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Abstract

Background: Mutations of the amyloid precursor protein gene (APP) are found in familial forms of Alzheimer’s disease (AD)
and some lead to the elevated production of amyloid-b-protein (Ab). While Ab has been implicated in the causation of AD,
the exact role played by Ab and its APP precursor are still unclear.

Principal Findings: In our study, Drosophila melanogaster transgenics were established as a model to analyze AD-like
pathology caused by APP overexpression. We demonstrated that age related changes in the levels and pattern of synaptic
proteins accompanied progressive neurodegeneration and impairment of cognitive functions in APP transgenic flies, but
that these changes may be independent from the generation of Ab. Using novel peptide mimetics of Apolipoprotein-E,
COG112 or COG133 proved to be neuroprotective and significantly improved the learning and memory of APP transgenic
flies.

Conclusions: The development of neurodegeneration and cognitive deficits was corrected by injections of COG112 or
COG133, novel mimetics of apolipoprotein-E (apoE) with neuroprotective activities.
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Introduction

Alzheimer’s disease (AD) represents the most common neuro-

degenerative disease occurring in mid-to-late life [1]. Clinically,

AD manifests as a gradual decline of cognitive functions such as

learning and memory, which significantly correlates with synaptic

loss [2–4]. The mechanism(s) by which synaptic dysfunction occurs

is not well understood. However, numerous results show that

synaptic dysfunction occurs in the very early stages of many

neurodegenerative diseases and precedes accumulation of abber-

ant protein aggregates [5–8]. Furthermore, studies with transgenic

animals recapitulated very similar early pathologic events for

different disease models [9–12].

Animal models of AD typically mimic the pathogenesis of early

onset familial AD that are caused by mutations in the amyloid

precursor protein (APP) and presenilin (PS1 and PS2) genes [13].

APP is a large, type I transmembrane protein, which is cleaved by

different membrane associated proteases known as a, b and

c-secretases [14]. The coordinated action of b– and c–secretases

result in the formation of a 40–42 amino acid peptide named as

amyloid beta protein (Ab) whose beta pleated sheet conformation

is a main constituent of amyloid plaques in AD brain [15]. In

contrast, a -secretase cleaves APP in the middle of the Ab region

and prevents its production [14]. Additionally, it has been shown

that PS1 is an integral part of the c-secretase protease consisting of

at least four different proteins in a membrane associated complex

[16].

In most animal models of AD, overexpression of APP, with or

without mutated presenilin expression, yields elevated levels of Ab
production and accumulation of oligomeric Ab species that may

contribute to synaptic failure and cognitive deficits [4].

Although APP overexpression and Ab deposition in transgenic

animals do not faithfully recapitulate all aspects of AD, they offer

real opportunities for studying AD related neuropathology. In

particular, these animal models help to explain the contributions

of APP and Ab in familial AD pathogenesis. In this respect,

transgenic Drosophila models have several advantages for investi-

gation of AD pathology. First, the Drosophila APP homologue, an

APP-like protein (APPL) lacks the Ab peptide region and its

processing does not lead to neurotoxic effects [17]. Second,

because b-secretase (BACE) activity is not present in Drosophila

[18–20], APP expression in transgenic flies allows one to
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discriminate between abnormal effects of exogenous human APP

and secreted Ab. More importantly, transgenic Drosophila can be

used to better understand targets for protective treatments to

preserve cognitive and functional abilities in AD patients.

We now report that overexpression of human APP in neural

cells of Drosophila leads to synaptic dysfunction, neurodegeneration,

Ab secretion and Ab aggregation in the fly brain. Novel

neuroprotectors, known as mimetics of apolipoprotein E (apoE),

block neurodegeneration and restore cognitive functions in

transgenic Drosophila. Selection of apoE-mimetics derived from

the receptor-binding region of apoE was based on the ability of

these peptides to mimic the functional anti-inflammatory and

neuroprotective effects of the intact apoE protein seen in different

animal models of neurological diseases [21,22]. Moreover, these

peptides suppressed elevation of Ab1-42 levels in mice after head

injury [23]. In summary, apoE mimetics are useful tools to mark

the functional connections between neurodegeneration, cognitive

impairment, Ab secretion and Ab aggregation

Results

I. Modeling AD Neuropathology in Drosophila
APP expression and accumulation of Ab in transgenic fly

brain. To express human APP genes in neuronal cells of

Drosophila, we used the UAS/Gal 4 system [24]. In this system, the

yeast transcriptional activator Gal 4 directs transcription of the

transgene, which has been placed under the transcriptional control

of an Upstream Activating Sequence (UAS). Flies carrying the

UAS-APP transgene, in which a human APP cDNA was located

downstream of the UAS promoter, were crossed to flies carrying a

Gal 4 (elav-GAL4c155) transgene, which expresses predominantly in

neurons [25]. Transgenes with the elav;APP genotype express APP

at levels higher than the endogenous APPL gene [20,26]. In UAS-

APP-expressing lines, antibodies against the N-terminal region of

human APP (22C11) detected full-length forms of APP695

[Fig. 1A-22C11(APP-N), elav; APP]. Double transgenic lines

coexpressing human APP and BACE resulted in the partial loss

of the larger APP band [Fig. 1A-22C11(APP-N), elav; APP/BACE].

Immunoprecipitation of SDS-protein extracts from the heads of

elav; APP/BACE transgenics with monoclonal antibody 4G8

revealed Ab monomer and SDS-stable Ab oligomers [Fig. 1A-

4G8(IP), elav APP/BACE]. Ab derived from human APP

expression was detectable in immunoprecipitates at 2 days after

eclosion. We did not detect Ab monomer and Ab oligomers in

immunoprecipitates of flies with the elav; APP genotype, where

staining was detected only at the top of gradient gel reflecting the

position of IgG migration. Immunohistochemistry demonstrated

that Ab deposits in the Drosophila brain were detected mainly in the

outer cellular cortex layer that contains neuronal and glial cells in

flies simultaneously expressing APP and BACE [Fig. 1B-b,d; elav;

APP/BACE].

Distribution of GFP–n-synaptobrevin in the transgenic

Drosophila brain. Next, we studied distribution of n-

synaptobrevin in brain sections of transgenic Drosophila.

Synaptobrevin is one of the main presynaptic proteins and

represents a reversible linker between synaptic vesicles and the

cytoskeletal meshwork. Thus, the distribution of n-synaptobrevin

in neural cells of Drosophila brain may demonstrate cytoskeletal

integrity and illuminate possible abnormalities in synaptic

functions. We used green fluorescent protein (GFP) fused in

frame with n-synaptobrevin (n-syb-eGFP) as a detection reporter

for its local distribution. Several transgenic lines were studied

including flies expressing APP, APP-Swedish and N- or C–

terminally truncated APPs. APP–Swedish is an APP695 transgene

with the (670K3N, 671M3L) mutations found in familial AD [13].

The gene encoding APPDCT included sequences for the

extracellular domain, Ab, and the short membrane anchor

KKKR, followed by a stop codon [27]. The APPDNT structure

included the sequence of the APP signal peptide fused with an

APP695 C-terminal fragment beginning from the residue N584

located at a distance of 12 amino acid residues upstream from the

59-site of BACE cleavage [27]. Thus, DNT also included the Ab
sequence. The presence of the Ab domain in all truncated APP

forms studied here was necessary for axonal transport of the

truncated APP to the presynaptic terminal [28].

Laser confocal microscopy in transgenic lines expressing n-syb-

eGFP showed that fluorescence is largely localized in the

mushroom bodies, the brain region involved in associative learning

Figure 1. Human APP expression in the brain of transgenic
Drosophila. A) Western blot analysis of APP and Ab: 22C11 (APP-N): Full
size human APP was detected by monoclonal antibody 22C11 (APP N
terminal-specific); 4G8 (IP): Ab was immunoprecipitated using anti-Ab
monoclonal 4G8 antibody; elav;APP; and -elav;APP/BACE- genotypes of
transgenic strains used for analysis. All blots were scanned and relative
intensity of bands was quantified using Image J software. B) Ab
deposits in Drosophila brain: 4G8 (IH): Immunohistochemistry with 4G8
antibody; Arrows indicate areas for magnification. Bar, 50 mm (a, b); Bar,
10 mm (c, d).
doi:10.1371/journal.pone.0008191.g001
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and memory, and to the antennal lobe of the brain region, which

is responsible for olfactory function [Fig. 2A]. A significant

reduction in fluorescence intensity in mushroom bodies and

antennal lobes was seen in transgenics expressing full size APPs

and n-syb-eGFP in 30-day-old flies. The most significant reduction

of fluorescence intensity in optical slices was detected in

transgenics expressing APP-Swedish plus BACE. In contrast,

reduction of n-syb-eGFP levels in flies expressing truncated APPs

was not significant in 30-day old flies compared with those

expressing n-syb-eGFP alone [Fig. 2A]. As an additional control,

signal intensities of n-syb-eGFP in the mushroom bodies and in the

antennal lobes were almost equal in all transgenic lines on the

second day after hatching (data not shown). For calculation of

relative intensities, all pixel intensities in the selected areas were

normalized to the fluorescent signal/pixel intensities of the elav

genotype. Relative intensities are shown as mean6SEM. Quan-

titation of n-syb-eGFP fluorescence demonstrates the following:

first, transgenics expressing APP plus BACE had lower levels of

presynaptic proteins than transgenics expressing only APP and

second, overexpression of full length APP may be sufficient for

abnormal synaptogenesis in the Drosophila brain.

Age-dependent neurodegeneration in transgenic Droso-

phila. The age-related change in the pattern of n-syb-eGFP

fluorescence in Drosophila expressing APP was accompanied by

progressive neurodegeneration. Vacuolization of neuronal tissues

is the major hallmark of neurodegeneration in flies [29]. As seen in

Fig. 3, all APP transgenics demonstrate vacuolar lesions, which are

progressive from days 1 to 30. We did not observe vacuolar lesions

associated with neurodegeneration in the brains of any transgenic

Drosophila line on the first day after hatching. On the 15th day,

small vacuolar foci appeared in the neuropil and the number of

the foci continued to increase with time until day 30. Vacuoles

were mostly located in the neuropil while the optic lobes were less

affected (Fig. 3). Although the number of vacuoles varied from

sample to sample, we did not find significant differences between

transgenics that expressed BACE and those that lacked BACE. All

genotypes revealed strong neurodegeneration in comparison with

controls (elav) [Fig. 3B].

Age-dependent learning and memory defects in

transgenic flies. All transgenic Drosophila lines expressing

full length APPs showed reduced learning and memory when

tested using an olfactory learning assay [30]. Briefly, 50–100

flies from each line were sequestered in a closed chamber and

trained by exposing them sequentially to two odors (octanol or

methylcyclohexanol). Flies received electric shock pulses in the

presence of the first odor, but not in the presence of the second

odor. Trained flies were then tested for conditioned avoidance

responses. Immediately after training, learning was measured

by allowing flies to choose between the two odors for 120

seconds (Learning Index) or after 1.5 hours (Memory index).

The Learning Index and Memory Index for different genotypes

are summarized in Tables 1 and 2. In general, a significant

decline in learning and memory was observed for all lines

expressing full length APPs in neuronal cells. This decline was

detected in 1- to 2-day-old flies and became more pronounced

as the flies aged.

Figure 2. Distribution of GFP–n-synaptobrevin in the Drosophila brain. A) Optical sections of the brain obtained by confocal microscopy
(four brightest sections for each genotype). The fluorescent signal was visualized at a wavelength of l 488 nm. The scanning sections were 2 mm
thick. Microphotographs show the brains of 30-day-old flies. B) Quantitation of relative intensities of GFP–n-synaptobrevin (n-syb-eGFP) in the brain
section for transgenic flies with different genotypes: 1.-elav; 2- elav;DNAPP; 3- elav;DCAPP; 4-elav;APP; 5-elav;APPSw; 6-elav;APP/BACE; 7- elav;
APPSw/BACE. The pixel intensity in the selected areas was estimated using Image J software and was normalized to the fluorescent signal of elav
genotype. Relative intensities are shown as averages6SEM. p,0.05.
doi:10.1371/journal.pone.0008191.g002
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II. ApoE-Mimetics and Modulation of AD Neuropathology
in Transgenic Drosophila

In vivo delivery of peptides into brain cells. ApoE-

mimetic peptides are well known to display anti-inflammatory and

neuroprotective effects in the central nervous system [21,22].

Therefore, we tested whether the apoE-mimetic peptides could

modify neurodegeneration, amyloidogenesis and cognitive

functions in transgenic Drosophila models of AD. With the aim of

enabling efficient intracellular delivery of apoE-mimetics, we

employed protein transduction domain (PTD) technology and

evaluated the ability of one of the PTD peptides, penetratin (a 16-

amino acid peptide derived from the Drosophila Antennapedia

homeodomain protein, Antp) to carry a cargo (apoE peptide-

COG133) into brain cells. Both penetratin and COG133 crossed

the blood brain barrier (BBB) in rodents [21,31]. However, fusion

of Antp to COG133 resulted in significantly enhanced therapeutic

effects in animal models [31,32]. To analyze, whether this fusion

peptide is capable of crossing the BBB in Drosophila, we injected

Antp-COG133 (known as COG112) peripherally into the

abdomen, which is filled with the hemolymph that bathes all

outer surfaces of the fly brain. To discriminate whether peptide

actually crossed the BBB or was simply trapped within the thin

layer of perineurial and glial cells, we used microscopy to detect

biotin-tagged peptide on whole slices in the parenchymal regions

of the brain structures. As seen in Fig. 4, intensity of staining was

much higher in the outer cellular cortex layer containing neuronal

and glial cells when compared with neuropil areas. However, at

this level of resolution, it is difficult to conclude whether the biotin-

tagged peptide penetrated inside specific brain cells. Experiments

without added peptides or with injected control peptide CF, which

does not cross BBB [33], demonstrated only very weak staining.

Effect of peptides on neurodegeneration. The develop-

ment of vacuolar defects was almost entirely ameliorated by

injections of COG112 or COG133 in elav;APP/BACE and

elav;BACE;APP-Sw transgenic lines [Fig. 5]. Amounts of different

sized vacuoles in the neuropil of the central brain and optical lobes

were drastically decreased after seven injections of apoE peptides.

The protective effect was significant even on day 15–17 day

following the fourth injection of peptides. In control experiments,

injections of penetratin (Antp) in the same doses did not block

neurodegeneration. Six brains for each genotype and 16–18

sections per brain were analyzed. Significant differences from

controls (p,0.05) were observed for COG112 and COG133 for

both tested genotypes (elav;APP/BACE and elav;BACE;APP-Sw).

Effect of peptides on learning and memory. To clarify

whether apoE-mimetics could inhibit vacuolarization associated

with neurodegeneration and help to restore cognitive functions, we

analyzed the effects of COG112 or COG133 on learning and

memory in two APP expressing lines: elav;APP/BACE and

elav;BACE/APP-Sw. These lines showed the strong vacuolarization

associated with neurodegeneration and a reduction of synaptic

protein levels in mushroom bodies, centers for olfactory learning

and memory. After two injections over the first 7 to 8-days of age,

COG112 or COG133 treatments did not show any effects on

Table 1. Progressive loss of learning ability in APP-transgenic flies.

Age of animal Genotype 1–2 days 7–8 days 13–14 days 21–22 days 28–30 days

elav-GAL4c155* 61.265.2 6.863.6 38.664.6 34.262.8 31.266.7

UAS-APP* 58.464.7 57.066.3 52.765.8 44.864.4 37.467.1

UAS-APP-Sw* 55.464.3 42.563.0 33.363.6 33.762.6 35.365.3

elav;APP 9.864.1 9.664.3 3.662.3 2.561.5 2.061.9

elav;APP/BACE 13.664.0 9.362.9 6.461.8 5.361.2 3.762.1

elav;APP-Sw 22.462.4 15.364.8 11.664.1 4.962.8 4.062.3

elav;BACE;APP-Sw 28.064.2 19.363.7 13.863.7 8.263.0 4.261.8

The Learning Index was calculated as described in ‘‘Materials and Methods’’. All scores are expressed as mean6SEM, (n = 6) where (n) is the number of independent
assays. Asterisk (*) indicates control transgenic lines. Statistical analysis was performed using one-way ANOVA and Tukey-Kramer multiple comparison post hoc test.
Significance was accepted at p,0.05.
Groups of flies showing statistically significant differences from controls in learning index are shown in bold font.
doi:10.1371/journal.pone.0008191.t001

Figure 3. Age-dependent neurodegeneration in APP expressing
transgenics. Microphotographs of the brains of 30-day-old flies; Bar,
50 mm. A) Percentage of the area lost in the regions of the cell body
and neuropil: The ratio of lost area was calculated by dividing the sum
of the vacuole areas from all brain sections by the total area of the brain
from all brain sections. We analyzed 6 brains for each genotype, 16–18
sections per brain. Percentage of the area lost is shown as
averages6SEM. p,0.05. B) Neurodegeneration in APP flies at day 30.
Paraffin slices were stained with hematoxylin and eosin and were
examined under bright-field illumination using a Leica DM 2500
microscope at a magnification of 120X.
doi:10.1371/journal.pone.0008191.g003
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learning in flies with the elav;APP/BACE genotype. With 3

additional treatments of COG112 or COG133, however,

significant positive effects on restoring learning and memory

abilities were observed for COG112 and for COG133 by days

21–22 of age. For the elav;BACE; APP-Sw genotype that displayed

severe vacuolarization and decreased levels of synaptic proteins,

statistically significant restoration of memory was only detected with

COG133 in 7-8-day-old flies. These effects of apoE-peptides on

learning and memory are summarized in Table 3.

Effect of peptides on Ab deposition. Although our results

show that apoE-mimetics appear to restore cognitive functions in

APP transgenic flies, we did not know if this effect resulted from

interfering with Ab pathology. To address this point, we

investigated the effects of COG112 on Ab accumulation in

Drosophila brain. We analyzed the effect of oral administration of

COG112 (aka. Antp-COG133) to an APP transgenic line with the

elav;APP/BACE genotype. This line has been characterized by a

high level of Ab deposits accompanied by strong age-related

neurodegeneration and a significant reduction in the levels of

synaptic proteins. We chose to test COG112 because previous

experiments showed that COG112 was more efficiently delivered

into cells and it was more stable in experiments in vivo [32]. Flies

were cultured on standard fly food containing tested peptides,

which were added every day at concentrations: 11.47 mM

COG112, 11.71 mM Antp, or 3.72 mM Antp-SH8. SH8-

represented a previously tested inhibitor of Ab aggregation [34].

As seen in Fig. 6A, significant Ab deposition in the Drosophila brain

was detected in the cortical layer containing neurons. Much less

Ab deposition was detected in the neuropil. Oral administration of

Antp-SH8 remarkably decreased the size and density of Ab-

positive deposits. Antp alone did not appear to change Ab
accumulation in the brain (Fig. 6B). Several brain samples showed

decreased size of Ab deposits after COG112 administration, but

the effect of this peptide is difficult to evaluate due to significant

variations in detectable Ab deposits. Most likely these results

suggest a slight effect of this peptide on Ab levels, which will

require more refined methodologies to precisely measure.

Functional integrity of peptides during oral administration was

tested by comparison of their effects on neurodegeneration with

effects of the same peptides after abdominal injections. COG112,

COG133 and Antp-SH8 all inhibited neurodegeneration to an

equal degree that was independent of the method of peptide

delivery, while Antp alone had no effect (Table 4).

Discussion

A large number of studies implicated defective processing of

APP and formation of neurotoxic Ab oligomers as a main cause of

synaptic dysfunction in AD [4,35]. However, the idea that only

enhanced production of Ab oligomers may lead to neurodegen-

eration and synaptic dysfunction has been challenged by recent

results, suggesting that impaired functions of PS1, PS2 and/or

APP may contribute to AD-like synaptic pathology in a fashion

that is independent from Ab generation. Indeed, conditional PS1

and PS2 knockout mice have been characterized by classical

hallmarks of AD neuropathology including tau hyperphosphoryla-

tion, progressive neurodegeneration, impairment of synaptic

plasticity and memory loss, all in the absence of Ab [36,37]. In

parallel, deficits in synaptic plasticity and cognitive functions were

detected in APP knockout or APP knockdown animal models

[38,39]. These results suggest that the presence or absence of APP,

independent of Ab, may lead to some form of synaptic pathology

and dysfunction.

Several studies using transgenic Drosophila were directed to

discriminate effects of exogenous APP and Ab. Transgenic flies

Table 2. Progressive loss of memory in APP-transgenic-flies.

Age of animal Genotype 1–2 days 7–8 days 13–14 days 21–22 days 28–30 days

elav-GAL4c155* 57.963.5 41.562.0 30.262.3 27.661.4 19.762.4

UAS-APP* 55.165.1 44.864.1 36.263.6 39.763.6 23.462.7

UAS-APP-Sw* 53.165.7 33.263.9 25.063.1 28.763.4 26.363.1

elav;APP 5.063.3 3.962.1 3.061.6 1.260.6 1.060.8

elav;APP/BACE 13.163.3 10.462.2 7.561.5 4.561.7 4.963.2

elav;APP-Sw 9.261.9 7.061.5 7.763.1 7.362.6 5.263.3

elav;BACE;APP-Sw 14.564.8 13.662.5 9.164.2 3.761.8 4.062.5

The Memory Index was calculated as described in ‘‘Materials and Methods’’. All scores expressed as mean6SEM, (n = 6) where (n) is the number of independent assays.
Asterisk (*) indicates control transgenic lines. Statistical analysis was performed using one-way ANOVA and Tukey-Kramer multiple comparison post hoc test.
Significance was accepted at p,0.05. Groups of flies showing statistically significant differences from controls in learning index are shown in bold font.
doi:10.1371/journal.pone.0008191.t002

Figure 4. In vivo delivery of peptides into Drosophila brain.
Immunohistochemistry with antibody to biotin: Left panels - Bar,
50 mm; Right panels-Bar, 10 mm. a,b - Antp-COG133 (COG112) -
RQIKIWFQNRRMKWKK LRVRLASHLRKLRKRLL. c,d- CF (fragment 142–
153 of human growth factor U2AF)-SQMTRQARRLYV, control peptide,
which does not cross BBB [33]; e,f – no peptides added.
doi:10.1371/journal.pone.0008191.g004
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directly expressing Ab-42 in the brain demonstrated diffuse

amyloid deposits and age-dependent learning defects in olfactory

learning [40]. In other work, flies expressing wild-type Ab-42 and

Arctic mutant Ab-42 (Glu22Gly) showed a decline in climbing

behavior, increased intracellular Ab accumulation and diffuse

plaques prior to signs of neurodegeneration [41]. Recent findings

demonstrated that expression of the Arctic mutant significantly

enhanced formation of Ab oligomers and Ab deposits, together

with a decline of locomotor functions when compared with Ab-art

(artificial mutation L17P) [42]. Surprisingly, different Ab-42

aggregates have distinctive roles in modulation of synaptic

functions. While exogenously prepared small Ab-42 oligomers or

Ab oligomers secreted from neurons lead to a reduction of

neurotransmitter release; larger-sized aggregates, possibly fibrils

secreted by muscle cells, enhanced neurotransmitter release and

synaptic transmission (43).

Because BACE activity is not present in Drosophila, overexpres-

sion of human APP does not lead to secretion of Ab leading to the

interpretation that all phenotypic effects in these transgenic flies

should be attributed to the presence of human APP. Although

APPL processing by endogenous BACE-like enzymes in the fly

could result in accumulation of unusual APPL fragments [44],

transgenics with elav; APP genotypes express human APP at levels

much higher than the endogenous APPL [20,26]. When human

BACE and APP were expressed in combination in fly eyes, diffuse

amyloid plaques and age-dependent neurodegeneration of photo-

receptor cells were observed [20]. Surprisingly, neurodegeneration

was even more pronounced in APP transgenic flies than in APP/

BACE double transgenic flies.

Our data confirm these results where APP alone, or APP plus Ab,

may result in different degrees of impairment. We did not find

differences in age-dependent neurodegeneration in transgenic flies

expressing full size APP with BACE or without BACE (Fig. 2).

However, transgenics expressing APP and BACE had lower levels of

the presynaptic protein GFP-n-synaptobrevin than transgenics

expressing APP alone (Fig. 2B). These findings raise the question

whether the decline of synaptic proteins levels and/or neurodegen-

eration are caused by different mechanisms. Alternatively, we

suggest that Ab represents just a part of a larger pathological process

and independently contributes to different neuropathological

abnormalities caused by APP overexpression. Although the effect

of Ab on reduction of n-syb-eGFP level was readily observable, we

conclude that overexpression of full length APP may be sufficient for

abnormal synaptogenesis in the Drosophila brain. We previously

obtained similar data for another presynaptic protein: GFP-n-

synaptotagmin [45]. Interestingly, only full length APP overexpres-

sion caused a disruption of axonal transport in Drosophila [46].

Most of the described APP transgenic models exhibit learning

and memory deficits that reflect a clinical syndrome associated

with APP pathogenesis [47,48]. In our experiments, we detected

reduced learning and memory in 2 day-old flies, while significant

neurodegeneration and Ab accumulations were observed in 10–15

day-old flies. (Figs. 3 and 6). While the molecular basis for this

finding is not clear, early decline of cognitive functions supports a

primary role for the synaptic dysfunction in these transgenic

models.

A reasonable approach to understand these results is based on

testing compounds that would prevent (or reverse) impairment of

cognitive functions and simultaneously block neurodegeneration,

and/or oligomerization of Ab. We tested the effects of injected

apoE-mimetic peptides with known neuroprotective activity in

different animal models of neurological diseases [22]. A major

obstacle in this approach is the limited penetration of peptides into

the brain. Therefore, we fused the COG133 apoE-peptide with

penetratin to generate COG112 [22], which was previously

successfully tested for the transport of cargo across the BBB in

Drosophila and rodents [31,32,49,50]. We tested these peptides in

elav; APP/BACE and elav;BACE/APP-Sw lines that display age-

progressive neurodegeneration and strong declines in cognitive

functions. Both COG112 and COG133 blocked neurodegenera-

tion and restored learning in the flies after abdominal injection or

oral administration after two injections before 7–8 days of age.

However, restoration of memory function was detected only in the

elav;APP/BACE line by 20–22 days of age and after 5 injections of

COG compounds.

Figure 5. ApoE-mimetics inhibit neurodegeneration in Dro-
sophila brain. A) Effect of peptides on percentage of the area lost in
the regions of the cell body and neuropil: The ratio of lost area was
calculated by dividing the sum of the vacuole areas from all brain
sections by the total area of the brain from all brain sections.
Percentage of the area lost is shown as averages6SEM. p,0.05
Asterisks indicate significant differences from control. B) Effect of
peptides on neurodegeneration in APP transgenic flies. Paraffin slices
were stained with hematoxylin and eosin and were examined under
bright-field illumination using a Leica DM 2500 microscope at a
magnification of 120X. Left panel- Bar, 50 mm; Right panels - Bar, 10 mm.
doi:10.1371/journal.pone.0008191.g005
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To further understand the mechanism of neuroprotection by

apoE-peptides, we analyzed their effect on Ab deposition in

transgenic flies. Expression of APP in the presence of BACE

caused significant accumulation of Ab in the cortical layer

containing neuronal cells, glial cells and small Ab deposits in the

neuropil of 10–15 day old flies (Fig. 6A). SH-8 significantly

decreased the size and density of Ab deposits (Fig. 6B) supporting

our previous observation that SH-8 inhibits amyloid growth [34].

Although some brain samples show decreased size of Ab deposits

after COG112 administration, the influence of this peptide on Ab
metabolism is difficult to interpret due to significant variations in

the sizes of detectable Ab deposits. Taking into consideration that

we found COG112 to partially suppress elevation of Ab 1–42

levels in mice after head injury [23], these results may only suggest

a slight effect of this peptide on Ab metabolism. In summary,

neuroprotective effects of apoE-mimetics in Drosophila probably

have multiple features that are not solely attributable to Ab-

mediated neurotoxicity.

Experiments describing restoration of cognitive functions in

transgenic animals demonstrate that protective effects may be

achieved at different levels. Administration of an ubiquitin C-

terminal hydrolase L1 (Uch-L1)—an enzyme associated with the

breakdown of excess or abnormal proteins, has a protective effect

on memory loss in a mouse model of AD (APP Sw-PS1M146V)

[51]. These authors showed that effect of the Uch-L1 is associated

with restoration of phosphorylation of the cAMP response element

binding protein (CREB). An increase in phospho-CREB levels

may stabilize synaptic connections and may contribute to long-

term memory formation.

Administration of the M1 muscarinic agonist, AF267B, can also

rescue selected deficits in Alzheimer’s models. The effect of

AF267B on cognition predicted changes in neuropathology that

were observed to be reductions in Ab and tau pathologies in the

hippocampus and cortex. The mechanism underlying this effect

on the Ab pathology was caused by the selective activation of

ADAM17 by AF267B treatment, thereby shifting APP processing

toward the non-amyloidogenic alpha-secretase pathway. Reduc-

tions in tau pathology appear to be mediated by decreased GSK3b
activity [52]. Finally, the ionophore 8-hydroxy-quinoline, which

targets metal-induced aggregation of Ab, significiantly decreased

soluble interstitial brain Ab within hours and improved cognitive

performance in APP transgenic mice [53].

The precise natures of neuroprotective functions of apoE

mimetics are not yet clear and several mechanisms have been

suggested. A recent report showed that the activity of apoE (133–

149) mimetic peptide depends on the low-density lipoprotein

receptor-related protein (LRP). Binding LRP by apoE(133–149)

results in inhibition of the N-methyl-D-aspartate (NMDA) receptor

Table 3. Effect of COG133 and COG112 on learning and memory in APP-nransgenic flies.

Genotype Peptide injection Learning Index (%) Memory Index (%)

7–8 days 21–22 days 7–8 days 21–22 days

elav;APP/BACE 2 petide 9.362.9 5.361.2 10.462.2 4.762.0

+Cog133 11.661.3 9.862.5 18.062.6 6.261.4

+Cog112 10.062.7 8.661.2 17.661.4 12.262.3

+Antp 6.061.1 6.261.3 6.162.7 3.661.5

elav;BACE;APPSw 2 petide 19.164.1 8.263.0 13.662.5 3.761.8

+Cog133 25.461.9 9.363.5 19.661.2 3.761.4

+Cog112 21.763.1 11.361.4 15.361.7 5.262.7

+Antp 28.766.5 10.761.7 10.462.1 4.061.1

The Learning Index and Memory Index were calculated as described in ‘‘Materials and Methods’’. All scores expressed as mean6SEM, (n = 6) where (n) is a number of
independent assays. Statistical analysis was performed using one-way ANOVA and Tukey-Kramer multiple comparison post hoc test. Significance was accepted at
p,0.05. Groups of flies showing statistically significant recovery of learning and memory in comparison with control (Antp) are shown in bold font. 0.1 ml injections of
11.74 mM COG133, 11.47 mM COG112, and 11.71 mM Antp into the abdomen were performed every 4 days starting from day 2.
doi:10.1371/journal.pone.0008191.t003

Figure 6. Effect of peptides on Ab accumulation in Drosophila
brain. Immunohistochemistry with 4G8 antibody: A) Distribution of Ab
deposits in Drosophila brain, Bar, 50 mm. B) Effect of peptides on Ab
accumulation in Drosophila brain, Bar, 10 mm.
doi:10.1371/journal.pone.0008191.g006
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(NMDAR). Electrophysiology experiments demonstrated that the

inhibitory potency of apoE(133–149) was threefold greater for

NMDAR transfected wild-type Chinese hamster ovary (CHO)

cells containing LRP compared with NMDAR-transfected CHO

cells deficient in LRP [54]. Another report shows that COG112

inhibits the inflammatory response to Citrobacter rodentium in colonic

epithelial cells by preventing NFkB activation [55]. This is an

important observation to help explain the effects of COG112 on

neurodegeneration in Drosophila because the TollRNFkB signaling

pathway mediates some neuropathological effects in Drosophila

[56].

In conclusion, our study suggests that multiple cellular

mechanisms are involved in restoring cognitive functions in APP

flies. This study with apoE-mimetics indicates that new approaches

to discover these mechanisms may lead to the development of new

therapeutics for the successful treatment of AD.

Materials and Methods

Lines of Drosophila and Maintenance Conditions
We used the following transgenic lines of D. melanogaster: UAS–

APP (carrying the human APP695), UAS–APP–Swedish (carrying

the human APP69 5 with the 670K3N, 671M3L mutations,

UASAPP DCT, UAS-APPDNT (truncated forms of APP695), elav–

GAL4c155, UAS–n-syb–eGFP (eGFPn- synaptobrevin), UAS-BACE

(carrying the human BACE). Expression of hAPP and its

truncated forms in neural cells of Drosophila was driven by the

tissue-specific transcription driver elav–GAL4c155. The UAS-

BACE was kindly provided by R. Reifegerste, the other stocks

were obtained from the collection of the Drosophila Bloomington

Stock Center. During the study, the flies were kept on the

standard yeast medium at a temperature of 29uC and a

photoperiod of 12 h.

Synaptobrevin expression was analyzed in the offspring of

crosses between elav–GAL4c155,UAS–n-syb-eGFP (aka. syb) fe-

males and males carrying insertions of APP (APP–Swedish),

insertion of BACE and genes of truncated APP forms. Transgenic

lines were designated in text as following elav-GAL4c155;UAS-

APP (aka. elav;APP), elav-GAL4c155;UAS- APP/UAS-BACE (aka.

APP/BACE), elav GAL4c155;UAS-APP-Swedish (aka. elav;APP-Sw),

elav-GAL4c155; UAS-BACE; UAS- APP-Swedish (aka. BACE/

APP-Sw).

Western Blotting
Fly heads were homogenized in lysis solution containing 1x

PBS, 5 mM EDTA, 0.5% Triton X-100, and a complete protease-

inhibitor mix (Roche Applied Science, Mannheim, Germany).

Equal amounts of protein were separated by 10% SDS-PAGE,

transferred to Immobilon membranes (Millipore, Bedford, MA),

blocked in 5% low-fat milk for 2 hr at room temperature, and

incubated with the monoclonal antibody 22C11 (APP N terminal-

specific; Chemicon, Temecula, CA). Bound antibodies were

detected with goat anti-mouse peroxidase-conjugated secondary

antibody (Sigma, St. Louis, MO). For immunoprecipitation,

frozen pellets of fly heads were homogenized as described above,

and lysates were treated with protease and phosphatase inhibitors

(Sigma, St. Louis, MO). After pelleting insoluble material, the

lysate was incubated with anti-Ab monoclonal 4G8 (Signet

Laboratories, Dedham, MA) antibody (0.3 mg/ml of lysate) on

ice for 90 min, and then the antibody/antigen complexes were

recovered by incubation with protein G-Sepharose beads. After

pelleting and washing of the beads, recovered proteins were

fractionated by SDS/PAGE on 4–20% polyacrylamide Novex gels

(Wadsworth, OH ) and transferred to Immobilon membranes

(Millipore, Bedford, MA), blocked in 5% low-fat milk for 2 hr.

Bound antibodies were detected with goat anti-mouse peroxidase-

conjugated secondary antibody (Sigma, St. Louis, MO). All blots

were scanned and quantification of the relative intensity of each

band was evaluated by using the NIH Image J program (http://

rsb.info.nih.gov/ij/index.html). This method is outlined in the

Image J documentation: ‘‘Gel Analysis.’’

Table 4. Comparison of prevention of neurodegeneration in the brain of APP-transgenic flies by apoE-mimetics after injection and
feeding.

Genotype
Control (-peptide)
Degenerated area

Injection
Degenerated area

Feeding
Degenerated area

Cog133

elav; APP/BACE 20,060,8 11,761,2 9,560,6

elav; BACE; APP-Sw 18,362,0 8,760,6 8,661,3

Cog112

elav;APP/BACE 20,060,8 7,660,8 11,461,1

elav; BACE; APP-Sw 18,362,0 10,860,6 9,960,9

SH8

elav;APP/BACE 20,060,8 ND 13,461,3

elav; BACE; APP-Sw 18,362,0 ND 11,660,7

Ant

elav;APP/BACE 20,060.8 16,660,9 18,961,1

elav; BACE; APP-Sw 18,362,0 14,861,3 13,661,0

The degenerated area was calculated as described in Materials and Methods at day 30. Six brains were analyzed for each genotype. Statistical analysis was performed
using one-way ANOVA and Tukey-Kramer multiple comparison post hoc test. Significance was accepted at p,0.05. Results showing statistically significant decrease of
neurodegeneration in comparison with control are shown in bold font. Flies were cultured on standard fly food containing tested peptides, which were added every day
at concentrations of: 11.47 mM COG1112, 11.71 mM Antp, and 3.72 mM Antp-SH8.
0.1 ml injections of 11.74 mM COG133, 11.47 mM COG112, and 11.71 mM Antp into the abdomen where performed every 4 days starting from day 2. All scores expressed
as mean6SEM (n = 6).
doi:10.1371/journal.pone.0008191.t004
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Preparation of Specimens for Confocal Microscopy
The flies were immersed in fixing solution (3.38 ml of 37%

formaldehyde (Merck), 0.5 ml of 1 M Na2PO4 (pH 6.8), 5 ml of

octane, and 1.12 ml of water) for 20 min. Fixed heads were

separated from the body in a phosphate buffer solution and put

into a second fixing solution (0.43 ml of 37% formaldehyde

(Merck), 0.4 ml of 1 M Na2PO4 (pH 6.8), and 3.17 ml of water)

for 90 min at 4uC. After fixation, the brains were isolated in a

phosphate buffer solution and placed on glass plates with hollows

containing a 1:1 mixture of phosphate buffer solution and glycerin.

Confocal Microscopy and Estimation of Fluorescence of
GFP–n-synaptobrevin

An LSM5 Pascal confocal microscope with a built-in 35-mW

argon laser was used for confocal microscopy. All samples were

scanned with the same scanning settings and the fluorescent signal

was visualized at l 488 nm. The slices for scanning were 2 mm in

thickness. The resultant images and series of images were analyzed

using the LSM5 Image Browser software. The fluorescence

intensity was evaluated in microphotographs of confocal slices

using the Image J software (version 1.38a for Windows). (http://

rsb.info.nih.gov/ij/index.html). The methods of quantification are

outlined in the Image J documentation: ‘‘Image R Staks’’ and

‘‘Analyze RMeasure’’. Images of 2 mm optical sections were

converted to stacks, and regions containing mushroom bodies and

antennal lobes were demarcated using the ‘‘Freehand tool’’. Pixel

intensity in the selected areas was estimated using Image J

software. For calculation of relative intensities the pixel intensity

was normalized to the fluorescent signal of elav genotype. Four

brains were analyzed for each genotype. Related intensities are

shown in means6SEM. Statistical analysis was performed using

one-way ANOVA and Tukey-Kramer multiple comparison post

hoc test. Significance was accepted at p,0.05

Peptides, Abdominal Injections, Oral Administrations
Peptides used for studies included Penetratin (Antp 43–58) -

RQIKIWFQNRRMKWKK; CF (fragment 142–153 of human

growth factor U2AF)-SQMTRQARRLYV, Antp-COG133 (CO-

G112)-RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRL-

L, COG133-LRVRLASHLRKLRKRLL, SH8 – RHVLPK-

VQA. Antp-SH8: RQIKIWFQNRRMKWKK-RHVLPKVQA.

An N-terminal tag of biotin-cAbu (gamma-aminobutyric acid) was

added to penetratin (Antp), COG133, Antp-COG133 (COG112),

CF (U2AF, 142–153). Untagged peptides COG133, Antp-

COG133 and SH8 were synthesized by the solid phase technique

on an ABI Model 430A synthesizer. Peptides were then

deprotected by treatment with anhydrous hydrogen fluoride in

presence of m-cresol and purified by preparative reverse-phase

chromatography. Purified peptides were characterized by analyt-

ical RP-HPLC using a DeltaPak C-18 column with a 20–50%

gradient of acetonitrile in 0.1% trifluoroacetic acid at 1 ml/min.

Amino acid analysis was performed following complete hydrolysis

in 6N HCl for 24 hr at 110uC (LKB 4151 Alpha Plus amino acid

analyzer, Sweden) and mass-spectrum analysis was performed on a

Voyager-DE BioSpectrometry Workstation (PerSepetive Biosys-

tems, USA). Purity of all peptides used in this study was .95%.

Abdominal injections were performed as we described in [56].

After dissolving peptides in Ringer’ solution (7.5 g/liter NaCl/

0.35 g/liter KCl/0.2g/liter CaCL2; pH 7.6–7.8), they were

injected in a volume of 0.2 ml per fly into the abdomen using

glass pipettes (20–40 mm tip diameter) coupled to an injector and

micromanipulator. Peptides were injected on days 2, 5, 9, 13, 17,

21, 25 and 29 post-eclosion. For oral administration, tested

peptides were added every day to standard fly food at final

concentrations of 11.47 mM COG133 and COG 112, 11.71 mM

Antp, 3.72 mM Antp-SH8.

Immunohistochemistry
For immunostaining flies were fixed in freshly prepared

Carnoy’s fixative for 24 hours. Next, flies were dehydrated

sequentially in 30, 50, 75, and 100% ethanol and embedded in

paraffin. 6 mm thick sections were blocked for 1 hr in 0.5% nonfat

dry milk, 0.1% Tween-20 in PBS, washed two times with 0.1%

Tween-20 in PBS and two times with PBS. Slides were then

incubated with anti-Ab monoclonal 4G8 (Signet Laboratories,

Dedham, MA) (1:500) (or antibody to biotin- Sigma, St.Louis,

MO) for 2 hours, washed four times with PBS and incubated with

goat anti-mouse phosphatase-conjugated secondary antibody

(Sigma, St. Louis, MO) for 2 hours. Slides were washed with

PBS. Nitroblue tetrazolium chloride and 5-bromo-4-chloro-3-

indolyl phosphate substrate (1-STEP NBT/BCIP, Pierce) was

added to slides until desired stain intensity develops. Finally, slides

were rinsed with water.

Neurodegeneration Assay
The fly heads were fixed in freshly made Carnoy’s fixative for

24 h at a temperature of 4uC, embedded in paraffin, and 5 mm

paraffin slices were prepared as described [25]. Paraffin slices were

stained with hematoxylin and eosin (Bio Optica, Italy). Next, slices

were examined under bright-field illumination using a Leica DM

2500 microscope at magnification of 120X. To quantify

neurodegeneration in the cell body and neuropil, images of the

5 mm brain sections stained with hematoxylin and eosin and were

captured using bright-field microscopy. The areas of the vacuoles

in the cell body and neuropil regions on each brain section were

measured using NIH Image J software (http://rsb.info.nih.gov/ij/

index.html). The method of quantification is outlined in the Image

J documentation: ‘‘Particle Analysis.’’ The ratio of lost area was

calculated by dividing the sum of the vacuole areas from all

sections by the total area of the brain from all sections. Percentage

of the area lost is shown as average6SEM. We analyzed 6 brains

for each genotype, 16–18 sections per brain. Statistical analysis

was performed using one-way ANOVA and Tukey-Kramer

multiple comparison post hoc test. Significance was accepted at

p,0.05

Olfactory Associative Learning
Olfactory associative learning was performed as described on

50 to 100 flies per group [30]. Flies were trained by exposure to

electroshock paired with one odor: octanol or methylcyclohex-

anol, for 60 s and subsequent exposure to the other odor without

electroshock for 60 s. Immediately after training, learning is

measured by allowing flies to choose between the two odors for

120 s (Learning Index) or after 1.5 hour (Memory index).

Performing index (P.I.) (Learning Index or Memory Index) was

calculated as the number of flies that responded correctly (to

avoid the shock-paired octanol) minus the number of flies that

responded incorrectly (to avoid the control odor methylcyclohex-

anol) divided by the total number of flies. To eliminate naive odor

bias, each trial was composed of two half-trials, where one group

was trained to associate octanol with shock and the other to

associate methylcyclohexanol with shock, and the complete P.I.

was the average of these two half-trial P.I.s. Statistical analysis

was performed using one-way ANOVA and Tukey-Kramer

multiple comparison post hoc test. Significance was accepted at

p,0.05.
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Statistics
Statistical analyses were performed using the KyPlot software

(KyensLab Inc). One-way ANOVA was followed by planned

multiple comparisons between relevant groups with Tukey-

Kramer test.
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