
RESEARCH ARTICLE

A truncated PPAR gamma 2 localizes to

mitochondria and regulates mitochondrial

respiration in brown adipocytes

Ji Suk Chang*, Kyoungsoo Ha

Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, Baton Rouge,

Louisiana, United States of America

* jisuk.chang@pbrc.edu

Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of brown adi-

pocyte differentiation and thermogenesis. The PPARγ gene produces two isoforms, PPA

Rγ1 and PPARγ2. PPARγ2 is identical to PPARγ1 except for additional 30 amino acids

present in the N-terminus of PPARγ2. Here we report that the C-terminally truncated form of

PPARγ2 is predominantly present in the mitochondrial matrix of brown adipocytes and that it

binds to the D-loop region of mitochondrial DNA (mtDNA), which contains the promoter for

mitochondrial electron transport chain (ETC) genes. Expression of mitochondrially targeted

MLS-PPARγ2 in brown adipocytes increases mtDNA-encoded ETC gene expression con-

comitant with enhanced mitochondrial respiration. These results suggest that direct regula-

tion of mitochondrially encoded ETC gene expression by mitochondrial PPARγ2, in part,

underlies the isoform-specific role for PPARγ2 in brown adipocytes.

Introduction

A growing body of evidence from recent studies reveals that nuclear transcription factors

translocate to mitochondria and play a role in a cell- or tissue-specific manner. Thyroid recep-

tor (TRα isoform p43), MEF2D, STAT3, and CREB translocate to mitochondria and directly

modulate mitochondrial DNA transcription in response to specific stimuli [1–5], indicating

that nuclear transcription factors can control mitochondrial function via transcriptional regu-

lation of mitochondrial genome. In addition, nuclear transcription factors have non-genomic

function in mitochondria. Stress-induced p53 has been shown to trigger apoptosis in mito-

chondria by destabilizing the outer mitochondrial membrane through interaction with multi-

domain Bcl-2 family members [6]. Estrogen receptors (ERα and ERβ) can affect mitochondrial

fatty acid β-oxidation by directly regulating mitochondrial HADHB enzyme activity [7–9].

Furthermore, a growing number of nuclear receptors such as glucocorticoid receptor (GR),

vitamin D receptor (VDR), retinoid X receptor (RXR) and retinoic acid receptor (RAR) have

been found in the mitochondria of various cells and tissues, although their function in mito-

chondria has not been explored [10].
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Peroxisome proliferator-activated receptor (PPARγ) is a key regulator of terminal fat cell

differentiation [11, 12]. PPARγ also regulates many genes involved in thermogenesis, lipid

transport and metabolism, and insulin signaling in brown adipocytes [13, 14]. Alternative pro-

moter usage and alternative splicing give rise to two different PPARγ isoforms, PPARγ1 and

PPARγ2. These two isoforms are identical except for additional 30 amino acids present in the

N-terminus of PPARγ2 compared to PPARγ1 [15]. PPARγ1 and PPARγ2 are induced during

differentiation of brown preadipocytes [12], but functional differences of these two isoforms

have not been investigated. A previous study reported that a 45 kDa protein related to PPARγ2

is present in the mitochondria of several rat tissues including brown adipose tissue [16]. In the

present study, we found that a C-terminally truncated form of PPARγ2 is predominantly pres-

ent in the mitochondria of brown adipocytes and thus sought to investigate the possible iso-

form-specific role for PPARγ2 in brown adipocyte mitochondria.

Materials and methods

Mice

All animal experiments were performed according to the procedures reviewed and approved

by the Pennington Biomedical Research Center Institutional Animal Care and Use Committee

(PBRC IACUC). C57BL/6J mice were housed on a 12-h light/12-h dark cycle. To collect

brown adipose tissue from the interscapular region, mice were sacrificed with CO2 inhalation,

followed by cervical dislocation. The animal study was approved by the PBRC IACUC in the

protocol 659 (03/23/2010) and protocol 740 (08/22/2011).

Cell culture

HeLa cells (ATCC) were grown in DMEM supplemented with 10% FBS and 1% penicillin/

streptomycin and transfected using Fugene 6 (Roche Applied Science). Immortalized mouse

brown preadipocytes [17] were grown in DMEM supplemented with 10% FBS and 1% penicil-

lin/streptomycin and induced for differentiation as described previously [17, 18].

Plasmid construction

PPARγ2 was amplified from pCMX-PPARγ2 using primers containing SalI and NotI sites and

subcloned into SalI/NotI sites of pCMV/mito that contains the mitochondrial localizing

sequence (MLS). For a retroviral plasmid of pBABE-MLS-PPARγ2-HA, MLS-PPARγ2-HA

was amplified from pCMV/mito-PPARγ2-HA using primers containing SnaBI and XhoI sites

and subcloned into SnaBI/SalI sites of pBABE-neo. All plasmids generated were sequenced to

rule out any mutations.

Subcellular fractionation

To obtain nuclear, cytosolic and mitochondrial fractions, tissues or cells were homogenized

and subjected to subcellular fractionation by differential centrifugation as described previously

[19].

Immunofluorescence

Brown adipocytes were seeded on glass coverslips, fixed, and subjected to indirect immunoflu-

orescence as described previously [19]. The cells were analyzed with a Plan-Neofluar 40×/0.85

numerical aperture objective on a Zeiss LSM510 Meta confocal microscope.
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Proteinase K digestion assay

Purified mitochondria were resuspended in SEM buffer (250mM sucrose, 1mM EDTA, 10mM

MOPS, protease inhibitors) and incubated with increasing amounts of proteinase K for 15 min

on ice in the absence or presence of 1% Triton X-100. After addition of 2mM PMSF, mito-

chondria were spun down, rinsed with SEM buffer containing PMSF, and resuspended in 2x

Laemmli sample buffer.

Transmission electron microscopy and immunolabeling

Immuno-transmission electron microscopy (TEM) was carried out as described previously

[19]. Briefly, brown adipocytes were fixed in 2% glutaraldehyde and 1% paraformaldehyde, fol-

lowed by 1% osmium tetroxide. After dehydration, the cells were embedded in resin. Thin sec-

tions from the resin blocks were mounted on nickel grids. The grids were then subjected to

immuno-labeling by incubating with PPARγ (H-100) antibody or rabbit IgG. The grids were

analyzed using a JEOL JEM 2011 transmission electron microscope at the LSU Socolofsky

Microscopy Center.

Western blot

Cells were subjected to Western blot analysis as described previously [17]. Antibodies used

were as follows: anti-PPARγ2 (PA1-824) from Thermo Fisher Scientific, anti-PPARγ (H-100)

(sc-7196), anti-PPARγ (E-8) (sc-7273), anti-Tom20, anti-Lamin B1 from Santa Cruz, anti-

UCP1[20], and anti-HSP60 from Abcam.

Mitochondrial chromatin immunoprecipitation assay

Mitochondrial chromatin immunoprecipitation was carried out as described previously [19].

Briefly, mitochondria were isolated from brown adipocytes, crosslinked with 1% formalde-

hyde, and sheared to obtain chromatin fragments ranged from 400 bp to 1 kbp. After centrifu-

gation at 10,000 × g, the supernatant was pre-cleared with BSA-blocked Protein A agarose

beads and incubated with a ChIP grade anti-PPARγ (H-100) antibody or IgG at 4˚C. The

crosslinked DNA-protein complexes were released from BSA-blocked Protein A agarose beads

and the DNA samples were purified. Quantitative real-time PCR was carried out using a pair

of primers specific for the D-loop region and for ND1. D-loop fwd: 50-gtggtgtcatgcatttggtatct-

30; D-loop rev: 50-catgaataattagccttaggtgat-30; ND1 fwd: 50-cccattcgcgttattctt-30; ND1 rev: 50-

aagttgatcgtaaggaagc-30.

Retroviral infection

Retroviruses expressing an empty vector (pBABE-neo) or pBABE-MLS-PPARγ2-HA were

produced as described previously [17]. Immortalized brown preadipocytes were infected in

retrovirus-containing medium supplemented with 8 μg/ml of polybrene for 8h as described

previously [17]. After 48h, neomycin resistant clones were selected and pooled.

Quantitative real-time PCR

Total RNA was extracted from cells using the RNeasy mini kit with DNase I treatment (Qia-

gen). cDNA synthesis and quantitative real-time PCR were carried out as described previously

[17, 18, 21]. Relative abundance of mRNA was determined after normalization to that of cyclo-

philin mRNA using the ΔΔCt method.
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Oxygen consumption assay

Cellular oxygen consumption assays were performed using the OROBOROS Oxygraph-2k

(Oroboros Instruments, Innsbruck, Austria) as described previously [22]. Briefly, brown adi-

pocytes (106 cells) were placed in a magnetically stirred respirometric chamber and measured

for oxygen consumption rates (OCR) at baseline and after injection of antimycin A (a mito-

chondrial electron transport inhibitor). The value of mitochondrial respiration was deter-

mined by subtracting antimycin A-independent non-mitochondrial respiration as described

in the Oroboros Operator’s Manual.

Statistical analysis

All data are presented as mean ± SEM. Student t tests were used to compare the difference

between groups using Graphpad Prism 6 software. Values of P< 0.05 were considered statisti-

cally significant.

Results

A C-terminally truncated form of PPARγ2 is predominantly present in

brown adipose tissue mitochondria

The PPARγ gene produces two different isoforms, PPARγ1 and PPARγ2. PPARγ2 has addi-

tional 30 amino acids at the N-terminus compared to PPARγ1 (Fig 1A). Subcellular

Fig 1. A C-terminally truncated form of PPARγ2 is enriched in brown adipose tissue mitochondria. (A) Schematic of PPARγ1 and PPARγ2 proteins. AF-1,

activation function 1; DBD, DNA binding domain; LBD, ligand binding domain; AF-2, activation function 2. Blue letters represent specific regions recognized by three

different PPARγ antibodies. (B) Presence of a 52 kDa protein recognized by PPARγ2 antibody in the cytosolic and mitochondrial fractions. Brown adipose tissue was

isolated from C57BL/6J mice and subjected to subcellular fractionation. Cytosolic (C), nuclear (N) and mitochondrial (M) markers were detected in their respective

fractions. (C) Validation of three different PPARγ antibodies. PPARγ1 and PPARγ2 were expressed in HeLa cells and analyzed with three different PPARγ antibodies. �,

a non-specific band at ~50kDa that is reacted with PPARγ (H100) antibody in HeLa cells. (D) Western blot analysis of brown adipose tissue extracts (WCE) and

mitochondrial lysates (M) with three different PPARγ antibodies.

https://doi.org/10.1371/journal.pone.0195007.g001
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fractionation of brown adipose tissue (BAT) and western blot analysis with anti-PPARγ2 anti-

body unexpectedly revealed that while a ~57 kDa protein representing PPARγ2 was enriched

in the nuclear fraction, a ~52 kDa protein was predominantly present in the cytoplasmic and

mitochondrial fractions (Fig 1B). The nuclear marker Lamin B1 was not detected in the cyto-

plasmic and mitochondrial fractions, indicating no contamination of these fractions by nuclei.

To determine if a lower molecular weight band represents a variant of PPARγ2, we first tested

the specificity of PPARγ2 antibody that recognizes an epitope corresponding to amino acids

1–16 of PPARγ2 (Fig 1A). PPARγ1 and PPARγ2 were separately expressed in HeLa cells and

their protein expression was analyzed using PPARγ2 antibody. PPARγ1was not detected by

PPARγ2 antibody, but PPARγ2 was strongly detected at 57 kDa (Fig 1C, top panel), confirm-

ing that this antibody is highly specific to PPARγ2. Immunoblotting of BAT whole cell extracts

with PPARγ2 antibody showed two bands at 57 and 52 kDa, and the lower molecular weight

protein was enriched in the mitochondrial fraction (Fig 1D, lanes 1–2). Identity of the 52 kDa

protein in the mitochondrial fraction was further analyzed using two different PPARγ antibod-

ies (H100 and E8). PPARγ (H100) antibody recognizes amino acids 38–136 of PPARγ2,

whereas PPARγ (E8) antibody recognizes amino acids 486–505 mapping at the C-terminus of

PPARγ2 (Fig 1A). PPARγ2 expressed in HeLa cells was detected by PPARγ H100 and E8 anti-

bodies at 57 kDa (Fig 1C, middle and bottom panels). In addition, PPARγ1 expressed in HeLa

cells was detected by both PPARγ antibodies (Fig 1C, middle and bottom panels). The 52 kDa

band reacted with PPARγ2 antibody in the mitochondrial fraction of BAT was recognized by

PPARγ (H100) antibody but not by PPARγ (E8) antibody (Fig 1D, lane 2). Taken together,

these results demonstrate that the 52 kDa protein in the mitochondrial fraction is the C-termi-

nally truncated form of PPARγ2 (Fig 1A).

To evaluate localization of the full-length and truncated PPARγ2 in brown adipocytes, fully

differentiated brown adipocytes were subjected to indirect immunofluorescence using

PPARγ2 antibody. PPARγ2 antibody-specific fluorescent signals were primarily found in the

nucleus with high concentration at the nuclear envelope as well as in the cytoplasm in brown

adipocytes (Fig 2A). To further determine subcellular localization of the full-length and trun-

cated PPARγ2 during brown adipocyte differentiation, brown preadipocytes (day 0) were

stimulated to undergo differentiation. The cells were collected at 2, 4 and 7 days of differentia-

tion and subjected to nuclear and cytoplasmic fractionation. In agreement with increased

PPARγ2 gene expression during brown adipocyte differentiation [12], PPARγ2 protein (57

kDa) began to become visible in the nuclear pellet at 2 days of differentiation and its levels

were gradually increased during differentiation (Fig 2B). Similarly, the 52 kDa protein levels

were elevated during brown adipocyte differentiation. While the full-length PPARγ2 was pre-

dominantly accumulated in the nuclear pellet (N), the truncated PPARγ2 (52 kDa) was present

in both the nuclear pellet (N) and nuclei-free supernatant (S) of brown adipocytes undergoing

differentiation (Fig 2B). Nuclear versus cytosolic localization is not likely regulated by cAMP-

dependent signaling since treatment with cAMP did not affect localization of either the full-

length or truncated PPARγ2 (Fig 2B, lanes 9–10). Next, the nuclei-free supernatant fractions

were further centrifuged to isolate mitochondria. The truncated form of PPARγ2 was signifi-

cantly enriched in the mitochondria of brown adipocytes undergoing differentiation (Fig 2C).

The C-terminally truncated form of PPARγ2 is localized in the

mitochondrial matrix of brown adipocytes

To further confirm that the C-terminally truncated form of PPARγ2 localizes within the mito-

chondria, highly purified BAT mitochondria were treated with increasing concentrations of

proteinase K, which cannot penetrate the mitochondrial membranes. The outer mitochondrial
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membrane protein Tom20 was completely digested by proteinase K, whereas inner mitochon-

drial membrane protein UCP1 and mitochondrial matrix protein HSP60 were resistant to pro-

teinase K digestion (Fig 3A). Triton X-100-mediated solubilization of mitochondria resulted

Fig 2. Localization of the full-length and truncated PPARγ2 during brown adipocyte differentiation. (A) Analysis of PPARγ2

localization in brown adipocytes. Brown preadipocytes were differentiated and subjected to indirect immunofluorescence using anti-

PPARγ2 antibody. (B, C) Western blot analysis of the full-length and truncated PPARγ2 in subcellular fractions of brown adipocytes

during differentiation. Brown preadipocytes (day 0) were differentiated for 2, 4, and 7 days, homogenized and subjected to

centrifugation at 1,000 × g (N, nuclear pellets; S, nuclei-free supernatant). The nuclei-free supernatant was further centrifuged at

10,000 × g to isolate mitochondria (M).

https://doi.org/10.1371/journal.pone.0195007.g002
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in complete digestion of UCP1 and HSP60 by proteinase K. Similarly, the truncated form of

PPARγ2 was protected from proteinase K digestion in the absence of Triton X-100, indicating

that it does not adhere to the outer mitochondrial membrane in a nonspecific manner and is

indeed localized within the mitochondria.

To determine the submitochondrial localization of the truncated form of PPARγ2,

immuno-transmission electron microscopy (TEM) was carried out in fully differentiated

brown adipocytes. PPARγ (H100) antibody was used because no cellular signal was detected

using PPARγ2 antibody for immuno-TEM analysis. PPARγ (H100) antibody is able to detect

the truncated form of PPARγ2 in mitochondria (Fig 1D). Immunogold particles correspond-

ing to the truncated form of PPARγ2 were primarily localized in the mitochondrial matrix of

brown adipocytes (Fig 3B). A small number of immunogold particles was also found closely

associated with the inner mitochondrial membrane. The relative number of these immunogold

particles in the brown adipocyte mitochondria was significantly higher compared with IgG

control (Fig 3B).

Fig 3. The truncated PPARγ2 localizes in the mitochondrial matrix. (A) The truncated form of PPARγ2 in mitochondria is protected from proteinase K digestion.

Purified brown adipose tissue mitochondria (60 μg) were treated with increasing amounts of proteinase K in the absence or presence of 1% Triton X-100. (B)

Immuno-transmission electron microscopic analysis of the truncated PPARγ2 in brown adipocytes. Black dots indicated by arrow heads represent immunogold

particles reacted with PPARγ (H100) antibody. Mitochondrial localization of immunogold particles was examined in 4–5 grids per group (20–30 mitochondria/grid),

and the relative number of immunogold particles localized in the mitochondria was shown in the right panel. Data are presented as the mean ± SEM. Data represent

mean ±SEM. ����P<0.0001.

https://doi.org/10.1371/journal.pone.0195007.g003
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The C-terminally truncated form of PPARγ2 binds to the D-loop region of

mitochondrial DNA

The finding that the truncated form of PPARγ2 was primarily localized in the mitochondrial

matrix prompted us to ask whether it regulates mitochondrial DNA transcription. Mitochon-

drial DNA (mtDNA) is located in the mitochondrial matrix and encodes 11 key subunits of

electron transport chain (ETC) complexes I, III and IV and 2 subunits of ATP synthase (Fig

4A). The D-loop region of mtDNA contains the promoter mediating bidirectional transcrip-

tion [23, 24]. To test if the truncated form of PPARγ2 is recruited to the D-loop region of

mtDNA, we isolated mitochondria from brown adipocytes and carried out mitochondrial

chromatin immunoprecipitation (mtChIP) assays using a ChIP grade anti-PPARγ (H100)

antibody, which has been validated for its specificity and immunoprecipitation efficiency [25].

The truncated form of PPARγ2 bound to the D-loop region of mtDNA in mitochondria (Fig

4B). In contrast, no binding was detected at the coding region of ND1 gene, strengthening its

specific binding to the D-loop region of mtDNA.

Mitochondrially targeted MLS-PPARγ2 enhances mtDNA-encoded ETC

gene expression and mitochondrial respiration in brown adipocytes

Given that the truncated form of PPARγ2 bound to the D-loop region of mtDNA, we wanted

to test if this protein regulates mtDNA-encoded ETC gene expression in mitochondria. We

constructed MLS-PPARγ2 that contains a mitochondrial matrix localizing sequence (MLS)

fused to the N-terminus of the protein. In frame insertion of the MLS directs the protein to the

mitochondria and thus has been used to assess the function of nuclear transcription factors

specifically in the mitochondria without its effect on gene expression in the nucleus [19, 26–

28]. MLS-PPARγ2 was stably expressed in brown preadipocytes by retrovirus-mediated gene

transfer. A previous study has shown that PPARγ2 expression in fibroblasts stimulates adipo-

genic differentiation [29]. We also observed that PPARγ2 expression in brown preadipocytes

partially induced adipocyte differentiation without a differentiation cocktail, whereas no adi-

pocyte differentiation was stimulated by MLS-PPARγ2 expression in brown preadipocytes

(data not shown). This indicates that MLS-PPARγ2 has no effect on gene expression in the

Fig 4. The truncated PPARγ2 binds to the D-loop region of mitochondrial DNA. (A) A schematic diagram of mitochondrial DNA (mtDNA).

(B) Enrichment of the truncated PPARγ2 at the D-loop region of mtDNA in brown adipocyte mitochondria. Mitochondrial chromatin

immunoprecipitation assay was carried out as described in Materials and Methods. The relative amounts of mtDNA immunoprecipitated with

IgG or PPARγ (H100) antibody were analyzed by quantitative real-time PCR analysis (n = 4). Data represent mean ±SEM. ��P<0.01.

https://doi.org/10.1371/journal.pone.0195007.g004
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nucleus. Further supporting this, expression levels of aP2, which is a PPARγ target gene and

an adipogenic marker, were not different between MLS-PPARγ2- and empty vector-express-

ing brown adipocytes (Fig 5A). Mitochondrial transcription factor A (TFAM) is a key regula-

tor of mtDNA transcription [24]. TFAM is encoded by nuclear genome and imported to

mitochondria. Gene expression analysis showed that TFAM was comparably expressed in

MLS-PPARγ2- and empty vector-expressing brown adipocytes. Despite the same levels of

TFAM, expression of several mtDNA-encoded ETC genes was elevated in MLS-PPARγ2-ex-

pressing brown adipocytes compared to control brown adipocytes (Fig 5A), suggesting a direct

effect of MLS-PPARγ2 on mtDNA-encoded ETC gene expression. Next, to determine the

effect of increased ETC gene expression on mitochondrial respiration, cellular oxygen con-

sumption rates (OCR) were measured at baseline and after injection of a mitochondrial elec-

tron transport inhibitor, antimycin A. Mitochondria-dependent respiration was determined

by subtracting antimycin A-independent non-mitochondrial respiration. In agreement with

an increase in mtDNA-encoded ETC gene expression by MLS-PPARγ2, mitochondrial respi-

ration was slightly enhanced in MLS-PPARγ2-expressing brown adipocytes compared to con-

trol brown adipocytes (Fig 5B). Taken together, these results indicate that mitochondrial

PPARγ2 plays a role in mitochondrial respiration via regulating mtDNA-encoded ETC gene

expression in brown adipocytes.

Discussion

The present study identifies the truncated form of PPARγ2 (52 kDa) that is highly enriched in

brown adipocyte mitochondria and regulates mtDNA-encoded ETC gene expression. While

the full-length PPARγ2 was predominantly localized in the nucleus, the truncated form of

PPARγ2 was located in the nucleus, cytoplasm, and mitochondria of brown adipocytes. Cyto-

plasmic localization of this truncated protein is not surprising because nuclear-cytoplasmic

shuttling of PPARγ1 and PPARγ2 has been reported. PPARγ1 and PPARγ2 contain nuclear

import and export signals at the DNA-binding domain (DBD) and the ligand-binding domain

Fig 5. MLS-PPARγ2 increases mitochondrial respiration by modulating mtDNA-encoded ETC gene expression. (A) Expression of MLS-PPARγ2

in brown adipocytes increases mtDNA-encoded ETC gene expression. Quantitative real-time PCR was carried out in brown adipocytes expressing

pBABE or MLS-PPARγ2 (n = 5). Data represent mean ±SEM. �P<0.05. (B) MLS-PPARγ2 enhances mitochondrial respiration in brown adipocytes.

Cellular oxygen consumption rates (OCR) were measured at baseline and after injection of antimycin A (n = 6). The value of mitochondrial respiration

was determined by subtracting antimycin A-independent non-mitochondrial respiration. Data represent mean ±SEM. �P<0.05.

https://doi.org/10.1371/journal.pone.0195007.g005
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(LBD), respectively [30]. Accordingly, their nuclear-cytoplasmic shuttling is mediated by a

nuclear importer importin α/β and a nuclear exporter CRM1 [30]. The truncated PPARγ2

lacks the C-terminal end of PPARγ2 (at least amino acids 486–505) that in part consists of the

activation function 2 (AF2) domain (amino acids 436–505). The AF2 domain is required for

ligand-dependent activation of PPARγ2 via interaction with coactivators and subsequent deg-

radation via the ubiquitin proteasome system [31, 32]. It is not likely that lack of the C-termi-

nal end of PPARγ2 increases cytoplasmic translocation since the AF2 domain does not

regulate nuclear-cytoplasmic shuttling of PPARγ1 [33]. Rather, it is more probable that the C-

terminal end of PPARγ2 retains the full-length PPARγ2 better in the nucleus via interaction

with nuclear coactivators. How does the truncated form of PPARγ2 translocate to mitochon-

dria? There are growing number of evidence that nuclear transcription factors translocate to

mitochondria despite the absence of a mitochondrial localization sequence. Several studies

have shown that mitochondrial heat shock protein 70 (mtHSP70) and voltage-dependent

anion channel (VDAC) serve as a transport route for proteins that lack a mitochondrial locali-

zation sequence [2, 3, 34, 35]. Thus it would be interesting to examine whether mtHSP70 and/

or VDAC assist mitochondrial import of the truncated form of PPARγ2.

Several studies have reported mitochondrial translocation of truncated nuclear receptors

such as thyroid receptor (TRα1 p43), progesterone receptor (PR-M), and retinoid X receptor

(RXRα p44) in a tissue- or cell-specific manner [36–38]. These truncated proteins are produced

by multiple pathways including translation at the internal initiation site, alternative splicing,

and enzymatic cleavage. Casas et al. previously reported that a 45 kDa protein related to

PPARγ2 is present in the mitochondria of brown adipose tissue [16]. It’s not clear whether this

protein is identical to the truncated PPARγ2 we found in the present study. However, both find-

ings demonstrate that the truncated forms of PPARγ2 are predominantly located in brown adi-

pose tissue mitochondria. Cytoplasmic PPARγ2 has been shown in 3T3-L1 adipocytes, but its

truncated form has not been reported [39]. We did not detect the truncated form of PPARγ2 at

52 kDa in subcutaneous and visceral adipose tissue (data not shown). This may suggest that the

truncated form of PPARγ2 is specifically produced in brown adipocytes. The mechanism by

which the truncated form of PPARγ2 originates in brown adipocytes remains to be determined.

Collectively, our data suggest that mitochondrial PPARγ2 affects mitochondrial respiration

through influencing the expression of mtDNA-encoded ETC genes in brown adipocytes.

Many ETC subunits encoded by nuclear DNA assemble as subcomplexes in the mitochondrial

matrix and their redistribution to the inner mitochondrial membrane are accelerated by

mtDNA-encoded ETC subunits [40, 41]. Thus the mechanism by which mitochondrial

PPARγ2 regulates mtDNA-encoded ETC gene expression may provide an additional level of

control for efficient ETC complex formation in the inner mitochondrial membrane of brown

adipocytes. Enhanced mitochondrial respiration through the ETC complexes is critical for

UCP1-mediated heat production in brown adipocytes.
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