patterns (including the specified walking cadence) instead of
allowing synchrony to external mechanical perturbation, i.e.,
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entrainment. In this study, we perturbed treadmill walking of
unimpaired subjects by applying modest periodic plantar-flexion
torques to the ankle using a robotic device. Synchronization
occurred with a finite basin of entrainment, robustly phase-locking
to the perturbation such that it assisted propulsion, demonstrating
the presence of a nonlinear neuro-mechanical oscillator.

Methods

Ethics Statement

Nineteen young adult subjects participated in the study (ages 23
to 35). They all reported no neurological or biomechanical
impairment. They walked on a treadmill at a self-selected
comfortable speed while Anklebot, a wearable robot, applied a
program of mechanical perturbations.

The Committee on the Use of Humans as Experimental
Subjects (COUHES), which acts as the Institutional Review Board
(IRB) for the Massachusetts Institute of Technology (MIT),
specifically approved this study and all the subjects gave written
informed consent to participate as approved by the committee.

Equipment

Anklebot (Interactive Motion Technologies, Inc.) (Figure 1) is a
therapeutic robot designed to assist and evaluate ankle function
[36]. It can deliver torque simultaneously in both dorsi/plantar-
flexion and inversion/eversion, though in this study, we focused on
the sagittal plane. The time profile of ankle torque actuation was
programmed at a sampling rate of 200 Hz with a precision =2.82
N-m. Onboard sensors measured ankle angles in both dorsi/
plantar-flexion and inversion/eversion with precision =1.5 de-
grees. A treadmill (Sole Fitness F80 with a 0.84 mx1.90 m deck
and 0.1 mph (0.045 m/s) belt speed resolution) was used. In some
experiments, subjects wore acoustic noise-cancelling headphones
(Bose QuietComfort 3).

Experimental Protocols

Experiment 1: Entrainment. 'T'o compensate for its possible
effect on walking dynamics, throughout all trials Anklebot was
programmed to act like a torsional spring and damper with
constant equilibrium position, stiffness and damping. The
equilibrium position was determined as the ankle angle when
the subject stood upright. The stiffness was set as 5 N-m/rad,
selected to approximate the stiffness necessary to compensate for
the effect of Anklebot’s inertia on the natural frequency of the
body about the ankle’. The damping was chosen empirically to be
1 N-m-sec/rad; minimal to avoid impeding walking yet sufficient
to stabilize Anklebot.

Before applying periodic mechanical perturbations, each
subject’s preferred stride duration was measured. Subjects were
mnstructed to walk on the treadmill at their preferred gait cadence
while wearing Anklebot on one leg. Each subject adjusted the
speed of the treadmill to be comfortable for walking, and this
treadmill speed was maintained throughout the subsequent
experimental session. Fach subject’s preferred stride duration (to)
was measured as the average duration of 15 successive strides.

After measuring Ty, periodic square torque pulses of magnitude
10 N-m and duration 0.1 second were added to the torque due to

"Almost all of Anklebot’s mass, approximately 3.6 kg, is concentrated around the
knee at an average height of roughly 0.5 m above the ankle. Its inertia about the
ankle is approximately 3.6 x 0.5” kg m% The average center of mass height of
human adults is approximately 0.997 m [37], and the ratio of ankle stiffness to
body mass during walking was estimated to be 5.73 N-m/rad-kg [38]. To keep
the ratio of stiffness to inertia of walking with Anklebot comparable to walking
without Anklebot, we approximated the Anklebot stiffness as 5 N-m/rad.
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Figure 1. An unimpaired human subject wearing Anklebot
while walking on a treadmill.
doi:10.1371/journal.pone.0031767.g001

the programmed spring-damper behavior. A magnitude of 10 N-m
is comparable to 10% of maximum ankle torque during normal
walking in adults and 0.1 second is comparable to 10% of one
stride duration in normal walking [39,40,41]. Subjects were
instructed to continue walking until asked to stop. A trial began
with a subject walking at preferred speed for at least 20 strides
without perturbation. Then the experimenter initiated the periodic
perturbation approximately coincident with the push-off portion of
stance phase of the leg wearing Anklebot. Under computer
control, Anklebot subsequently generated 30, 40 or 50 torque
pulses at intervals of tp. Thereafter the torque pulses were
discontinued (but the spring-damper behavior was maintained).
Subjects continued walking for at least 20 strides before being
instructed to stop.

On different trials the period of perturbation (tp) varied from
lower to higher than Ty, discretized with a resolution of 50 ms.
The subject’s preferred stride duration was rounded to the
nearest 50 ms and adjusted by adding and subtracting 50 ms and
100 ms respectively to determine four initial perturbation
periods. An additional 20 ms was added by the Anklebot
controller. Thus for a subject with a preferred stride duration
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of 1416 ms, we determined initial perturbations with periods of
1320 ms, 1370 ms, 1470 ms and 1520 ms. These were applied in
random order. If the first three perturbations showed clear
evidence of a finite basin of entrainment (defined in Data
Analysis) the fourth was omitted and the session ended. If four
perturbations did not show clear evidence of a finite basin of
entrainment, further perturbation periods were added. If subjects
exhibited entrainment to the shortest (longest) perturbation
period, on subsequent trials we further reduced (increased) the
period in steps of 50 ms untill entrainment was no longer
observed. All 19 subjects participated in this experiment. For 2
subjects, Tp was discretized with 100 ms intervals; for 5 subjects,
Tp was discretized with 25 ms intervals.

Experiment 2: Transient Phase Dynamics. To investigate
the transient process by which entrainment and phase-locking
were achieved, we revised the protocol as follows. A perturbation
period was selected which had evoked entrainment in experiment
1. As before, subjects walked at preferred speed for at least 20
strides without perturbation. Then the experimenter initiated the
periodic perturbation, taking care that initiation occurred at one of
a wide range of gait phases significantly different from the push-off
portion of the stance phase of the leg wearing Anklebot. Under
computer control, Anklebot subsequently generated 80 to 100
torque pulses at intervals of tp. Thereafter the torque pulses were
discontinued (but the spring-damper behavior was maintained).
Subjects continued walking for at least 20 strides before being
instructed to stop. Seven of the 19 subjects participated in this
experiment.

Role of Auditory Feedback. When producing the square
torque pulse, Anklebot made a small but perceptible noise. To
assess and minimize the possible effect of auditory input on
entrainment, 6 of the above 7 subjects were instructed to wear
noise-cancelling headphones through which white noise was
played during experiments 1 and 2. The volume of white noise
was increased until subjects were unable to detect the noise made
by Anklebot.

Role of Voluntary Intervention. To assess and minimize
the likelihood of voluntary adjustment to the perturbation, 4 of the
above 6 subjects (who wore noise-cancelling headphones) were
asked to perform a distracting task, counting aloud backwards
from 100 to 1 in their second language during experiments 1 and

2.

Data Analysis

The torque profile exerted by Anklebot and the kinematics of
the ankle and knee wearing the device were recorded at a sampling
rate of 200 Hz using the onboard sensors. A gait cycle was defined
from the knee angle data. Stride duration was compared before,
during and after the perturbation in each trial. All statistical
analysis was performed at a significance level of 5%.

Gait Cycle. The knee angle profile was filtered with a digital
low-pass filter with 7 Hz cutoff frequency. Key landmarks in the
gait cycle were estimated from extrema of the filtered knee angle
profile: (1) maximum stance phase knee flexion, (2) maximum knee
extension in terminal stance phase, (3) maximum swing phase knee
flexion and (4) maximum knee extension adjacent to heel strike
(Figure 2). For each stride, the knee angle profile was normalized
to define a gait phase running from 0 to 100% with 0% identified
as the moment of local maximum knee extension (4) following
maximum swing phase knee flexion (3), based on the observation
that (4) is adjacent to the initial loading or heel strike in normal
walking [39,41]. For 2 subjects this proved unreliable and 0% was
alternatively identified as the moment of maximum swing phase
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Figure 2. Typical plot of knee angle as measured by Anklebot
vs. phase (% of gait cycle). The miniature icons of a walker illustrate
the corresponding phases of a gait cycle. Four extrema were identified
from zero crossings of the knee angular velocity: (1) maximum knee
flexion during stance phase, (2) maximum knee extension during
terminal stance phase, (3) maximum knee flexion during swing phase
and (4) maximum knee extension adjacent to heel strike.
doi:10.1371/journal.pone.0031767.g002

knee flexion (3) shifted by 74 (or —26)%, based on the observation
that (3) occurs near 74% of gait cycle in normal walking [39,41].

Assessment of Entrainment. The torque perturbation was
delivered at constant period throughout any one trial but the gait
phase at which it occurred could vary (Figure 3). Entrainment
requires gait to have the same period as the perturbation, which
requires the perturbation phase to be independent of stride
number. Entrainment was assessed by linear regression of phase
with respect to stride number over the last 15 strides when
perturbation was present and testing whether the slope was zero. A
significant positive slope was classified as not entrained to a “slow”
perturbation; a significant negative slope was classified as not
entrained to a “fast” perturbation.

Basin of Entrainment. The basin of entrainment was
estimated from the highest and lowest perturbation periods that
entrained gait. Its upper boundary was assigned to the mid-point
between the largest perturbation period that entrained gait and the
smallest perturbation period identified as a slow perturbation that
did not entrain gait. Its lower boundary was defined similarly.

Analysis of Phase Convergence. I'rom the data of
experiment 1 for each subject, the standard deviation, o, of the
gait phases at which the torque pulse occurred in the last 15 strides
during perturbation of all entrained trials was determined. The
distribution of these phases appeared Gaussian hence about 95%
of them were expected to lie within an interval £2c¢ wide. In
experiment 2, the onset of phase-locking was determined by
plotting the gait phase at which the torque pulse occurred as a
function of stride number. A converged phase value, Qconvergeds
was found which made an interval @converged 26 contain the
greatest number of strides. In finding Qconverged, Some strides were
allowed to exceed this range provided that no more than 5% of the
total number of perturbed strides did so in succession. The onset of
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phase locking was determined as the first stride within the interval
(pconverged *2c.

After-Effect. If entrainment occurred, possible after-effects of
the perturbation were assessed by comparing the durations of 15
strides immediately before the beginning of
perturbation with 15 successive strides immediately after the end
of perturbation. An after-effect was defined as a statistically
significant difference between stride duration before and after
perturbation.

successive

Results

Entrainment

Entrainment was observed in 18 of 19 subjects when the
perturbation period, Tp, was sufficiently close to the preferred
stride period, T¢. Typical results are presented in Figure 4, Figure 5,
and Figure 6.

Before Perturbation. Table 1 shows preferred treadmill
walking speed, stride duration (mean, standard deviation and
coefficient of variation) and stride length (normalized by subject
height) of 15 successive strides immediately before the beginning of
perturbation individually for each subject and averaged over all
subjects. The values observed were comparable to those typically
reported for slow overground walking [42].

During Perturbation. If the period of perturbation, tp, was
sufficiently short (Figure 4) or long (Figure 5) entrainment was not
observed. Maximum knee flexion, which should occupy an almost
constant phase of the gait cycle, varied continuously with respect
to the perturbation. In all, statistical analysis identified 46 trials out
of 80 as not entrained. In 27 of those 46 trials, no significant
difference between stride duration before and during perturbation
was observed, indicating that the perturbation had little influence
on gait in these cases.

Conversely, if the perturbation period was sufficiently close to
the preferred stride period, Ty, entrainment was observed
(Figure 6). Subjects’ gait adapted so that the phase at which the
imposed torque pulse occurred converged to a constant phase of
the gait cycle. Statistical analysis identified entrainment in 18 of 19
subjects in one or more trials, and in 34 out of 80 trials overall.
Due to the variability of normal walking, the pre-perturbation
stride period often deviated from the preferred period. Therefore,
although entrainment implied that the stride period converged to
the perturbation period, which always differed from preferred
stride period, entrainment was not always accompanied by a
significant difference between stride duration before and during
perturbation. However, a significant difference was observed for
20 of the 34 entrained trials.

Finite Basin of Entrainment. The observation that
entrainment only occurred if the perturbation period was
sufficiently similar to the preferred stride duration indicates a
Jinite basin of entrainment. 'T'able 2 shows the basin of entrainment of
each subject expressed as a percentage of the subject’s average
walking period before perturbation, Tpegre. 10 compare it with the
normal variability of walking, Table 2 also shows the basin of
entrainment expressed as a percentage of a range containing 95%
of the observed stride durations, four times the standard deviation
of the subject’s walking period before perturbation, Gpepore. The
mean basin of entrainment was 6.7% of the pre-perturbation
walking period and 56% of its four-sigma range. Only one subject
(#11) out of 18 exhibited a basin of entrainment wider than the
variability of pre-perturbation walking, and then only by 10%.

Phase-Locking. In principle, entrainment only requires a
subject’s stride duration to converge to the period of the
perturbation; convergence may occur with any phase relation

March 2012 | Volume 7 | Issue 3 | 31767



Periodic Mechanical Perturbation of Human Walking

A B C

& 400 200 400

Q

@ 300 300

& 150

o 200 200

z

5 100 100 100

=

§ © 0

= 50

8 100 -100

=5

S -200 - 0 : ' : -200 :
a %o 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Stride Number Stride Number Stride Number

Figure 3. Phase of perturbation torque pulse vs. stride number plotted for three different trials. Entrainment was determined by linear
regression of phase of perturbation onto stride number for the last 15 strides during perturbation: in A, the regression slope is significantly
negative—a non-entrained gait with a fast perturbation; in B, the regression slope is not significantly different from zero—an entrained gait; in C, the
regression slope is significantly positive—a non-entrained gait with a slow perturbation.

doi:10.1371/journal.pone.0031767.g003

between perturbation and entrained gait. That is, the relative
phase difference between gait and perturbation must converge to a
constant, but it may be any constant. Remarkably, we observed
that, when gait was entrained, synchrony occurred at a specific
phase. This is termed phase-locking. Figure 7 shows the transient
behavior of one subject who was plausibly in the process of
becoming entrained. The phase on which the perturbation torque
pulse converged is close to 50% of the gait cycle. This is near the
boundary between the terminal stance and pre-swing phases, and
coincides approximately with maximum ankle actuation in normal
human walking [39]. Figure 8 shows a histogram of the phase in
gait cycle, @p at which the perturbation torque pulses occurred in
the last 15 strides during perturbation of entrained gaits. The
average and standard deviation of @p were 50.2 and 3.80 (%)
respectively. This narrow distribution justified the use of standard
statistical tests based on a Gaussian distribution.

After Perturbation. An after-effect, which was defined as a
statistically significant difference between stride duration before
and after perturbation, was detected in 11 out of 18 subjects who
showed entrainment. Nine of those 11 continued walking at the
perturbation period, with no significant difference between stride
duration during and after perturbation (as in Figure 6). Of the 20
entrained trials with a significant difference between stride
duration before and during perturbation, 16 exhibited an after-
effect. In 12 of those 16 trials, walking continued at the
perturbation period with no significant difference between stride
duration during and after perturbation (as in Figure 6). In the 4
remaining trials (from 2 subjects) the mean stride duration after
perturbation was significantly different from its value during
perturbation but lay between its values during and before
perturbation. Representative data for each case are shown in
Figure 9.
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Figure 4. Typical results of a gait that did not entrain to ““fast” perturbation (tp<t,). The box plot shows the distribution of walking
periods of the last 15 strides before perturbation, the last 15 strides during perturbation and the first 15 strides after the end of perturbation. The
knee angle and the torque pulse imposed by Anklebot during the last 15 perturbation periods are plotted next to the box plot; each row indicates
knee angle (the dotted blue curve) and Anklebot torque profile (the solid red curve) during one perturbation cycle. For each cycle, the phase of
maximum knee flexion is identified (the black circle) and the trend of the maximum knee flexion phase is visualized by a green arrow. Stride duration
(shown in the box plot) did not change significantly due to the mechanical perturbations, and the phase of maximum knee flexion drifted
continuously relative to the perturbation.

doi:10.1371/journal.pone.0031767.g004
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doi:10.1371/journal.pone.0031767.g005

Transient Phase Dynamics

To test whether phase-locking was an artifact of initiating the
periodic perturbation at the same approximate phase of gait, we
performed experiment 2, initiating the periodic mechanical
perturbation at phases far from ankle push-off. All seven subjects
who participated in this experiment exhibited entrainment, and all
seven showed phase-locking to the same narrow range of phase.
Results are shown in Figure 10. The mean number of strides
before phase locking was 53 (106 steps) occupying more than one
minute. The phase ¢@p at which the perturbation torque pulses
occurred was assessed for all strides after the onset of phase-
locking. The mean was 50.7%, and the standard deviation was
4.00%; a histogram is shown in Figure 8 A. The distribution of @p
for experiment 2 was compared with the distribution for the 11
subjects who only performed experiment 1 and exhibited
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©
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maximum knee flexion drifted continuously relative to the perturbation.

entrainment. An F-test assessed whether @p of these populations
came from normal distributions with the same variance; a t-test
assessed whether @p of the two populations had the same mean
when the standard deviations were assumed equal. Both
hypotheses were accepted.

Role of Auditory Feedback

To test whether entrainment and phase-locking were due to
auditory feedback, 6 of the 7 subjects who participated in
experiment 2 wore noise-cancelling headphones to mask auditory
inputs during both experiments 1 and 2. Entrainment was
identified in one or more trials for all 6 subjects, and the mean
and standard deviation of @p in experiment 2 were 50.7% and
4.14% respectively (Figure 8 B), statistically indistinguishable from
experiment 1.

Torque applied by
Anklebot

Knee angle

The maximum knee flexion
in each gait cycle

" pulse

(j +1)" pulse

Figure 6. Typical results of a gait that entrained to perturbation. Stride duration (shown in the box plot) approximated tp with a statistically
significant difference from the walking period before perturbation. The subject’s cadence changed from the originally preferred value to synchronize
with the periodic perturbation. Maximum knee flexion maintained a constant phase difference from the perturbation pulse instead of drifting relative

to the perturbation pulse.
doi:10.1371/journal.pone.0031767.9006
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Role of Voluntary Intervention

To test whether entrainment and phase-locking were due to
voluntary intervention, four of the 6 subjects were instructed to
perform a distracting task, counting backward from 100 to 1 in
their second language during both experiments 1 and 2.
Entrainment was identified in one or more trials for all four
subjects, and the mean and standard deviation of the distribution
of @p in experiment 2 were 49.8% and 4.13% respectively (Figure 8
(), statistically indistinguishable from experiment 1.

Discussion

In this study we sought direct evidence to (1) test whether a
neuro-mechanical oscillator contributes to level walking and (2)
assess the strength of its contribution. Our results suggest that
human locomotor control is 7ot organized as in reaching to meet a
predominantly kinematic specification. Instead, its architecture
seems to resemble the supervisory control successfully applied in
robotic space exploration to deal with long communication delays.

Evidence of a Nonlinear Neuro-Mechanical Oscillator
First, robustly sustained oscillation (what von Holst referred to
as  Beharrungstendenz) requires mnonlinear dynamics; nonlinear
oscillators serve as competent models of biological systems
exhibiting rhythmic motion including CPGs [29,30,31,43].
Second, entrainment (what von Holst referred to as Magneteffeki)
is a distinctive characteristic of nonlinear oscillators [43].
Entrainment was first reported by Huygens in 1665 as an
interaction between the periods of two clocks, but a closely related

@ PLoS ONE | www.plosone.org

Table 1. Subjects’ preferred speeds, walking periods and normalized stride lengths.
Walking period before perturbation (s)
Subject ID (Gender) Preferred treadmill speed (m/s) Mean SD CV % Stride length to height ratio %
1 (M) 0.99 1.44 0.074 5.1 80
2 (M) 0.81 1.40 0.025 1.8 65
3 (M) 0.81 1.20 0.038 32 53
4 (M) 0.86 1.31 0.063 4.8 62
5 (M) 0.99 1.20 0.020 1.7 65
6 (M) 0.81 1.54 0.059 3.8 69
7 (M) 0.99 1.28 0.031 24 71
8 (M) 0.95 1.21 0.033 27 63
9 (M) 0.90 1.24 0.031 25 63
10 (F) 0.90 1.22 0.030 25 66
11 (M) 0.99 133 0.033 25 74
12 (M) 0.86 1.45 0.043 29 68
13 (M) 0.99 1.23 0.026 2.1 67
14 (M) 0.95 1.32 0.048 3.6 70
15 (M) 0.77 1.64 0.037 23 72
16 (M) 0.77 1.67 0.049 29 73
17 (M) 0.9 1.47 0.078 53 73
18 (M) 0.77 1.50 0.071 4.7 62
19 (M) 0.99 1.19 0.028 23 71
All subjects Mean =0.89 1.38 0.16 Mean=3.12 Mean =68
SD =0.086 SD=1.14 SD=5.9
SD: standard deviation; CV: coefficient of variation (standard deviation/mean).
doi:10.1371/journal.pone.0031767.t001

phenomenon can be observed as the response to a strictly periodic
perturbation, and that was the approach we chose [32]. We
delivered periodic pulses of plantar-flexion torque while subjects
walked at constant speed on a treadmill. This entrained the gait of
18 of 19 subjects. Furthermore, we observed phase-locking such
that the perturbation assisted plantar-flexion near the ankle push-
off phase. Although indirect evidence has been presented
previously, to our knowledge, these observations provide the first
direct behavioral evidence that some form of nonlinear neuro-
mechanical oscillator participates in human locomotion [22,23].

To what extent did our experimental apparatus influence
subjects’” gait? Although differences between treadmill and over-
ground walking have been reported, they are subtle, and many
studies have employed treadmills as we did. We used a wearable
robot to deliver mechanical perturbation. Anklebot interacts with
the leg via a shoe and a knee-brace; weighs 3.6 kg with most of
that mass concentrated near the knee; and is highly “back-
drivable” with a low intrinsic static friction (less than 1 N-m)
opposing ankle motion [36]. In a recent study of 9 chronic stroke
survivors who walked overground and on a treadmill with and
without Anklebot mounted on the paretic leg, Anklebot had no
significant effect on the spatio-temporal patterns of gait, even
though that study was sufficiently sensitive to detect greater
interlimb symmetry during treadmill walking than overground
walking [44].

To what extent did our experimental protocol affect our results?
For practical reasons, we applied perturbations at periods 50 ms
apart. This necessarily limited the resolution with which we could
detect a basin of entrainment and may account for the single
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Table 2. Basin of entrainment normalized by walking
cadence and its variability.
Basin of entrainment Basin of entrainment
Subject Number to walking cadence to variability
ID of trials  ratio % ratio %
1 4 7.0 34
2 4 7.1 100
3 4 4.2 33
4 5 3.8 20
5 5 4.2 62
6 5 3.1 20
7 3 3.9 40
8 3 4.1 38
9 5 8.1 79
10 3 2.1 21
11 5 11 110
12 4 6.9 59
13 3 2.0 24
14 3 7.6 52
15 5 9.2 100
16 5 9.0 77
17 4 14 64
18 6 13 71
19 4 N/A N/A
All 80 Mean=6.7 SD=3.6 Mean =56 SD =30
subjects
The basin of entrainment was compared with the average walking period and
the variability of walking cadence. Basin of entrainment to walking cadence
. Basin of entrainment .
ratio was evaluated as ———————————, where Tpefore is the average
Thefore
walking period of last 15 strides before perturbation. Basin of entrainment to
— . Basin of entrainment .
variability ratio was evaluated as ————————————, where Gpefore is the
4 X Gefore
standard deviation of walking period of last 15 strides before perturbation. SD
means standard deviation.
doi:10.1371/journal.pone.0031767.t002

exceptional subject for whom entrainment was never observed. To
minimize uncontrolled variables, all measurements in a single
experimental session were made at a constant treadmill speed
selected by the subject. Entrainment typically required stride
duration to change to synchronize with the periodic perturbation.
As treadmill speed did not change, this required a compensatory
change of stride length. Consequently, anatomical considerations
(e.g. leg length) determined an upper limit on the perturbation
period to which entrainment might be observed. The narrow basin
of entrainment we observed (Table 2) does not seem to reflect
these anatomical constraints. We know of no anatomical factor
which would determine a lower limit.

Might entrainment to periodic auditory stimuli account for our
results’ When generating torque pulses, Anklebot made a
perceptible periodic sound. Unimpaired humans may spontane-
ously synchronize their motions with periodic sounds and, indeed,
do so for pleasure. However, synchronization to sounds can occur
over a wide range of periods—consider the various cadences of fast
and slow dancing—while we observed entrainment only over a
very narrow range, 6.7% of preferred gait cadence (Table 2).
Furthermore, we observed no change when auditory stimuli were
masked by white noise played through noise-cancelling head-
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Figure 7. Transient behavior under perturbation. A shows the
knee angle (the dotted blue curve), Anklebot torque profile (the solid
red curve), and maximum knee flexion phase (the green circle and
arrow) during the last 15 perturbation cycles, and B shows knee angle
and Anklebot torque profile with the onset of torque pulse marked (the
dotted brown arrow) during the last 15 gait cycles under perturbation.
In A, the maximum knee flexion which should occupy an almost
constant phase of gait cycle drifted initially but converged on a specific
phase of the perturbation cycle. The convergence is also shown in B;
the onset of torque pulse drifted initially, but converged on a specific
phase of the gait cycle, which is close to 50%.
doi:10.1371/journal.pone.0031767.9g007

phones. Entrainment to periodic auditory stimuli cannot account
for our observations.

Might subjects have adapted voluntarily? If entrainment and
synchrony were achieved by conscious action, most normal
walking frequencies should have been entrained. In contrast, we
observed that the basin of entrainment was narrower than the
typical variability of preferred cadence (Table 2). Furthermore,
voluntary adaptation of gait would be expected to occur within a
small number of steps if conscious action was involved. In contrast,
we observed a long, slow convergence to achieve phase-locking,
occupying as many as 60 steps or more (Figure 10). Finally, when
subjects performed a distractor task, we observed no change in
entrainment behavior. Voluntary adaptation is not a plausible
explanation for our observations.

We are unable to rule out involuntary adaptation mediated
supra-spinally by afferent feedback. Nevertheless, the weight of
evidence is consistent with some combination of peripheral neuro-
mechanical factors—oscillatory neural networks (e.g. rhythmic
CPGs in the spinal cord or elsewhere); afferent sensory feedback;
musculo-skeletal dynamics; and the physical environment. It is
well-known that several combinations of these factors may exhibit
nonlinear limit-cycle behavior. For example, interaction between
the inertial and gravitational mechanics of legs and their
intermittent impact with the ground produces a nonlinear limit-
cycle oscillation sufficient to yield remarkably coordinated walking
on a gentle slope with no control whatsoever—the so-called
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Figure 8. Histograms of the phase, ¢p at which the perturbation torque pulses occurred in phase-locked strides. Purple bars in A, B
and C show the distribution of @p in the last 15 strides of all entrained trials of 11 subjects who only performed experiment 1. Superimposed on this
histogram in A is the distribution of @p of phase-locked strides in experiment 2 (dark blue bars), in B with auditory input masked (green bars), and in C
with auditory input masked and a distracting task (light blue bars). A polar (“rose”) plot of the histogram of all entrained trails of all 19 subjects in
experiment 1 is shown in D showing that the distribution occupied a narrow region of the gait cycle. Statistical analysis indicated no significant
difference between these distributions in mean or standard deviation.
doi:10.1371/journal.pone.0031767.g008

“passive dynamic walkers” [45,46]. Minimal active control based
on ankle actuation triggered by sensory feedback produces a
nonlinear limit-cycle sufficient to yield remarkably coordinated
walking on level ground [47]. Of course, spinal neural networks
might also produce sustained limit-cycle oscillations and spinal

A

Walking Period (s)
! % & & &

-
w

B

neural networks are also strongly influenced by afferent sensory
feedback [21,24,48]. Entrainment due to interaction with a
peripheral neuro-mechanical oscillator would be consistent with
the observations of rhythmic leg movements in response to
vibratory or electrical stimulation [22,23].

1.35
13 %
% 1.25
+ 1 1 n
before  during after before  during after
I | | | I | | |
p<10° p=0.19| |p<10’5 p<o.oo1I
p<10° p<10°

Figure 9. Two types of aftereffect. In A, there is significant difference between stride duration before and during perturbation, but no significant
difference between during and after perturbation; in B, there is significant difference between stride duration before, during and after perturbation.
For all trials classified into B, the mean stride duration after perturbation lay between its during-perturbation and pre-perturbation values.

doi:10.1371/journal.pone.0031767.9g009
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Figure 10. Phase of perturbation torque pulse vs. stride
number in experiment 2. A illustrates typical phase locking of one
subject; o is the standard deviation of the gait phases at which the
torque pulse occurred in the last 15 strides during perturbation of all
entrained trials of the subject in experiment 1. The phase of
convergence and onset of phase locking were determined as explained
in Data Analysis. The miniature icons of a walker illustrate the
corresponding phases of a gait cycle. The initial perturbation pulse
was applied just before the beginning of a double stance phase (—5%
gait cycle). Over 70 subsequent strides (140 steps) taking approximately
100 seconds, the subject gradually changed cadence to phase lock with
the perturbation at 50% gait cycle, approximately the maximum ankle-
actuation phase of normal human walking. B shows the phase locking
of all 7 subjects who participated in experiment 2.
doi:10.1371/journal.pone.0031767.g010

Further investigation is needed to reveal the mechanism of
entrainment. For example, the periodic perturbation might
mechanically assist the musculo-skeletal periphery to be entrained;
the robust phase-locking at ankle actuation phase, which is
mechanically assistive, is consistent with this hypothesis. Alterna-
tively, it is possible that a neural oscillatory circuit exists and periodic
sensory input that is evoked by the mechanical perturbation entrains
the neural circuit executing the walking pattern. Any form of the
neural oscillatory circuit, including chained reflexes or an internal
clock, may entrain and exhibit the observed behaviors.
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Contribution of the Neuro-Mechanical Oscillator

How prominently does a peripheral neuro-mechanical limit-cycle
oscillator contribute to human walking? Our observations—the
narrow basin of entrainment, the slow phase-locking, and the
variability of the after-effect indicate at most a modest contribution.

The narrow basin of entrainment we observed may be due to
the modest mechanical perturbation we applied—about 10% of
typical maximum ankle push-off torque was applied for a tenth of
a second, less than 10% of typical stride duration. A related and
equally-plausible interpretation is that a narrow basin of
entrainment may be due to a weak coupling between a neuro-
mechanical oscillator and the mechanical perturbation we applied.
Alternatively, a narrow basin of entrainment may indicate a
weakly attracting nonlinear oscillator.

Results from the transient phase dynamics experiment provide
corroborating evidence. If the phase of the neuro-mechanical
oscillator was strongly attractive, we might expect a rapid
convergence to phase-locking. In fact, when the perturbation
was Initiated at a phase far from its final converged value, 60 or
more (sometimes over 100) steps were required to achieve phase
locking, occupying a duration of minutes or more. This indicates
either a weak attractor or a weak coupling between the neuro-
mechanical oscillator and the mechanical perturbation.

However, the variability of the after-effect of the perturbation
provides evidence of a weak attractor rather than a weak coupling.
In 18 of 19 subjects, exposure to periodic mechanical perturbation
was sufficient to evoke entrainment, adaptation of the subject’s
cadence to match the perturbation period. Adaptation of upper-
extremity motions to mechanical perturbations such as Coriolis
forces typically evokes a brief after-effect when the perturbation is
discontinued, followed by rapid re-adaptation to pre-perturbation
behavior [7]. Remarkably, after-effects of the periodic ankle
torque perturbation, and re-adaptation when it ceased, were quite
variable: 7 of 18 subjects exhibited no after-effect; the subject’s
cadence returned to its pre-perturbation value within 15 strides. In
2 subjects, within 15 strides after perturbation, the subject’s
cadence, though statistically different from its pre-perturbation
value, was also statistically different from its entrained value; it had
begun to “drift” back to its pre-perturbation value (Figure 9 B).
However, in 9 subjects, the adapted cadence persisted unchanged
for at least 15 strides—30 steps—after the perturbation was
discontinued (Figure 6 and 9 A). A strongly attracting limit-cycle
oscillator, whether it is coupled strongly or weakly, would be
expected to exhibit re-adaptation within a few cycles once
decoupled. The variable re-adaptation we observed appears to
be consistent with a weakly attractive limit cycle rather than a
weak coupling between the oscillators.

Summarizing, the weight of evidence presently available
suggests that the neuro-mechanical oscillator is weakly attractive.
Though its presence may be detected unambiguously (e.g. by
testing for entrainment to periodic mechanical perturbations as in
this study) its contribution to locomotor control may be modest.
Further study is required to verify these speculations.

Supervisory Control of Locomotion

Our observations show clear evidence that human locomotor
control exhibits distinctive features of a nonlinear oscillator, and
that a neuro-mechanical oscillator contributes to human walking.
However, it is equally clear that much more is required. Like many
mammals, humans can control foot placement with precision
while walking, even onto irregularly-spaced footholds. A low-level
limit-cycle oscillator cannot account for this behavior. Participa-
tion from higher levels of the CNS is indicated, especially if the
target footholds are visually acquired. Perhaps the neuro-
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mechanical oscillator is a legacy of more primitive forms of
control. If not, how might these different neural processes interact?
Our results suggest the hypothesis that motor control of
locomotion in humans is hierarchically organized to implement
episodic supervisory control of a semi-autonomous periphery.

Supervisory control is proven engineering technology. It was
introduced to minimize the computational burden of control and
mitigate detrimental effects of time delays due to remote (tele-
Joperation [49,50]. It has been especially important in robotic
space exploration [51]. Applied to human motor control, the key
idea is that, because of the limited response speed of muscles and
the substantial delays due to neural conduction, in effect the supra-
spinal nervous system tele-operates the neuro-mechanical periphery.

The essence of supervisory control is that the “control operator”
(the supra-spinal nervous system) has the option to intervene
directly in the detailed control of “low-level” system behavior (the
spinal neuro-mechanical periphery) but—importantly—need not
do so continuously [49,50]. Instead, it only intervenes when need
arises (e.g. to react to a stumble or place a foot on a target). In this
hypothesis, the neuro-mechanical periphery is conceived to be
semi-autonomous: it is capable of robustly stable rhythmic walking
with minimal central intervention. That requires a nonlinear
oscillator because robustly sustained autonomous oscillation can
only result from a nonlinear dynamical system. In consequence,
the neuro-mechanical periphery would exhibit behavior charac-
teristic of limit-cycle oscillations, including a tendency to entrain to
periodic perturbations and converge to a constant phase-locked
relation with them, just as we observed.

A modest contribution of the neuro-mechanical periphery to
human walking, which is also supported by our observations,
provides further support for the proposed supervisory control
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architecture. The narrow basin of entrainment implies that the
semi-autonomous periphery may be entrained to periodic
perturbation, but only when the perturbation frequency is close
to the original preferred walking cadence. The slow convergence
of phase-locking implies that many cycles are required for the
external perturbation to entrain the original walking pattern. In
sum, the modest contribution of the neuro-mechanical periphery is
consistent with its accessibility from the higher levels of the CNS,
which consequently would supervise the semi-autonomous periph-
ery and easily adjust walking regardless of external perturbations
to the periphery.

Supervisory control is necessarily hierarchical. It assumes at
least two levels of organization, consistent with the anatomical
organization of the CNS. Hierarchical organization of the CNS is
by no means a new idea; however, supervisory control requires
more than a hierarchical organization. It requires intermittent or
episodic communication from the higher level(s) to the lower
level(s). Without intermittent communication, communication
delays would severely compromise achievable system perfor-
mance. Episodic supervisory control is a plausible compromise
that allows the neuro-mechanical periphery to operate semi-
autonomously to unburden the supra-spinal nervous system, yet
reserves the option of central intervention as needed to offset the
limitations of a semi-autonomous periphery. We suggest that
episodic supervisory control may provide a useful perspective to
organize some of the vast literature on mammalian locomotion.
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