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Abstract

The design challenge of new functional composite materials consisting of multiphase mate-

rials has attracted an increasing interest in recent years. In particular, understanding the

role of distributions of ordered and disordered particles in a host media is scientifically and

technologically important for designing novel materials and devices with superior spectral

and angular properties. In this work, the effective medium property of disordered composite

materials consisting of hyperuniformly distributed hard particles at different filling fractions is

investigated. To accurately extract effective permittivity of a disordered composite material,

a full-wave finite element method and the transmission line theory are used. Numerical

results show that the theory of hyperuniformity can be conveniently used to design disor-

dered composite materials with good accuracy compared with those materials with ran-

domly dispersed particles. Furthermore, we demonstrate that a Luneburg lens based on the

proposed hyperuniform media has superior radiation properties in comparison with previ-

ously reported metamaterial designs and it may open up a new avenue in electromagnetic

materials-by-design.

Introduction

Recently, research into disordered materials has grown immensely because of its ubiquity in

natural and artificial systems [1, 2]. In optics, unlike conventional photonic crystals with regu-

lar lattice structures or quasicrystals, the hyperuniform disordered materials with statistical

isotropy and constrained randomness had received increasing attention because of its large,

complete photonic bandgaps for all directions and polarization. These distinct characteristics

have also led to the development of a variety of novel devices including the free-form optical

waveguide with arbitral bend angles [3], high-Q compact optical polarizer [4], on-chip spec-

trometers [5], and devices with low dielectric contrast but complete photonic band gap [6],etc.

Although different sets of disordered configurations with identical spatial Fourier spectra

are statistically equivalent, the effective index of refraction ne or effective permittivity and per-

meability of individual configurations are different. In various applications, it is critical to

accurately predict electromagnetic properties of materials, such as gradient index media,
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tunable superlens using random composites [7]. Effective medium approaches such as the

Maxwell-Garnett method [8], Bruggeman theory [9], Lichtennecker theory [10], etc. have

been proposed to estimate the effective refraction index of composite materials using simple

analytical approximations. They consider neither effects of shape, size, and arrangement of

particle inclusions nor frequency and spatial dispersions. In photonic crystals, effective media

properties are often obtained by calculating the band diagram from unit cells. The isofre-

quency contour in the band diagram directly reveals the information of spatial dispersion, yet

the retrieval of effective refraction index is realized by finding a homogeneous media with

same band diagram, which is proven to be very inefficient. This approach is limited to periodic

structures and also commonly used in applications to metamaterials [7, 11]. For a general

composite material, there are several homogenization techniques and they can be divided into

two categories: the quasistatic approach is based on the long wavelength assumption [12–14],

when, for example, the operating wavelength is much larger than the size of inclusion particles

in composite materials; another approach homogenize composite materials by characterizing

their electrodynamic responses based the transmission line theory [15–17] or the resonator

approach [18, 19]. Corresponding numerical simulation methods include the plane wave

expansion method [20] for periodic structures, the finite difference time domain (FDTD)

method [15] and the multipole approximation method [21].

In this paper, we investigate effective media properties of hyperuniformly disordered mate-

rials and evaluate their performance in some potential electromagnetic applications. In partic-

ular, the effective medium of a two-phase composite consisting of hyperuniform infinitely

long dielectric cylinders (for the two-dimensional case) is studied, since it represents a simple

but general form of structural and kinetic properties of any matter [12]. Instead of using the

quasi-static approximation, in this work, we extract the effective permittivity at a certain fre-

quency from the reflection coefficient when the composite material is illuminated by a plane

wave, and this process is rigorously modeled by the full-wave finite element method (FEM).

We anticipate that the design approach can be used to “dial” the material for advanced electro-

magnetic applications in the future. The rest of this paper is organized as follows. Section II

presents details of full wave numerical modeling and characterization of effective permittivities

of proposed hyperuniform composite materials. Numerical results of several exemplary struc-

tures are summarized in section III. A gradient index media as Luneburg lens realized by

hyperuniform composites and metamaterials are demonstrated and compared in section IV.

Some conclusions and remarks are given in the last section.

Homogenization of disordered composite materials

Hyperuniform disordered materials

The concept of “hyperuniform” was first used to describe a point distribution pattern whose

number variance σ(R) within a spherical sampling window of radius R increases at a rate

slower than the window volume, i.e. slower than Rd where d is the number of dimensions [22].

In the Fourier space, hyperuniformity means that the structure factor S(k) approaches zero as

|k|! 0. The formation of hyperuniformly disordered materials starts with the generation of

hyperuniform point pattern, then it is generalized to structured particles, colloids, or bodies as

is done for random media [23]. The hyperuniform point pattern is generated using so-called

collective coordinate approach [24, 25], essentially it is a nonlinear optimization method to

find a point pattern satisfying prescribed structure characteristics. The structure factor (S(k))

is proportional to the scattering intensity of an incident wave from a configuration of N
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particles r1, r2, . . ., rN subjecting to periodic boundary condition and defined as

SðkÞ ¼
1

N
j
XN

j¼1

expðik � rjÞj
2

ð1Þ

where k is the wave vector associated with the system and boundary conditions, e.g. in 2D case

k = (2πnx/Lx, 2πny/Ly), where nx; ny 2 Z, Lx, Ly are length of unit cell. We also use a constrain-

ing quantity related to structure factor as

CðkÞ ¼ B

¼
XN� 1

i¼1

XN

j¼iþ1

cosðk � ðri � rjÞÞ
ð2Þ

This constraining quantity can be seen as an interaction pair potential between particle ri and

rj; then the total nonnegative potential energy can be written as

F ¼ O
� 1
X

k

VðkÞjCðkÞj2 ð3Þ

where O is the system volume and V(k) is the auxiliary function. It is clearly that for any V(k)

that is positive for |k| < K and zero otherwise, the minimum F in (3) would driving C(k) or S
(k) to its minimum absolute value for all |k|< K [25]. For simplicity, we define the V(k) is con-

stant V0 for all k 2Q, where Q is the set of wave vectors such that 0< |k| < K, and all zero oth-

erwise. Usually we find the minimum global potential energy corresponds to a particle

distribution with C(k) = −N/2 for k 2Q. Generally, for designed structured factor S0(k) and its

associated C0(k) by (2), the global potential energy satisfying

F ¼ O
� 1
X

k

VðkÞjCðkÞ � C0ðkÞj
2

ð4Þ

To find the minimum value of global energy (3) or (4) and corresponding point pattern,

MINOP [26] algorithm is commonly used [25]. Fig 1 presents two 2D disordered point config-

urations and their corresponding structure factors. From the point configuration, it is hard to

detect the hyperunfromity by human eyes from these completely random point configurations,

yet their structure factors are dramatically different. To describe the degree of the randomness

in the point pattern, the constrain factor χ = M(K)/2N which is the ratio of constrained degrees

of freedom to the total number of degrees of freedom is introduced in [25].

Effective permittivity extraction

In the last several decades, numerical simulation has proved itself a valuable tool for homoge-

nization the dielectric properties of multiphase composites and their structures, which is very

important because of the wide variety of heterostructures in nature. There are many methods

to extract the effective dielectric property of a composite, such as S-parameter retrieval [15–

17], resonator method [18, 19], plane wave expansion method [20], Clausius-Mossotti relation

[21] and the field averaging technique [27]. Among these methods, the S-parameter retrieval

method is accurate and versatile to use, because the S-parameters can be obtained either by

simulation or measurement, while other methods mainly rely on the numerical simulation

and computationally intensive. The S-parameter retrieval approach characterizes effective

dielectric properties from the transmission and reflection coefficients of a composite loaded

transmission line. Assuming the composite sample corresponds to one section of the transmis-

sion line as shown Fig 2A, and it has an effective relative permittivity �e and relative
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permeability μe. Then the scattering parameters of the two-port transmission line are

S11 ¼ e� j2b0L1
Gð1 � z2Þ

1 � G2z2
ð5Þ

S22 ¼ e� j2b0L2
Gð1 � z2Þ

1 � G2z2
ð6Þ

S12 ¼ S21 ¼ e� jb0ðL1þL2Þ
zð1 � G2Þ

1 � G2z2
ð7Þ

where L1 and L2 are the distances from sample to the transmission line terminal ports, and β0

is the propagation constant in empty transmission line β0 = ω/c0 with ω the angular frequency,

c0 the speed of light in vacuum. Phase shift in composite sample is z = e−jβe L with the effective

propagation constant be ¼
ffiffiffiffiffiffiffiffi
�eme
p

o=c0 and the sample length L. The reflection coefficient from

Fig 1. A random disordered point configuration (left panel) and hyperuniform disordered point configuration

(right panel). It shows that it is difficult to detect the hyperuniformity from human eyes observation A and B, while the

difference is quite clear in structure factors C and D.

https://doi.org/10.1371/journal.pone.0185921.g001
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air to sample is

G ¼
Zs � Z0

Zs þ Z0

ð8Þ

where Z0 and Zs are wave impedance in air and homogenized composite. Specifically, for TE

or TM waves, the reflection coefficients are

G ¼
b0=m0 � be=me

b0=m0 þ be=me
TE wave

G ¼
be=�e � b0=�0

be=�e þ b0=�0

TM case

ð9Þ

Combing (5),(6) and (7) yields

S12S21 � S11S22 ¼ e� 2jb0ðL1þL2Þ
z2 � G2

1 � G2z2
ð10Þ

then the effective parameter �e and μe can be found by solving this nonlinear equation. A more

robust yet complicated version S-parameter retrieval method can be found in [17], which is

designed to find the effective parameter for metamaterials near its resonance of a unit element.

To find the S-parameters of a composite loaded transmission line, we prefer to use the FEM

rather than other approaches. The FDTD method [15, 27] suffers from dispersion errors, and

its staircase approximation cannot represent complex composite geometry accurately. The

multipole approximation based on the Mie theory [21] limit to spherical inclusions. On the

other hand, the FEM allows different types of mesh elements (i.e. triangular, tetrahedral or hex-

ahedral elements), and it is more versatile in modeling complex geometries. In this study, we

consider simulating the plane wave reflection from the composite samples as shown in Fig 2B,

the composite sample is placed in a section of the transmission line, which scattering parame-

ters can be obtained to reveal effective parameters of composite under test at its operating fre-

quency. For simplicity, we validate this approach for two-dimensional cases, which the FEM

simulation is reduced to solve the 2D Helmholtz equation. In this study, we use the widely used

FEM solver COMSOL (electromagnetic wave frequency domain module) to find reflection and

transmission coefficients of hyperuniform media under TE and TM illuminations.

Fig 2. A schematic of Composite characterization using S-parameter retrieval. (A) A composite sample

in transmission line. (B) Cross section view of composite material placed in layered medium.

https://doi.org/10.1371/journal.pone.0185921.g002
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Numerical results

To demonstrate the validity of the proposed design approach, we have performed a number of

calculations for composites with various hyperuniform and random configurations for differ-

ent filling fractions. Here we present simulation results of effective permittivity of two-phase

mixtures of hard particles and compare them with those obtained by using conventional ana-

lytical models.

First, we consider the effective permittivity for different filling fractions, in this study we

consider three different kinds of composites: a triangular lattice 2D crystal, a hyperuniformly

disordered and a randomly disordered composite. Namely, we fill a square primitive cell

(length L) with a set of monodisperse cylindrical particles with (a) equilateral triangular (b)

hyperuniform (c) random distribution. For low filling fractions, the random point distribution

can be generated by using the random sequential addition (RSA) method [12]. This method

generates random particle positions sequentially and accepts new random particle (satisfying

uniform distribution) only if it is not overlapping with existing particles. As this acceptation

and rejection process continues, it will become more time consuming to find a new region to

place a new particle, and there is a saturation limit (for equal-sized circular particles, 55% fill-

ing fraction) above which no further addition is possible. For higher filling fractions, we gener-

ate random particle distributions using the molecular dynamic hard sphere packing method

[28]. As the filling fraction goes higher, it imposes more constraints on particle distribution

pattern, and the composite becomes wavy crystalline and then crystalline from disordered,

thus in this study, the highest filling fraction for random composites is 80%.

The most popular effective theory for composite materials is the Maxwell-Garnett formula,

the effective permittivity for two-phase composite is

�eff � �host

�eff þ b�host
¼ f

�incl � �host

�incl þ b�host
ð11Þ

where f is the filling fraction of the inclusion material, �host and �incl are the relative permittivity

of host and inclusion material respectively, here the factor β = 1 for two-dimensional compos-

ites with cylindrical inclusion and β = 2 for three-dimensional spherical particle inclusions. We

note that for 2D composites consisting of isotropic particles, the effective permittivity in the

direction of cylindrical inclusion axis is estimated by the linear formula �eff = (1−f)�host + f�incl.

As shown in Fig 3, the effective relative permittivity of these three kinds of composites with

different filling fractions at frequency λ/d = 20 are presented, where d is the diameter of cylin-

der inclusions and λ is the wavelength in vacuum. The host material is assumed as the vacuum,

and the filling material dielectric constant is 2.33 at the operation frequency. The average effec-

tive permittivity for random and hyperuniform composites are obtained from 20 samples in

this study. From this figure, we can see that the effective dielectric property of all these three

kinds composites agrees well the theoretical estimation. However, the variance of random

composites is much larger than that of hyperuniform materials. For large filling fractions

(nearly 80%), there is less randomness in the point distribution, thus the variance also smaller.

For hyperuniform composites, the hard particle filling fraction cannot be as high as that of ran-

dom media configurations, in this work, the maximum filling fraction for 2D hyperuniform

composite is about 60%.

In previous studies, very few of them have studied frequency dispersion in the effective per-

mittivity of composite materials. Under the long wavelength assumption, the effective permit-

tivity of these three types composite at different frequencies is shown in Fig 4. In this

frequency band, the dielectric property of both host and inclusion media have a constant rela-

tive permittivity (1.0 and 2.33 respectively), and the filling fractions in these composites are

Effective media properties of hyperuniform composites
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28%. As shown in this figure, the variance of both random and hyperuniform composites

increases as the operation frequency goes up, and yet again, the randomly dispersed compos-

ites have much larger variances comparing to hyperuniform configurations. The average effec-

tive permittivities of hyperuniform composites are also closer to that of the theoretical

estimations. These results indicate that statistically, the random composite is more likely fre-

quency dispersive than the hyperuniform counterpart. The effective dielectric properties of

random composites are more susceptible to the inclusion particle positions comparing to

hyperuniform disordered composites.

A Luneburg lens from graded composites

In this section, we briefly report a design of lens with a graded dielectric to approximate the

functionality of Luneburg lens which focuses a plane wave or transform the circular wave from

a point source to plane wave. The dielectric constant of an ideal Luneburg lens is spatially

Fig 3. Effective relative permittivity of 2D composite materials with different filling fractions. (A) In the direction

parallel to the inclusion cylinder axis. (B) In the transverse direction.

https://doi.org/10.1371/journal.pone.0185921.g003

Fig 4. Effective relative permittivity of 2D composite materials under different frequency. (A) In the direction parallel

to the inclusion cylinder axis. (B) In the transverse direction.

https://doi.org/10.1371/journal.pone.0185921.g004
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dependent and the relative permittivity is a function of the lens’ radius r and written as

�ðrÞ ¼ 2 �
r2

R2
ð12Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance to the lens center (assuming the 2D case in xy-plane) and

R is the radius of the lens, the lens is magnetically inactive (i.e. μ = 1). The relative permittivity

gradually decays from � = 2 at the lens center to � = 1 at the edge of the lens.

Here we approximate the dielectric profile of Luneburg lens using 2D composites material

with gradient refractive indices [29, 30], and two configurations are considered as shown in

Fig 5. To generate these two designs, we first generate a triangular lattice (Fig 5A) and the

same number points hyperuniform configuration (Fig 5B) in the square unit cell, then expand

this cell in two dimensions periodically, and select those points located in the designed Lune-

burg lens. After finding the positions of the including fibers, the diameter of fibers is deter-

mined by required values of effective relative permittivity which is defined by (12) and the

filling fraction obtained from the effective medium theory for electric field parallel to the fiber

axis. In these two designs, the Luneburg lens has a diameter 0.6m, the edge length of unit cell

L = 0.2m, the lattice distance for triangular lattice is L/12, thus there are 168 points in the unit

cell. The inclusion material is glass fiber(SiO2 with dielectric constant 4.0), and their diameters

vary from 1.10mm (at the lens rim) to 8.95mm (at the lens center). In the hyperuniform

design, the constraint factor χ = 0.375, and the number of cylinder fibers in these two designs

are 1174 for triangular lattice design and 1186 for hyperuniform design, respectively.

The electric field distribution for these two designs under plane wave incidence from the

left are present in Figs 6 and 7 in which we can observe, in both designs, the structures convert

the incident plane to the cylindrical wave perfectly at 2GHz. As the frequency increases, wave

scattering in inhomogeneous composites become stronger and both designs will eventually

lose lens functionality. At 8.0GHz, the metamaterial design reflects the incident wave along

two specular directions due to the periodicity and rotational symmetry of particle inclusions,

while the hyperuniform design scatters the incident wave randomly, resulting in diffused

reflections.

Fig 5. Two types of Luneburg lens designs. (A) Triangular lattice. (B) Hyperuniform point pattern.

https://doi.org/10.1371/journal.pone.0185921.g005
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To further examine the performance of these two designs, the near field profile along the

dashed line in Fig 6A and 6B are presented and compared with those of an ideal Luneburg lens

in Fig 8. At 2GHz the normalized field intensity of the hyperuniform lens almost coincides

with those of ideal lens, while the metamaterial lens demonstrates increased sidelobes and

reduced broadside gain. The phase difference between these two designs is more obvious as

shown in Fig 8B, the phase profile of hyperuniform lens also agree well those of ideal Luneburg

lens. However, the phase profile of the triangular lattice lens is accurate only at the end of this

observation line. The phase error between ideal Luneburg lens and hyperuniform lens near

±10˚ is because of the calculation error, the corresponding amplitude is nearly zero and this

makes it difficult to calculate the phase angle accurately.

To demonstrate the isotropy of the hyperuniform composite material, the electric field

intensity distribution of the designed Luneburg lenses illuminated by three plane waves from

different angles simultaneously at 3.0GHz is shown in Fig 9. Both two designs focus the

Fig 6. Electric field profile of two Luneburg designs under plane wave incidence from the left side at 2GHz. (A) the

triangular lattice design. (B) The hyperuniform disordered design.

https://doi.org/10.1371/journal.pone.0185921.g006

Fig 7. Electric field profile of two Luneburg designs under plane wave incidence from the left side at 8GHz. (A) the

triangular lattice design. (B) The hyperuniform disordered design.

https://doi.org/10.1371/journal.pone.0185921.g007
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incident wave to a spot at the opposite edge of the lens, yet the field distribution near the focus-

ing spots of these two designs are slightly different. Thus, we calculate the field intensity profile

at the rim of the lenses. The field intensity profiles, as well as those of ideal Luneburg lens, are

presented in Fig 10. Again, the hyperuniform lens presents a better approximation to the ideal

Luneburg lens comparing to the triangular lattice one. The intensity profile of the hyperuni-

form lens is symmetric and the peaks values are almost identical, and this indicates the hyperu-

niform composite is highly isotropic at this operating frequency. At 3GHz, the approximation

error of both two designs become higher, nevertheless, the hyperuniform lens has better

approximation accuracy comparing to the metamaterial counterpart. This result shows that

the disordered hyperuniform design has a better focusing performance comparing to the

metamaterial design and make it a better choice for the realization of next generation antennas

based on transformation optics [31] such as the slim Luneburg lens [32], which has found

ever-increasing engineering applications.

Fig 8. Normalized field intensity along the dash lines in Fig 6. (A) Amplitude. (B) Phase.

https://doi.org/10.1371/journal.pone.0185921.g008

Fig 9. The electric field intensity of Luneburg lenses incident by three plane waves at incident angles of −60˚,0˚

and 60˚. (A) the triangular lattice design. (B) The hyperuniform disordered design.

https://doi.org/10.1371/journal.pone.0185921.g009
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Conclusion

Materials-by-design has been identified as a long-term vision for future innovations in science

and engineering. In this work, it is verified that by applying hyperuniformity in the design of

composites, we benefit from the subject of metamaterials whose material properties can be

accurately predicted and the conventional composite material which is isotropic and homoge-

neous. Numerical results show that the effective permittivity of hyperuniform disordered com-

posites has a much lower variance than those of random composite materials, and they agree

very well with theoretical calculations. The frequency dispersion of the proposed hyperuni-

form composite is also lower than conventional random composites near the quasistatic limit.

This indicates that the hyperuniform composite is a class of disordered composite with highly

predictable material properties. We anticipate that with the help of emerging additive

manufacturing technologies, such media can be found in many novel applications including

Luneburg lens antennas as demonstrated in this paper.
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