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Abstract: In the current work, neodymium oxide (Nd2O3) nanoparticles were synthesized and
characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR),
and scanning electron microscopy (SEM). The major aim/investigation of this research was to fit/model
and optimize the removal of Acid Blue 92 (AB92) dye from synthetic effluents (aqueous solutions)
using the adsorption process based on neodymium oxide (Nd2O3) nanoparticles. To optimize the
adsorption conditions, central composite design (CCD) based on response surface methodology
(RSM) was applied. The effects of pH (3–9), adsorbent dosage (0.1–1 g/L), initial concentration of
AB92 (100–300 mg/L), and contact time (10–100 min) on the adsorption process were investigated.
Apart from equilibrium and kinetic experiments, thermodynamic evaluation of the adsorption
process was also undertaken. The adsorption process was found to have the best fitting to Langmuir
isotherm model and pseudo-second-order kinetic equation. Also, the process was found to be
spontaneous and favorable with increased temperature. The optimal conditions found were:
pH = 3.15, AB92 concentration equal to 138.5 mg/L, dosage of nanoadsorbent equal to 0.83 g/L,
and 50 min as contact time, which resulted in 90.70% AB92 removal. High values for the coefficient of
determination, R2 (0.9596) and adjusted R2 (0.9220) indicated that the removal of AB92 dye using
adsorption can be explained and modeled by RSM. The Fisher’s F-value (25.4683) denotes that the
developed model was significant for AB92 adsorption at a 95% confidence level.

Keywords: acid blue 92; response surface methodology; adsorption; neodymium(iii) oxide;
central composite design; water treatment

1. Introduction

It is generally accepted that dyestuffs are very hazardous species of industrial effluents and
need to be treated [1–3]. Azo dyes possess 70% of the total dyes in the world. Due to the presence
of azo bonds (–N=N–), sulfonic groups and aromatic rings in dye compounds, azo dyes are hardly
decomposed in the natural environment and have toxic, mutagenic, and carcinogenic effects [4].
They are also unwanted compounds in the environment because they reduce the penetration of light
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and impair the process of photosynthesis [5,6]. In addition, these compounds can cause negative
effects on the appearance and quality of water [6]. Therefore, wastewaters containing this type
of dyes were highlighted as one of the most important threatening factors in environmental and
public health [2,5]. Different studies have reported that there are several methods for removing
dyes from textile wastewaters, including the application of photodecomposition [6], electrolysis [7,8],
adsorption [9–18], oxidation [19], biodegradation [20], combined sonochemical and adsorption [21],
coagulation-flocculation [22,23], etc.

Adsorption is widely used because of its relatively simple design, low cost, and removal of
color and other pollutants with great efficiency [19,24–27]. Adsorption can be either physisorption
(which involves fairly weak (not strong enough) intermolecular forces), or chemical sorption (namely
chemisorption), which involves the creation of chemical bonds among the funtioanl groups of pollutants
and the surface of the adsorbent materials [20]. Activated carbons have been used successfully to
remove organic and mineral pollutants [28]. Recently, nanotechnology has become known as a key
and effective technology in science, technology, and industry [29]. Nanoparticles have been found to
have high potential in adsorption of organic compounds. Last years, it is great of interest the removal
of colors/dyes from wastewaters or/and sewage tanks by adsorption onto nanoparticles because they
have a higher surface/volume ratio than other adsorbents [30–32].

Recently, more attention has been given to the applications of the adsorbents prepared by several
rare-earth metals (REMs) for water treatment due to their favorable chemical properties. Compared to
typically used metals (e.g., iron, aluminum, and manganese), the adsorbents prepared by the REMs
have more functional groups on their surfaces [33], and better catalysis reaction performance [34],
which are favorable for arsenic uptake. In addition, they have no or lower toxicity for humans. A series
of REM-based adsorptive materials in the form of metal oxides/hydroxides, metal oxide/hydroxide
modified adsorbents and metal ion impregnated adsorbents have been recently reported for the
effective decontamination of arsenic. One of these rare earth elements is neodymium (Nd), with atomic
number 60, atomic radius 1.821 A, valence state +3 and electronic configuration 4f46s2. Also, it has a
noteworthy abundance in the upper Earth’s crust (26 ppm), which is 3rd in order after Ce (64 ppm) and
La (30 ppm) [35].

Neodymium(III) oxide (Nd2O3) nanoparticles are widely used as coloring agents for ceramics and
glasses, catalysts, raw materials of the neodymium alloy and neodymium metal, and also as dopants
for high-efficiency solid-state lasers due to their unique thermal and physicochemical properties [36,37].
However, there is no special mention of the possible use of Nd2O3 nanoparticles as materials for dye
adsorption. There is only mention of the adsorption of salicyl hydroxamic acid on Nd2O3 surfaces [38],
as well as in another study NdCl3 was incorporated into order mesoporous carbon (OMC) through an
incipient wetness technique to enhance sunset yellow removal [39]; however the latter is a modification
of OMC and not a “clear” use of Nd2O3 as adsorbent.

The major target of the present study is to model the reduction of AB92 dye from aqueous solutions
by adsorption onto Nd2O3 nanoparticles synthesized and also optimized in experimental conditions.
The central composite design (CCD) via the response surface method (RSM) was employed to design
the experimental runs for AB92 adsorption. It is an important tool applied for the development
and optimization of novel processes, and improvement of existing processes [40–42]. The RSM
was used to study the influence of the operating parameters (solution pH, Nd2O3 nanoparticles
dosage, AB92 concentration, and time of reaction) and their relationships or interactions in order
to maximize the efficiencies of adsorption and to determine the optimal conditions. The isotherm,
kinetics, and thermodynamics of the process were also explored.
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2. Materials and Methods

2.1. Materials

AB92 (Acid Blue 92) dye was purchased from AlvanSabet Corporation (Hamadan, Iran) and used
as model pollutant. AB92 (anazolene sodium, C26H16N3Na3O10S3) is a commercial salt consisting of a
mixture of dye and an inert product; the true dye content was 40%. This dye purity was taken into
account in calculating the concentrations. Figure 1 shows the chemical structure of AB92. The molecular
weight of the dye was 695.58 g/mol. AB92 is a monoazo compound bearing three sulfonic groups;
it holds negative charges in aqueous solutions. Dye solutions were prepared by means of direct
dilution in water (at the appropriate concentration) and the pH was controlled with hydrochloric acid
and sodium hydroxide solutions.

Figure 1. Structure of Acid Blue 92 (AB92).

All other reagents (sodium hydroxide (NaOH, 98%), and sulfuric acid (H2SO4, 99.99%)) were of
analytical grade and purchased from Merck (Berlin, Germany). All solutions were prepared using
deionized water. The pH of the solution was adjusted by micro-additions of HCl (0.1 N) or NaOH
(0.1 N) solutions.

2.2. Synthesis of Nd2O3 Nanoadsorbent

The synthesis of Nd2O3 nanoparticles were carried out based on a published study [43].
The ligand Schiff base was used to synthesize the nanoparticles of neodymium. At first, 0.06 mol
of 2-hydroxy-1-netaldehyde were dissolved in 30 mL of methanol using magnetic stirrer (0.5 h),
next 0.03 mol of 1,4-diaminobutane were diluted in 30 mL of methanol in another container similarly
by using magnetic stirrer (0.5 h) MSL 50 Digital (VELP Scientifica Srl, Usmate, Italy) and then added to
the previous solution drop-by-drop. Subsequently, an appropriate amount of Nd(NO3)3·6H2O (with
a molar ratio of 1:4) was dissolved in the above solution (magnetic stirring 2 h). The solution was
then stored at a reflux condition for 3 h. The compound formed was washed with distilled water and
methanol (Soxhlet apparatus, 12 h) and dried at 60 °C for 3 h (oven). The ligand Schiff base was used
as the making base. It was combined with salt with a different molar ratio (in a mortar). Then, it was
calcified for 5 h in a furnace at 900 °C.

2.3. Characterizations

Fourier-transform infrared spectroscopy (FTIR) spectra were taken on a JASCO 640 plus machine
(4000–400 cm−1) (Zeiss, Berlin, Germany) at room temperature so as to reveal the functional groups of
Nd2O3 nanoadsorbents, which contributed to the removal of AB92. The morphology of nanoparticles
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was evaluated by taking scanning electron microscope (SEM) images using the LEO instrument model
1455VP (Zeis, Jena, Germany). XRD patterns were obtained with a diffractometer of Philips Company
(PANalytical B.V., Almero, The Netherlands) with X’Pert Pro monochromatized CuKα radiation.

2.4. Adsorption/Desorption Experiments

The adsorption experiments were based on multi-parametric study. The effect of pH was studied
in the range of 3–9, as well the influence that has the increase of nanoadsorbent’s dosage from 0.1 to
1 g per 1 L of effluents. Also, the kinetic behavior of the process was examined running experiments
varying the contact time between sorbent and sorbate from 10 to 100 min, and the same was done
for the determination of initial concentration of AB92 (100–300 mg/L). The preparation of AB92 stock
solution was carried out by using double-distilled water. Batch experiments were performed in 250-mL
Erlenmeyer flasks. The desired initial concentrations of dye were added to the flasks with pipettes,
while the pH of the solution was adjusted by micro-additions of 0.1 N HCl or 0.1 N NaOH. The initial
solution pH was analyzed with a MT65 pH-meter (Mettler-Toledo GmbH, Giessen, Germany). Then,
a fixed nanoadsorbent’s mass (Nd2O3) was added to the flask (already containing the respective dye
solution of final volume of 100 mL). The flasks were placed to the thermostatted bath and agitated (N
= 180 rpm) for 2 h.

The initial and residual (final) dye concentrations in solutions were measured by using an
ultraviolet (UV)-visible spectrophotometer (Shimadzu, Model CE-1021, Columbia, MD, USA) at λmax

= 620 nm (wavelength of maximum absorbance). The percentage of adsorption was calculated as
follows (Equation (1)):

Removal(%) =

(C0 −C f

C0

)
·100% (1)

where C0 (mg/L) is the initial AB92 dye concentration and Cf (mg/L) is the final concentration.
Desorption experiments were performed in batch mode using constant (optimal) adsorption

conditions found from experimental design (pH = 3.15, AB92 concentration equal to 138.5 mg/L,
dosage 0.83 g/L, 50 min as contact time, 25 ◦C, N = 180 rpm) and divided into two main categories:
(i) desorption experiments for finding the optimal eluent, and (ii) reuse cycles with continuous
adsorption-desorption experiments. At first, after the end of adsorption stage, the adsorbent materials
were separated from supernatant using filtration membranes. Then, the adsorbent particles separated
were placed in flasks using deionized water as eluent with pH-adjusted values (10, which is the reverse
pH conditions as those of adsorption to break the adsorption forces and then desorb). The desorption
step (as in adsorption step) lasted 24 h. The quantitative evaluation of desorption was done using
desorption percentages, calculated from the difference between the loaded amount of drugs on
adsorbent after adsorption and the amount of drugs in solution after desorption. To investigate the
reuse ability of adsorbents, the above procedure with the same conditions (firstly adsorption and then
desorption) was repeated 5 times.

2.5. Experimental Design and Statistical Analysis

Central composite design (CCD) was done using Design Expert software 7.1 (Stat-Ease,
Minneapolis, MN, USA). 4-factors at 3-levels (34) of full factorial were selected for this study. The CCD
in RSM was used to generate the experiments with 30 experimental runs which comprise of 8 axial
points, 16 factorial points, and 6 replicates at the center points. The optimization studies were carried
out by studying the effects of pH, initial AB92 concentration, Nd2O3 dosage and time (independent
variables). The chosen independent variables for this study were coded according to Equation (2) [44]:

xi =
(xi − x0

∆x

)
·100% (2)
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where xi is the dimensionless coded value of the independent variable, x0 is the value of xi at the
center point and ∆x is the step change value. The behavior of the system is explained by the following
empirical second-order polynomial model (Equation (3)):

Y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiixi
2 +

k−1∑
i= j

k∑
i= j+1

βi jxix j (3)

where Y is the predicted response, xi, xj, . . . , xk are the input variables, which affect the response Y, x2i,
x2j, . . . , x2k are the square effects, β0 is the intercept term, xixj, xjxk and xixk are the interaction effects,
βi (i = 1, 2, . . . , k) is the linear effect, βii (i = 1, 2, . . . , k) is the squared effect, βij (j = 1, 2, . . . , k) is the
interaction effect and Σ is the random error [45].

The experimental range and levels of the independent variables used in the present study are
stated in Table 1. The experimental data obtained were fitted to the empirical second-order polynomial
regression model (Equation (3)). Also, the coefficient of determination (R2) value was compared
to the adjusted R2 and predicted R2 values to check the adequacy of the model. The analysis of
variance (ANOVA) was used to examine the interactive effects of the process variables on the AB92
adsorption efficiency. The R2 is used to determine the potential of a regression model to predict a
process. The adjusted R2 is applied to assess the goodness-of-fit of the model while the predicted R2 is
used to define how good a model predicts a process.

Table 1. Experimental range and levels of the independent process parameters tested.

Factor Independent Variables Unit Range and Level of Actual and Coded Values
−1 0 +1

A (x1) Initial pH 3 6 9
B (x2) Initial concentration mg/L 100 200 300
C (x3) Nd2O3 dosage g/L 0.1 0.55 1
D (x4) Time min 10 55 100

3. Results and Discussion

3.1. Techniques of Characterization

The structural surface of the Nd2O3 nanoparticles was visualized using the SEM technique.
Figure 2 shows the SEM image (150 kx) of the adsorbent which seems to be approximately spherical-like
in structure forming nanoclusters. The Nd2O3 sample consists of irregular shapes with pores of varying
sizes, which will make available the active sites for the adsorption process and the take in of the AB92
dye particles. Moreover, it is fact that SEM images shows some percentage of agglomeration, but this
does not imply that there is any porosity. Due to agglomeration, some surface area will be reduced so
the adsorption capability will probably be affected. However, adsorption is a combined and in the case
of oxides is majorly explained with attractive bonding (forces) and not so much with simple deposition
on the surface area.

FTIR spectroscopy showed the functional groups present in the nanoadsorbent (Nd2O3

nanoparticles). The FTIR spectra of the nanoparticles (before and after dye adsorption) were recorded
in the range of 400–4000 cm−1 (Figure 3).

In the case of Nd2O3 nanoparticles before dye adsorption, the presence of alkyl halides (C–Br
stretching) was confirmed, as well as that of alkynes (–C≡C–H with C–H bend) and primary amines
(N–H) (originating from the dye molecule—Figure 1) bending which were revealed at the band regions
of 553.41, 694.24 and 1630.63 cm−1, respectively. An absorption peak at 2360.45 cm−1 was also observed
which corresponds to –C=C– stretching of alkynes (a very weak band). The peak of 3451.54 cm−1

(very broad and strong band) is credited to O–H stretch, H–bonded (alcohols, phenols). This strong
band (O–H stretch) participated actively in the adsorptive removal of AB92. After AB92 adsorption,
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the intensities of the bands were reduced from 553.41 and 1630.63 cm−1 to 541.51 and 1638.26 cm−1,
respectively. The band intensity of 2360.45 was decreased to 2066.92 cm−1. Also, the intensity of the
O–H band was increased from 3451.54 to 3451.60 cm−1. This peak shift implied the interaction of
the adsorbate with the functional groups of the adsorbent [46]. Based on the above FTIR spectrum a
proposed adsorption mechanism can be illiustrated in Figure 4.

Figure 2. Field-emission scanning electron microscope (FE-SEM) image of the Nd2O3 nanoparticles.

Figure 3. Fourier-transform infrared spectroscopy (FTIR) spectra of the Nd2O3 nanoparticles before
adsorption (up) and after adsorption (down).
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Figure 4. Proposed adsorption mechanism of AB92 and Nd2O3 nanoparticles.

The X-ray diffraction (XRD) pattern of Nd2O3 nanoparticles is depicted in Figure 5.

Figure 5. X-ray diffraction (XRD) pattern of the Nd2O3 nanoparticles.

The XRD pattern indicates that the maximum peak is around 2θ = 31◦ with high intensity.
This XRD pattern indicates that a crystalline nanoparticle has been prepared and no remarkable
impurities were seen in the material, implying high purity of the nanoparticle. From the XRD data,
the average crystallite size (Dc) of the nanocomposite was calculated using the Scherer equation:

Dc =
K·λ

β· cosθ
(4)

where λ (nm) is the wavelength; K (usually 0.9) is the so-called shape factor and β is the breadth
of the observed diffraction line at its half maximum intensity. The average size, Dc of the Nd2O3

nanoparticles was evaluated to be 83 nm.

3.2. Model Fitting—Statistical Analysis—Adsorption Optimization

The experiments were carried out using the experimental conditionn described in Table 2.
The experimental data generated were analyzed by using special software (Design expert software,
Stat-Ease 7.1 trial version, Minneapolis, MN, USA). The results were analyzed via the RSM to
acquire the empirical model. The actual and predicted adsorption percentages are shown in Table 2.
The experimental values were established to be close to the predicted responses obtained for a particular
run (Figure 6 and Table 2). The experimental data were examined via the sequential model sum of
squares and model summary statistics to find the most appropriate models. Table 3 shows that the
quadratic model gives the highest R2, adjusted R2 and predicted R2 values compared to other models
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(linear, interactive, and cubic) apart from the cubic model. The latter happens because a cubic model
cannot be applied to fit/model the data since it is aliased. An aliased model means that it is a result of
insufficient experimental runs to independently appraise all the models [47].

Table 2. Experimental design matrix for AB92 adsorption on Nd2O3 nanoparticles.

Run Initial pH
(-)

C0
(mg/L)

Nd2O3 Dosage
(g/L) Time (min) Experimental

Adsorption (%)
Predicted

Adsorption (%)

(A) (B) (C) (D)

1 6 200 0.55 55 88.78 88.73
2 9 300 0.1 100 86.85 86.74
3 6 200 0.55 55 88.78 88.73
4 9 300 1 10 87.68 87.72
5 3 200 0.55 55 90.18 88.73
6 3 100 0.1 100 89.90 89.85
7 9 100 1 100 88.76 88.82
8 9 100 0.1 100 88.56 88.45
9 3 300 0.1 10 88.40 88.32

10 3 300 0.1 100 88.25 88.13
11 9 300 0.1 10 87.03 86.90
12 6 200 0.55 55 88.78 88.73
13 6 200 1 55 89.08 88.47
14 6 200 0.55 100 87.63 87.76
15 3 100 1 10 90.51 90.62
16 9 200 0.55 55 88.58 88.74
17 6 200 0.55 55 88.78 88.73
18 9 300 1 100 87.41 87.46
19 9 100 1 10 89.15 89.25
20 6 200 0.55 55 88.78 88.73
21 9 100 0.1 10 88.85 88.79
22 3 100 1 100 90.05 90.16
23 6 200 0.55 10 88.10 88.07
24 3 100 0.1 10 90.28 90.18
25 6 100 0.55 55 90.28 90.22
26 6 200 0.1 55 87.20 87.91
27 3 300 1 10 88.99 89.08
28 6 200 0.55 55 88.78 88.73
29 6 300 0.55 55 88.35 88.56
30 3 300 1 100 88.75 88.80

Figure 6. Predicted values versus experimental (actual) values of AB92 adsorption.
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Table 4 shows the ANOVA results. ANOVA is a statistical method that divides the total variation
in a set of data into component parts linked with particular sources of variation for the intention of
testing the hypothesis on the parameters of the model [48]. The ANOVA shows that the second-order
polynomial model (quadratic model) developed was statistically suitable for the analysis, representation,
and explanation of the AB92 adsorption process at the variables’ studied range. The F-value was used
to check the significance of the regression coefficients. The p-values were used to check the significance
of each of the interactions among the variables, which may indicate the patterns of the interactions
among the variables. A p-value less than 0.05 shows the influence and significance of a term [49].

Table 3. Statistical models for AB92 adsorption.

Sequential Model Sum of Squares

Source Sum of Squares df Mean Square F Value P Value Prob > F

Mean vs. Total 236,119 1 236119
Linear vs. Mean 22.3634 4 5.5909 28.0665 < 0.0001

2FI vs. Linear 0.1724 6 0.0287 0.1135 0.9937
Quadratic vs. 2FI 3.7038 4 0.9259 12.5822 0.0001 Suggested

Cubic vs. Quadratic 1.0665 8 0.1333 24.9416 0.0002 Aliased
Residual 0.0374 7 0.0053

Total 236,146.4 30 7871.546

Model Summary Statistics

Source Std. Dev. R2 Adjusted R2 Predicted R2 PRESS
Linear 0.4463 0.8179 0.7887 0.7743 6.1716

2FI 0.5030 0.8242 0.7316 0.7612 6.5289
Quadratic 0.2713 0.9596 0.9220 0.8277 4.7118 Suggested

Cubic 0.0731 0.9986 0.9943 0.8374 4.4467 Aliased

Table 4. Analysis of variance (ANOVA), lack of fit (LOF) test, regression coefficients and the significance
of the response surface quadratic model of adsorption of the dye solution.

Source Sum of Squares df Mean Square F Value p-value
Prob > F

Model 26.2396 14 1.8743 25.4683 <0.0001 significant
A-initial pH 8.6015 1 8.6015 116.8807 <0.0001

B-AB92 concentration 11.9066 1 11.9066 161.7921 <0.0001
C-Nd2O3 dosage 1.4137 1 1.4137 19.2103 0.0005

D-Time 0.4417 1 0.4417 6.0018 0.0270
AB 3.26E-05 1 3.26E-05 0.0004 0.9835
AC 0.0033 1 0.0033 0.0443 0.8362
AD 0.0008 1 0.0008 0.0111 0.9176
BC 0.1286 1 0.1286 1.7476 0.2060
BD 0.0313 1 0.0313 0.4254 0.5241
CD 0.0083 1 0.0083 0.1133 0.7410
A2 1.2554 1 1.2554 17.0588 0.0009
B2 1.0524 1 1.0524 14.3002 0.0018
C2 0.7592 1 0.7592 10.3157 0.0058
D2 1.7272 1 1.7272 23.4695 0.0002

Residual 1.1039 15 0.0736
Lack of Fit 1.1039 10 0.1104
Pure Error 0 5 0
Cor. Total 27.3435 29

R2: 0.9597, Adj. R2: 0.9220, Pred. R2: 0.8277, Adeq. Precision: 20.2425, C.V. %: 0.3058, PRESS: 4.7118, Std. Dev.:
0.2713, Mean: 88.7166.

After analysis, the Fisher’s F-value was found to be 25.4683, suggesting that the model is significant
for dye adsorption, presenting a 95% confidence level. Also, the the values of "Prob > F" that were found
to be less than 0.05 show that the model terms have a strong/significant impact on the output response
(Table 3). In this case, A, B, C, D, A2, B2, C2, and D2 are the significant model terms. Then, the high
p-values found (0.9835, 0.8362, 0.9176, 0.2060, 0.5241, and 0.7410) for AB, AC, AD, BC, BD, and CD,
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respectively imply that the interaction terms are not such significant. On the other hand, the values
found that were higher than 0.1000 indicate that the model terms are not significant. The factor
coefficient confirms the influence of a fixed factor, while the two combined factors coefficients can
reveal the interaction between them [49]. Table 3 indicates that independent variable, initial AB92
concentration (F-value: 161.7921) has the highest effect on the AB19 adsorption followed by initial
pH (F-value: 116.8807), nanoadsorbent’s dosage (F-value: 19.2103) and contact time (F-value: 6.0019).
The interaction between concentration and dosage gave a high F value (1.7476), which was higher
than the other interactions. Also, it is found that the high value of the determination coefficient (R2 =

0.9597), which can reveal the fitness degree to the model, presented a high correlation degree between
the predicted and actual/real output response. It is worth noting that when determination coefficient
(R2) is close to 1, the model can be considered as significant presenting and satisfying all the terms of
ANOVA [50]. The predicted R2 of 0.8277 is in reasonable accordance with the adjusted R2 of 0.9220.
The signal to noise ratio is measured by the adequate precision and a ratio of 20.2425 indicates an
adequate signal, because a ratio higher than 4 can be considered as appropriate. So, this model can be
used to pilot the design space. The lack of fit (LOF) value was found to be 1.1039, which is significant.

The quadratic model was applied to elucidate the mathematical correlation between the
independent and dependent variables. The mathematical model equation with the independent
process parameters (pH, time, initial AB19 concentration, and Nd2O3 nanoparticles dosage) is
presented in terms of the coded factors in relation to the AB92 percentage removal (response) and is
given as Equation (5):

Y = 88.7312− 0.6913A− 0.8133B + 0.2803C− 0.1566D + 0.0014AB + 0.0143AC + 0.0071AD
+ 0.0897BC + 0.0442BD− 0.0228CD + 0.6961A2 + 0.6373B2

− 0.5413C2
− 0.8165D2 (5)

where A = pH, B = concentration, C = Nd2O3 nanoparticles dosage and D = time.
The interactive effects of the operating parameters (independent variables) on the AB92 adsorption

using Nd2O3 nanoparticles were studied by making three-dimensional (3D) response surface plots
against any two independent variables while keeping the other parameters constant. The 3D surface
plots of the output response (AB92 adsorption) from the interactions between the parameters are
illustrated in Figures 7–12. The pH, Nd2O3 nanoparticles dosage, AB92 concentration and time were
studied in the range of 3–9, 100–300 mg/L, 0.1–1 g/L, and 10–100 min, respectively. It can be seen
in Figure 7 that the other interactions apart from the interaction between time and dosage are not
significant towards the removal of AB92. The pH is a very significant factor that affects an adsorption
process [51–53]. The effect of pH on AB92 adsorption is linked to the solution pH and the functional
groups exhibited by the Nd2O3 nanoparticles which will consecutively influence its surface charge [49].
The adsorption percentage was increased by decreasing the pH of the solution. However, it was
observed that at higher pH (pH = 9), AB92 adsorption was reduced rapidly (Figure 7a–c). At pH higher
than these value, the Nd2O3 nanoparticles had a negative charge (Figure 7). The adsorption of AB92
was more favorable in the acidic environment due to the presence of H+ on the adsorbent [54] and
the electrostatic attractions between the negatively charged functional groups present on the anionic
dye and the positively charged adsorbent (Nd2O3 nanoparticles) surface [55]. Figure 7a shows that
optimal removal of 91.03% was achieved at a pH of 3.6 and concentration of 120 mg/L, 89.70% at pH
3.63 and time of 50.5 min (Figure 7c). Also, 89.75% optimal removal was reached at pH 3.6 and dosage
of 0.69 g/L (Figure 7b). The reaction time is also vital in all research methods. Figure 7f shows the
adsorption efficiency was increased by increasing the contact time and dosage of Nd2O3 nanoparticles.
The efficiency was increased with increasing Nd2O3 nanoparticles dosage due to the availability of
more active sites to trap the adsorbate (AB92); but beyond the optimal dosage and time, the adsorption
efficiency was decreased. The removal of AB92 was improved rapidly with increasing contact time.
The latter can be explained by the fact that high number of dye molecules does not have time to
come in contact with nanoparticles to adsorb if the contact time is short [56]. The interaction between
the initial AB92 concentration and pH has a negative effect on the adsorption process (Figure 7a).
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The adsorption efficiency declined with increasing initial concentration. Researchers have proved
that at high concentrations, the removal efficiency is likely to decrease owing to the saturation of the
adsorbent surface with the adsorbate contaminant [57]. The effect and significance of the interaction
effects between the independent/process variables would have been lost if the experiments were done
by using only the conventional means.

Figure 7. 3D surface plot of the interactive effect of (a) AB92 concentration initial and pH, (b) Nd2O3

dosage and pH, (c) time and pH, (d) Nd2O3 nanoparticles dosage and concentration, (e) time and
concentration, and (f) time and Nd2O3 dosage on AB92 adsorption percentage.
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Figure 8. The desirability effect for AB92 adsorption on Nd2O3 nanoparticles.

Figure 9. Adsorption capacity at various initial AB92 concentrations.

Figure 10. Linear Langmuir isotherm of AB92 adsorption onto Nd2O3 nanoparticles.
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Figure 11. Linear Freundlich isotherm of AB92 adsorption onto Nd2O3 nanoparticles.

Figure 12. Adsorption kinetics of AB92 onto Nd2O3 nanoparticles.

3.3. Optimization of Acid Blue 92 (AB92) Decolorization

Numerical optimization was executed through the Design expert software (Stat-Ease, 7.1 trial
version) to define the optimal conditions for adsorption of AB92 on Nd2O3 nanoparticles. Adsorption
efficiency of 90.70% was predicted at the optimal conditions of pH: 3.15, AB92 concentration: 138.5 mg/L,
Nd2O3 nanoparticles dosage: 0.83 g/L and time: 49.55 min obtained. The validity of the predicted
optimal values was proved by carrying out an experiment at these optimal conditions. Adsorption
efficiency of 90.77% was obtained which is in agreement with the predicted adsorption percentage.
Desirability value close to 1 shows the significance and acceptability of a model [58]. Figure 8 shows
the desirability effect of the AB92 adsorption on Nd2O3 nanoparticles; the desirability of 1.000 confirms
the applicability of the model and acceptability of the predicted output responses.
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3.4. Adsorption Isotherms

In this research, the equilibrium data of AB92 adsorption on neodymium oxide nanoparticles
were analyzed using the two most common isotherm models (Langmuir and Freundlich models).
Figure 9 shows the typical equilibrium adsorption of AB92 onto prepared Nd2O3 nanoparticles at pH
of 3, Nd2O3 nanoparticles dosage of 1 g/L, AB92 concentration of 100 mg/L and temperature of 289
K). The adsorption isotherm curve rises steeply at lower concentrations of AB92 and approaches to a
plateau at higher concentrations.

The equilibrium data resulted were fitted to the non-linear Langmuir (Equation (6)) [59] and
Freundlich (Equation (7)) [60] expressed by the following respective equations:

Qe =
QmaxKLCe

1 + KLCe
(6)

Qe = KFCe
1/n (7)

where Qe (mg/g) is the equilibrium dye concentration in the solid phase; Qmax (mg/g) is the maximum
amount of adsorption; KL (L/mg) is the Langmuir adsorption equilibrium constant; KF (mg1−1/n L1/n/g)
is the Freundlich constant representing the adsorption capacity, n (-) is the constant depicting the
adsorption intensity.

The parameters found after fitting were Qmax = 20 mg/g, KL = 0.04118 L/mg (R2 = 0.991)
for Langmuir equation, while KF = 0.94095 mg1−1/n L1/n/g, n = 0.08265 (R2 = 0.973) for the
Freundlich equation.

However, many scientists also present isotherm models in linear expression. So, based on the ideal
assumption of monolayer adsorption of adsorbate on the adsorbent surface, the Langmuir isotherm
model is expressed in the linear form as follows [61]:

Ce

qe
=

1
Qmax

·
1

KL
+

Ce

Qmax
(8)

where the constants, qm, and KL were determined by plotting (Ce/qe) versus the equilibrium sorption,
Ce (Figure 10) and the calculated Langmuir parameters are recorded in Table 5.

Table 5. Isotherms parameters for the adsorption of AB92 onto Nd2O3 nanoparticles.

Langmuir Freundlich

Qmax KL KF 1/n R2

7.3 0.497 13.436 0.1694 0.9989

The Freundlich adsorption isotherm model is expressed as [62]:

log(qe) =
1
n

log(Ce) + log(KF) (9)

where KF and 1/n are the Freundlich constants. The plot of log(qe) versus log(Ce) (Figure 11) enables
the determination of the isotherm, constants KF and 1/n (Table 5). The isotherm parameters along with
the regression coefficient, R2 are listed in Table 5.

The AB92 adsorption equilibrium data fitted into the studied isotherm models but the Langmuir
was slightly better compared to the Freundlich isotherm with regards to its correlation coefficient,
R2 (Table 5) with maximum adsorption capacity, qm of 7.299 mg/g under the experimental conditions.
The favorability of an adsorption process is indicated by the magnitude of n [63]. The n-value of
5.903 determined for the Freundlich model lies within 1–10 (Freundlich threshold range) which suggests
that the sorption process is favorable [63].
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3.5. Kinetics of Adsorption

In order to further understand the adsorption process of AB92 onto Nd2O3 nanoparticles,
the kinetics of the process was investigated. The experimental kinetic data were fitted into the
Lagergren pseudo-first-order and Ho/Mckay pseudo-second-order kinetic models. The kinetics study
was performed at pH of 3, Nd2O3 nanoparticles dosage of 1 g/L, and temperature of 298 K at different
AB92 concentrations (100, 200 and 300 mg/L). The plot of qt versus t gives an excellent straight line
relation for adsorption of AB92 on Nd2O3 nanoparticles (Figure 12).

The pseudo-first-order model is widely applied for the adsorption of liquid adsorbate
on solid adsorbent on the basis of adsorption capacity at different time intervals (Figure 13).
The pseudo-first-order rate equation is defined as Equation (10) [64]:

log(qe − qt) = log(qe) −
k1

2.303
t (10)

Figure 13. Pseudo-first order kinetic (Lagergren) model for AB92 adsorption onto Nd2O3 nanoparticles
at 298 K.

This equation is known as the integrated rate law for pseudo-second-order chemisorption reaction.
The pseudo-second-order equation is given as Equation (11) [65,66]:

t
qt

=
1

k2qe2 +
t
qe

(11)

where qe and qt denote the amount of AB92 adsorbed per unit mass of the adsorbent at equilibrium
and at time, t (mg/g). k1and k2 are the pseudo-first-order and pseudo-second-order rate constants
(min−1), respectively. By plotting (t/qt) versus t (Figure 14), the constants qe and k2 were evaluated
(Table 6). The R2 was used as the basis for choosing the appropriate kinetic model. The adsorption
kinetic data was found to agree with the Ho kinetic model than the Lagergren (pseudo-first-order)
model at all concentrations (Table 6) which suggests that the rate-limiting step is the chemisorption
process [67]; this entails the sharing or exchange of electrons [68].
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Figure 14. Pseudo-second order kinetic (Ho) model for AB92 adsorption onto Nd2O3 nanoparticles at 298 K.

Table 6. Kinetics parameters for adsorption of AB92 onto Nd2O3 nanoparticles.

Lagergren Isotherm Ho Isotherm

C0 qe k1 R2 qe k2 R2

100 0.95 0.0020 0.3547 15.847 0.027 0.9962
200 1.77 0.0048 0.5070 25.25 0.135 1.0000
300 262.30 1.1000 0.7862 8.39 0.129 0.9993

3.6. Thermodynamic Studies

The thermodynamic parameters including the standard Gibbs free energy (∆G0), enthalpy change
(∆H0), and entropy change (∆S0) for adsorption of AB92 onto Nd2O3 were calculated (Table 7) using
the following equations [69]:

∆G0 = −RT ln Ka (12)

∆G0 = ∆H0
− T∆S0 (13)

where R is the universal gas constant (8.314 J/mol/K) and T is the absolute temperature in K. The
thermodynamic parameter, Gibb’s free energy change (∆G0), is calculated using Ka obtained from the
Langmuir isotherm.

Table 7. Thermodynamic parameters for the adsorption system AB92-Nd2O3.

Temperature
(K)

C0
(mg/L)

∆S0

(J/mol K)
∆H0

(J/mol) lnKa

∆G0

(kJ/mol)

298 −1.01119 −2.500
308 100 mg/L −1.2 38.073 −1.00307 −2.568
318 −1.00307 −2.596

The negative ∆G0 values indicate that the adsorption of AB92 on Nd2O3 nanoparticle was
spontaneous and favorable. The values of ∆G0 were found to decrease with increasing temperature
(Table 7). For the calculation of ∆H0 and ∆S0 the plot of Figure 15 was used based on Equation (13).
The positive value of ∆H0 indicates that the process is endothermic. According to Le Chatelier’s
principle, increasing the temperature reduced the reaction rate and is followed by the reduction in
the maximum adsorption capacity (qm). According to the results presented in Table 7, the Gibbs free
energy values over –20 kJ/mol represent physical adsorption [58]. ∆S0 for the adsorption of AB92 by
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Nd2O3 nanoparticles is negative, suggesting that the degree of freedom at solid-solution level declines
during the process of adsorption [70].

Figure 15. Free energy change versus temperature.

3.7. Reuse

Figure 16 illustrates the reuse potential of Nd2O3 after running the experiments in the same phase
(aqueous) as that of adsorption experiments. The nanoparticles showed higher reusability, because it
lost only 12% in adsorption capacity 5 cycles (8.5, 8.0, 8.0, 7.7, and 7.5 mg/g in the 1st, 2nd, 3rd, 4th and
5th cycle, respectively).

Figure 16. Cycles of reuse (adsorption-desorption) for the system Nd2O3/AB92.

4. Brief Cost Analysis

4.1. Theoretical Approach

The most used adsorbent material is activated carbon; but as it will be discussed in the following
it has drawbacks in reuse potential. The world demand for neat activated carbon is forecast to expand



Nanomaterials 2020, 10, 556 18 of 26

5.2% per year through 2012 to 1.15 million metric tons. The consumption of activated carbons for
industrial use has now become an indicator of development and environmental management efficiency.
The per capita consumption of activated carbons per year is 0.5 kg in Japan, 0.4 kg in the U.S., 0.2 kg in
Europe, and 0.03 kg in the rest of the world [71]. After the adsorbents are exhausted, they are either
to be disposed off or regenerated for use. This depends upon the demand, the economics involved,
and the kind of pollutant that was adsorbed. In many cases, spent adsorbents are to be treated as
hazardous waste and need to be incinerated (which in many countries causes a set of environmental
and societal problems) [72]. Exposure of spent adsorbents to ambient air may result in accumulation of
heat due to adsorption of moisture and desorption of toxic adsorbates, creating hazardous conditions.
Dumping spent adsorbents may also cause odour resulting in nuisance. The other option that industry
can use is regeneration. Regeneration costs may equal to stabilization costs or just more than that, but if
consumption of virgin adsorbent is reduced then multiple economic, industrial and environmental
benefits can be gained. Extensive research has already been conducted regarding adsorption of
pollutants onto various activated carbons, but investigations on regeneration remain scarce [73].
In many cases, the adsorbates may be a resource and need to be recovered or concentrated to earn
recovery credits. Considering all the above arguments it is evident that spent adsorbent needs to be
stabilized after being discarded. Because of high costs of production, stabilizing or proper disposal
seem unlikely operations. Regeneration of adsorbents could prove double rewarding by stabilizing
adsorbents and recovering valuable adsorbates, thereby minimizing demand for virgin adsorbents.

The main drawback of the already published adsorption studies is that their use is still in the
laboratory stage mostly without pilot studies or commercialization. Limited attempts for detailed
economic and market analyses are available [74]. Some attempts have been realized in the past at
commercializing immobilized biomass dye biosorbents such as alga_SORB, AMT-bioclaim, B.V. Sorbex’s
biosorbents and Bio-fix, but none have made a successful commercial entry in the market [75–77].
The main concept is not to extensively study the various fixed-bed adsorption papers in literature (and
many of the parameters such as flow rate, bed volume, cross-sectional area, length, void fractions,
adsorbent’s density, approach velocity, effective contact time, empty bed contact time, operation time,
throughput volume, specific throughput, bed volumes), but to analyze and evaluate the first and
fundamental principles of the use of green adsorbents.

In the case of the use of some green materials (mainly wastes) as a source for production of
activated carbon, there is one serious problem: the regeneration cost. The costs of activated carbon
adsorption are relatively high and the high costs limit its use in large-scale applications. The investment
costs consist of the costs of equipment (instrumentation), pumps, pipes and monitoring systems).
The operational costs depend mainly on the price of the adsorbent. The costs reduce when the adsorbent
consumption per unit volume of treated wastewater reduces. In the adsorption process, electricity
is mainly used for pumping the water and mixing the adsorbent suspension and for regeneration.
In addition, the costs of regeneration and reactivation and the disposal costs of spent adsorbent must
be taken into account when the total costs of adsorption are estimated. Spent adsorbent can include
toxic substances and has to be treated as hazardous waste. The main conclusion of all above is that
if an adsorbent is low cost but difficult to regenerate, it could not be economical and attractive for
use [78,79].

As discussed above, the most important parameter determining the cost of the adsorption process
to scale it up is the adsorbent and the regeneration cost. Furthermore, in a hypothetical scenario of
using a green adsorbent produced from wastes, some other costs need to be taken into consideration.
The cost of the adsorbent waste treatment consists of the cost of dewatering, transport and treatment
by incineration or landfill and is estimated at 100 €/ton [79]. The adsorbent concentration needed to
comply with the imposed discharge limits is influenced by the initial concentration of the pollutants
in the water and the pollutant removal ability of the adsorbent. In systems containing only one
pollutant and one adsorbent, an adsorption isotherm relates the adsorbents’ capacity to the pollutant
concentration in the water at equilibrium conditions. Therefore, the appropriate adsorbent’s dosage
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has to be determined. For this reason, Kyzas et al. studied the use of spent coffee waste for dyes
and heavy metal removal [80–82]. It was shown that 5 g/L was the best adsorbent dosage for the full
decolorization of dyeing effluents. However, in each case, it is necessary to determine the environmental
limits/regulations (discharge to aquatic systems) for each pollutant.

Another crucial factor regarding the operating cost of simulating adsorption procedure is the
electricity, which is mainly used for pumping the water and mixing the adsorbent suspension.
Vreysen and co-workers made a very useful cost estimation of the electricity required for an
adsorption-flocculation system. The main equations used are the following: The suspension is
mixed for 15 min at G = 821 s−1. The energy dissipation can be calculated from the formula:

G =

(
P

Vµ

)1/2

(14)

where G is the average velocity coefficient, V is the water volume, µ is the dynamic viscosity of water
(8.9 × 10−4 Pa s) and P is the power required (Watt).

For the flow rate:
V = QT (15)

where Q is the flow rate (m3/h) and T is the time (h). Combining Equations (16) and (17) results in:

P = G2QTµ[W] (16)

or
P
Q

=
G2Tµ
1000

[
kWh/m3

]
(17)

The total operating cost consists of the sum of the adsorbent cost (including sludge treatment)
and the electricity cost. Figure 17 shows a total operating cost estimation for 4 polluted wastewaters
and 5 different organotin discharge limits as undertaken by Vreysen et al. [79]. The applied discharge
limits for Cu and Zn were taken as 0.5 mg/L Cu and 2 mg/L. Zn in all cases.

Figure 17. Total operating costs for 4 different wastewaters for 5 different organotin discharge limits.
Reprinted with permission; Copyright Elsevier, 2008 [79].
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From all above, it is clear that the most profitable use of green adsorbents is not those derived from
activated carbon, but from agricultural waste. The use of those wastes untreated (just washed) seems
to be even better. A possible scenario described below in order to compare is the following Table 8:

Table 8. Techno-economical comparison for green and non- green adsorbents.

Parameter Green Adsorbents Non Green Adsorbent

Adsorbent Agricultural wastes (AW) Activated carbon (AC) Activated carbon (ACM)
Pollutants used Dyes, Metals, Others Dyes, Metals, Others Dyes, Metals, Others

Modification No No Yes
Adsorption capacity 100 mg/g 200 mg/g 300 mg/g

Mass of pollutant for removal 1 kg 1 kg 1 kg
Adsorption-desorption cycles 20 20 20
Loss of capacity after cycles 20% 20% 20%

Estimated cost for the adsorbent production* 0.5 2 3
Mass of adsorbent required 10 kg 5 kg 3.3 kg

Order of profitability 1 2 3

* This factor is used instead of using exact/unknown prices.

The parameters hypothetically are the same apart from the maximum theoretical adsorption
capacity (Qm) and the estimated cost for the adsorbent production. In that case, 10, 5, and 3.3 kg of
agricultural waste (AW), activated carbon (AC), and ACM are required for decontamination. However,
in the case of AW the production cost is estimated to be zero. Instead, a factor of 0.5 is added.
The production of AC is expected to be at least 4 times larger (electricity for pyrolysis etc.), while the
respective for ACM is 6 times larger (pyrolysis, chemical modification etc.). It is clear that the order of
profitability using the above adsorbents will be AW > AC > ACM. In another scenario, in which both
other parameters vary, the superiority of green adsorbents will be even clearer.

In order to provide a more realistic scenario, for an average industry which treats and discharges
1 MGD (megagallons per day) as effluents (containing either dyes or metals), the approximate quantity
of adsorbents can be calculated. In the case of textile industries, dye concentrations of 0.01–0.25
g/dm3 (= 10–250 g of dye per m3 of effluent) have been cited as being present in dye house effluents,
depending on the dyes and processes used [83]. Therefore, 37.85–946.25 kg of dye (containing into
the dyeing effluent) per day must be removed/adsorbed. Having as its basis the example of Table 9,
378.5–9462.5 kg of AW, 189–4731 kg of AC and 126–3154 kg of ACM are needed for the efficient
treatment of effluent. However, as explained in the previous paragraph, the cost for the synthesis of
AW in nearly zero. So, in any case this process can be characterized as sufficient. The same example
for an average metal plating (chromium) with 2 MGD as effluent rate can be calculated mentioning
that chromium concentrations of 0.5–270,000 g per m3 of effluent have been cited [84].

Table 9. Instrumentation and methods for nanomaterials synthesis.

Method Duration (h) Instrumentation

Soxhlet 12 Soxhlet Electrothermal (580 W)
Oven Drying 3 Oven Thermofisher (1450 W)

Stirring 3 (total) Stirrer CAT M 6,1 (580 W)

4.2. Application to the Present Nanomaterial

As was mentioned in the previous section, the wastewater treatment and the respective cost
requirements are more or less similar for any textile wastewater treatment plants (WWTPs). However,
there is big difference for the production of adsorbent material. To make a first attempt at the calculation
of cost of the nanomaterial, it is mandatory to divide the cost in 3 major classes: (i) raw material
cost (reagent, solvents, etc); (ii) energy cost for the synthesis; (iii) labor cost (personnel) [85]. Raw
material cost prices for the study were obtained from publicly released catalogues. It should be noted
that chitin and chitosan products can have very wide price ranges, depending on the quality of the
final product. For example, chitosan prices might range between USD 10 to USD 1000 per kilogram.
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The costs calculated in this work are all translated to euros (€). The analysis took into account multiple
market prices as provided by vendors all over the world. The raw material cost for each case included
the adsorbent cost as well as the metal recovery cost.

The energy cost corresponds to the energy spent for the various stages of the adsorption process.
Electricity costs per KWh used are based on the average energy price in Greece for 2019 (0.194 €/KWh).
This price was retrieved by the Hellenic Public Power Corporation S.A. [86]. Therefore, the energy
cost in Euros has been estimated as the product of the amount of KWh spent and the price of 1 KWh
in Greece.

Labor cost consists of the compensation of researchers participating in the project, with the addition
of taxes and benefits. For the purposes of this study, the personnel required for the synthesis process
comprises 1 researcher working for 1 work-day (i.e., 3 h). The average wages of the personnel were
assessed based on information from Glassdoor [86], which maintains a rich database with employee
wages per company and country depending on the position.

To calculate the recipe cost, Table 9 was drawn gathering all appropriate information. In this table,
the method and duration used during synthesis is presented along with the relative instrumentation
(reported energy consumption).

The equation used for calculations of energy cost is:

Ec = PD·a·t·Cc (18)

where Ec is the energy cost (€), PD is the power consumed by device (kW), a is a load factor (if we use
the device in full mode then a = 1, while for half mode a = 0.5, t is the usage of the device (h), Cc is the
energy cost (€/KWh).

After the appropriate calculations, the total energy cost for the procedure is 2.53 €. The raw
materials cost was estimated form the catalogues of the suppliers. In particular, the cost was (i) 12.93 €
for 0.06 mol of 2-hydroxy-1-netaldehyde; (ii) 1.56 € for methanol (60 mL); (iii) 2.19 € for Nd(NO3)3·6H2O
(with a molar ratio of 1:4); and 2.96 € for 1,4-diaminobutane (0.03 mol). So, in total for the raw costs
was 19.64 €. But the latter cost was for 7.5 g of the prepared material. Therefore, the cost for the raw
materials was 2.62 €/g. Similarly, the energy cost calculated in Equation (18) was 2.53 € for 7.5 g. But it
is doubtful if it is correct to split this value for 7.5 g. So, it is decided to keep the whole energy cost as
2.53 €. Therefore, the total cost of production was 5.15 €/g.

5. Conclusions

The adsorptive removal of AB92 on neodymium oxide (Nd2O3) nanoparticles have been studied.
The adsorption process was enhanced, modeled and optimized using CCD based on RSM. The influence
of varying the pH (3–9), dosage (0.1–1 g/L), initial concentration of AB92 (100–300 mg/L) and contact
time (10–100 min) on the adsorption process was examined. The adsorption process was found to fit
best into the Langmuir isotherm and pseudo-second-order kinetic models. Also, the process was found
to be spontaneous and favorable with increased temperature. Optimal conditions of pH 3.15, AB92
concentration of 138.5 mg/L, Nd2O3 nanoparticles dosage of 0.83 g/L, and contact time of 49.55 min
were obtained which gave 90.70% AB92 removal. The values of the coefficient of determination, R2

(0.9596) and the adjusted R2 (0.9220) indicated that the process can be described by the RSM. The
generated model was also found to be significant for AB92 adsorption at 95% confidence level. The
prepared Nd2O3 nanoparticles have been applied successfully for the adsorptive removal of AB92
from its aqueous solution, modeled and optimized.
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