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A B S T R A C T

In this paper, based on the Akaike information criterion, root mean square error and robustness coefficient, a
rational evaluation of various epidemic models/methods, including seven empirical functions, four statistical
inference methods and five dynamical models, on their forecasting abilities is carried out. With respect to
the outbreak data of COVID-19 epidemics in China, we find that before the inflection point, all models
fail to make a reliable prediction. The Logistic function consistently underestimates the final epidemic size,
while the Gompertz’s function makes an overestimation in all cases. Towards statistical inference methods,
the methods of sequential Bayesian and time-dependent reproduction number are more accurate at the late
stage of an epidemic. And the transition-like behavior of exponential growth method from underestimation to
overestimation with respect to the inflection point might be useful for constructing a more reliable forecast.
Compared to ODE-based SIR, SEIR and SEIR-AHQ models, the SEIR-QD and SEIR-PO models generally show
a better performance on studying the COVID-19 epidemics, whose success we believe could be attributed to
a proper trade-off between model complexity and fitting accuracy. Our findings not only are crucial for the
forecast of COVID-19 epidemics, but also may apply to other infectious diseases.
1. Background

During the study of epidemics, one of the most significant and chal-
lenging problems is to forecast the future trends, like how many indi-
viduals might be infected each day, when the epidemics stop spreading,
what kinds of policies and actions have to be taken and how they will
influence the epidemics, and so forth (Li, 2018; Lutz et al., 2019; Basu
and Andrews, 2013; Gingras et al., 2016). The importance of epidemic
forecast cannot be emphasized too much.

In the literature, various forecasting models/methods have been
reported (Chowell et al., 2016; Walters et al., 2018; Funk et al.,
2019; Stocks et al., 2018a; Roosa and Chowell, 2019). Among them,
empirical functions, statistical inference methods and dynamical mod-
els (difference equations, differential equations, stochastic equations)
are three major routines. Empirical functions, especially those with
explicit forms, play an unreplaceable role in this field. They are simple,
easily understandable, fast implemented and analyzable. The statistical
inference methods are also highly welcomed, especially in the presence
of a large amount of first-hand data. The basic goal of most statistical
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methods in epidemics is to estimate the basic/effective reproduction
number, which serves as a key to evaluate the severe condition of
an infectious disease. In dynamical models, the basic/effective repro-
duction number is transformed into reaction rate coefficients. Based
on compartment assumptions on populations involved in epidemics,
classical SI, SIR, SEIR model and many other generalized models are
built. They show a great ability to correctly reproduce the basic features
of an infectious disease, to uncover the hidden dynamics, like the
numbers of exposed cases and asymptomatic carriers which are hard
to be learnt from usual epidemiological investigation, to forecast the
future trends of epidemics, as well as to evaluate the influence of
diverse control policies and actions in quantity.

However, in the face of so many possible choices, which method
is the best? Especially for the purpose of a reliable estimation on the
epidemic trend in the future? In this paper, based on the COVID-
19 data of Shanghai and other six provinces/cities in China during
the spring of 2020, we explore this critical issue systematically. The
performance of seven widely used empirical functions, four statistical
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755-4365/© 2021 The Authors. Published by Elsevier B.V. This

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.epidem.2021.100501
Received 5 August 2020; Received in revised form 11 September 2021; Accepted 1
is an open access article under the CC BY-NC-ND license

8 September 2021

http://www.elsevier.com/locate/epidemics
http://www.elsevier.com/locate/epidemics
mailto:zhuge@bjut.edu.cn
mailto:hongliu@sysu.edu.cn
https://doi.org/10.1016/j.epidem.2021.100501
https://doi.org/10.1016/j.epidem.2021.100501
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epidem.2021.100501&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Epidemics 37 (2021) 100501W. Yang et al.

a
t
p
s
a
e
e
o
S

u

𝑅

i
p
e
p
o
t
t
q
m

q
o
s
i
a
f
s

𝑅

inference methods and five dynamical models reported in the literature
are compared in detail. The basic evaluation criteria, models/methods
and data are summarized in Section 2. Detailed analyses, comparisons
and evaluations among various epidemic models are carried out in
Section 3. In Section 4, we forecast the first epidemic wave happening
in Austria, Malaysia, Norway and Republic of Korea from March to June
in 2020 as a further validation. The last section contains a conclusion
and some brief discussions.

2. Methods

2.1. Criteria and quantities for model evaluation

It is far from a trivial problem to evaluate the forecast ability of
various functions/models/methods in a rational way (Tabataba et al.,
2017; Funk et al., 2019; Roosa and Chowell, 2019). Many competing
requirements should be considered at the same time. Here we em-
ploy three basic criteria as a general guiding principle, which can be
measured through explicitly calculable quantities (see next section), i.e.

• Complexity v.s. Accuracy. We seek for a well-balance between
the model complexity and fitting accuracy. Neither too com-
plicated models with numerous free parameters and unverified
mechanisms, nor over-simplified models without sufficient capa-
bility to mimic the real situations is welcomed. This issue is also
closely related to the over-fitting and under-fitting problems met
in numerics.

• Fitting v.s. Prediction. It is a very one-sided pursuit of the least
fitting errors (measured by the mean square error, root mean
square error, correlation coefficients, etc.) for a predictive model,
though it is often the case in most published works! In fact, there
are tremendous evidences showing that the best fitting does not
always lead to the best forecast (see Figs. S2 and S3 in SI for
example). Just as an old Chinese proverb says, going too far is
as bad as falling short. So we need to make a trade-off between
the short-term best fittings and long-term promising predictions.
A practical choice would be the statistical average of all possible
results based on their weights (e.g. the Boltzmann factor).

• Robustness v.s. Sensitivity. On one hand, we hope our model is
sensitive to parameter changes in order to model the influence
of different situations and strategies, etc. On the other hand,
the model is expected to be robust (insensitive in other words)
against perturbations arising from various sources, such as nu-
merical errors, data noise, incomplete knowledge about epidemic
mechanisms, etc. Obviously, these two opposite pursuits cannot
be satisfied at the same time. Therefore, we turn to the repro-
ducibility of key dynamical features (like the inflection point, half
time) and the asymptotic stability (basic/effective reproduction
number) of the model instead.

The three criteria above reflect the competition and compromise be-
tween model complexity and simplicity, over-fitting and under-fitting,
short-term and long-term goals, robustness and sensitivity, as well as
energetic and entropic, deterministic and statistical, local and global
views. The over-emphasis of one aspect would lead to unsatisfactory
predictions. As a perfect reflection of the central spirit of Confucianism
– Doctrine of the mean, which says that in all activities and thoughts
one has to adhere to moderation, our three criteria provide a practical
solution to overcome above difficulties both qualitatively and quanti-
tatively. And thus they can be used for making a rational evaluation
of different functions/methods/models for epidemic forecast and other
related scientific problems.

To make model evaluation quantitatively, more concrete and easily
measurable mathematical quantities are needed. Corresponding to each
criterion discussed above, we consider the following factors:

(1) The Akaike information criterion (AIC) and its various mod-
ified versions, like AICc, AICu, QAIC, BIC, etc. AIC was introduced
2

by Japanese statistician Akaike in the early 1970s (Akaike, 1974).
It is based on the concept of entropy, and incorporates the model
complexity and its goodness of fit together.

𝐴𝐼𝐶 = 2𝐾 − 2 ln(𝐿), (1)

in which 𝐾 is the total number of free parameters in a model, while
𝐿 is the likelihood function. Models with less free parameters and
higher fitting accuracy will have lower AIC values. In this work, we
use 𝐴𝐼𝐶𝑐 = −2 ln(𝐿)∕𝑁 + (𝑁 +𝐾)∕(𝑁 −𝐾 −2) proposed by McQuarrie
nd Tsai (1998) to remove the dependence on data size 𝑁 . According
o Sugiura (1978), when 𝐾 > 𝑁∕40, namely when the number of
arameters is large in comparison to the number of time points, AICc
hould be adopted instead of AIC. The Akaike information criterion
nd its various modified versions have been widely used for model
valuation in the literature, e.g. see Refs. Martcheva (2015), Weston
t al. (2020). Especially, based on the early COVID-19 epidemic data
f Wuhan, Weston et al. made a preliminary comparison between the
IR and SEIR models by using the AIC value (Weston et al., 2020).

(2) The root mean square error (RMSE). The RMSE is extensively
sed to quantify the accuracy of regression models. It is defined as

𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2, (2)

n which 𝑁 denotes the data size, 𝑥𝑖 and 𝑦𝑖 are the true values and
redicted ones separately. In this study, since we are dealing with the
pidemic of a large province/city which includes at least millions of
opulations and hundreds of infected cases, the data (e.g. the number
f confirmed infected cases) follows a Gaussian distribution according
o the central limit theorem, whose variance is generally proportional
o the root square of the epidemic size. Therefore, RMSE is a natural
uantity to characterize the prediction accuracy of various epidemic
odels.

(3) The robustness coefficient (RC). There are plenty of ways to
uantify model robustness. Here we adopt a simple definition based
n the confidence interval. By randomly sampling the free parameter
pace, the best-fit values to the epidemic data and the 95% confidence
ntervals are determined through Markov Chain Monte Carlo (MCMC)
lgorithms (Chen et al., 2000). Then the robustness coefficient is de-
ined as the ratio between the smallest and the largest final epidemic
ize within 95% confidence interval,

𝐶 =
𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑓 𝑖𝑛𝑎𝑙 𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑠𝑖𝑧𝑒 𝑎𝑚𝑜𝑛𝑔 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑓 𝑖𝑛𝑎𝑙 𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑠𝑖𝑧𝑒 𝑎𝑚𝑜𝑛𝑔 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

. (3)

A RC value close to one indicates that the model predictions are
consistent and reliable.

The robustness coefficient is closely related to the so-called ‘‘non-
identifiability’’ in the literature (Raue et al., 2009; Lintusaari et al.,
2016), which means that a group of model parameters, giving the same
good fit to the data but leading to completely different model predic-
tions, cannot be uniquely determined during model calibration. The
appearance of nonidentifiability may largely influence the reliability of
model predictions and result in a relatively low robustness coefficient.

It should be noted in the current study AICc is calculated based
on the training data, while the RMSE is calculated based on the test
data, so that they are not synchronous. Furthermore, the robustness
coefficient basically depends on the mathematical structure of the
model, showing no direct correlation with AICc and RMSE.

2.2. Model specification

Far from complete, in the current study we collect seven empirical
functions with explicit forms — linear, exponential, logistic, Hill’s,
Gompertz’s, Richards’, and generalized logistic functions (Zhao et al.,
2019); four statistical inference methods — exponential growth, maxi-

mum likelihood, sequential Bayesian and time-dependent reproduction
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number (Obadia et al., 2012; Li et al., 2020); as well as five dynam-
ical models based on ordinary differential equations (ODEs) – SIR,
SEIR, SEIR-QD (Peng et al., 2020), SEIR-AHQ (Tang et al., 2020)
and SEIR-PO (http://swarma.blog.caixin.com/archives/220791) (see
Fig. 1). Most of them have been frequently used in the literature to
study the spreading of infectious diseases.

2.2.1. Empirical functions
To describe the growth of cumulative number of infected cases due

to an infectious disease, like COVID-19, empirical functions in explicit
forms are widely used (Zhao et al., 2019). Here, the linear, logis-
tic, exponential, Hill’s, Gompertz’s, Richards’, and generalized logistic
functions are summarized in the upper left corner of Fig. 1.

2.2.2. Statistical methods
Assuming a population to be totally susceptible, the basic repro-

duction number 𝑅0 is defined as the average number of secondary
nfectious cases produced by one infectious case during a disease out-
reak. The basic reproduction number 𝑅0 plays a key role in studying
he epidemics of infectious diseases. And many different statistical
ethods are designed for estimating 𝑅0 (Li et al., 2020), some of which
ave been implemented with the ‘‘𝑅0 package’’ in R (Obadia et al.,
012).

(1) Exponential growth estimation.
Exponential growth estimation method assumes that the number

f infected cases increases exponentially, which is more suitable in
he early stage of an epidemic. In this case, the basic reproduction
umber (Wallinga and Lipsitch, 2007) is given by

0 = 1∕𝑀(−𝛾) = 1∕∫

∞

0
𝑒−𝛾𝜏𝜔(𝜏)𝑑𝜏,

here 𝛾 is the growth rate and 𝑀 is the moment generating function of
he generation time distribution 𝜔(𝜏). The latter is generally assumed
o follow the Gamma distribution.

(2) Maximum likelihood estimation.
This method assumes the number of infected cases generated from

he first case follows the Poisson distribution, whose mean is directly
roportional to the basic reproduction number and can be estimated
y using the maximum likelihood method (Forsberg White and Pagano,
008),

𝑙
(

𝑅0
)

=
𝑇
∑

𝑖=1
log

(

𝑒−𝜇𝑖𝜇𝑖𝑑𝐼𝑖
𝑑𝐼𝑖!

)

, 𝜇𝑖 = 𝑅0

𝑖
∑

𝑘=1
𝑑𝐼𝑖−𝑘𝜔𝑘.

Here 𝑙𝑙(𝑅0) is the likelihood depending on 𝑅0. 𝜇𝑖 and 𝑑𝐼𝑖 = 𝐼𝑖−𝐼𝑖−1 are
the number of daily new infected cases and incident cases at discrete
time point 𝑖, 𝑤𝑖 is the generation time distribution. This method also
requires the period during which the exponential growth is happening
to be identified from the data by statistical tools.

(3) Sequential Bayesian method.
The sequential Bayesian method, or real-time Bayesian, starts with

a non-informative prior and tries to predict the posterior distribution
of the basic reproduction number 𝑅0 by referring to the Bayesian
formula (Bettencourt and Ribeiro, 2008),

𝑃
(

𝑅0|𝑑𝐼0,… , 𝑑𝐼𝑖+1
)

=
𝑃
(

𝑑𝐼𝑖+1|𝑅0, 𝑑𝐼0,… , 𝑑𝐼𝑖
)

𝑃
(

𝑅0|𝑑𝐼0,… , 𝑑𝐼𝑖
)

𝑃
(

𝑑𝐼0,… , 𝑑𝐼𝑖
) ,

where 𝑃
(

𝑑𝐼𝑖+1|𝑅0, 𝑑𝐼0,… , 𝑑𝐼𝑖
)

is the likelihood of observing incident
cases at time 𝑖+1 given the value of 𝑅0 and past observations of incident
cases from time 0 to 𝑖, 𝑃

(

𝑅0|𝑑𝐼0,… , 𝑑𝐼𝑖
)

is a prior distribution of the
basic reproduction number, and 𝑃

(

𝑑𝐼0,… , 𝑑𝐼𝑖
)

is the joint probability
of observing the incident cases. The number of daily new infected
cases is also assumed to be Poisson distributed with the mean 𝜇𝑖 =
𝑑𝐼𝑖−1𝑒𝛾(𝑅0−1).

(4) Estimation of time dependent reproduction numbers.
This method computes the basic reproduction numbers by averaging

ver all transmission networks compatible with observations (Wallinga
3

and Teunis, 2004). The relative likelihood 𝑝𝑖𝑗 , that a case onset at time 𝑖
was infected by a case onset at time 𝑗, is given by 𝑝𝑖𝑗 = 𝜔𝑖−𝑗∕

∑𝑖−1
𝑘=0 𝜔𝑖−𝑘.

onsequently, the time-dependent effective reproduction number for
ase 𝑗 is defined as 𝑅𝑗 =

∑

𝑖 𝑝𝑖𝑗 , and the basic reproduction number
s the average of all 𝑅𝑗 , i.e. 𝑅0 =

1
𝑇
∑𝑇

𝑗=1 𝑅𝑗 .

2.2.3. ODE-based dynamical equations
Without considering time delay and spatial heterogeneity, ordinary

differential equations are the most widely used models for describing
the spreading process of epidemics. Here we summarize five different
dynamical models reported in the literature for studying COVID-19.

(1) SIR model
The classical SIR model divides populations into three compart-

ments, that is susceptible, infectious (with infectious capacity and not yet
recovered) and recovered cases (recovered and not be either infectious
or infected once again) denoted by 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) separately. As
shown in Fig. 1, the coefficients 𝛽 and 𝛿 represent the infection rate
and recovery rate separately.

(2) SEIR model
To account for the infected cases which are still in a latent period

and not yet being infectious, a new exposed population 𝐸(𝑡) is intro-
duced in SEIR model (Wang et al., 2020), in which a new coefficient 𝛾
denotes the transition rate from exposed individuals to the infected.

(3) SEIR-QD model
To take the effects of quarantine and self-protection into consid-

eration, Peng et al. (2020) proposed to generalize the classical SEIR
model by introducing a new quarantined state between infectious and
recovery. The numbers of death and unsusceptible are denoted as 𝐷(𝑡)
and 𝑆𝐴(𝑡) separately. In SEIR-QD model, the coefficients 𝛼, 𝜆, 𝛿, 𝜅 denote
the protection rate of susceptible individuals, the transition rate from
infectious individuals to the quarantined infected class, the recovery
rate and death rate, respectively.

(4) SEIR-AHQ model
To incorporate appropriate compartments relevant to interventions

such as quarantine, isolation and treatment, Tang et al. (2020) gen-
eralized the SEIR model. They stratified the populations as susceptible
(𝑆), exposed (𝐸), infectious but not yet symptomatic (pre-symptomatic)
(𝐴), infectious with symptoms (𝐼), hospitalized (𝐻) and recovered (𝑅)
compartments, and further included quarantined susceptible (𝑆𝑞) and
isolated exposed (𝐸𝑞) compartments.

In SEIR-AHQ model, the parameters {𝑐, 𝛽, 𝑞, 𝜎, 𝜆, 𝜌, 𝛿𝐼 , 𝛿𝑞 , 𝛾𝐼 , 𝛾𝐴, 𝛾𝐻 ,
𝛼} represent the contact rate, probability of transmission per con-
tact, quarantined rate of exposed individuals, transition rate from
exposed individuals to the infected, release rate of uninfected contacts
from quarantine, probability of having symptoms among infected in-
dividuals, transition rate of symptomatic infected individuals to the
quarantined infected class, transition rate from quarantined exposed
individuals to the quarantined infected class, recovery rates of symp-
tomatic infected individuals, asymptomatic infected individuals and
quarantined infected individuals, as well as disease-induced death rate.

(5) SEIR-PO model
By incorporating the public opinion on COVID-19, Zhang et al.

(http://swarma.blog.caixin.com/archives/220791) further classified
the populations of susceptible and exposed in SEIR model into un-
conscious (𝑆𝑈 , 𝐸𝑈 ) and conscious (𝑆𝐴, 𝐸𝐴) based on their different
knowledge on epidemics and self-protection.

In SEIR-PO model, the parameters {𝛾, 𝛿, 𝛽, 𝜂, 𝜂1, 𝜂2, 𝜂3, 𝛼} denote the
transition rate from exposed individuals to the infected, recovery rate
of infected individuals, infection rate of unconscious susceptible popu-
lation, reduced infection ratio of conscious susceptible individuals, ef-
fective infection factors of infectious individuals, unconscious and con-
scious exposed individuals, as well as the spreading rate of knowledge

about COVID-19 among individuals.

http://swarma.blog.caixin.com/archives/220791
http://swarma.blog.caixin.com/archives/220791
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Fig. 1. A summary on the empirical functions, statistical inference methods and dynamical models for epidemics evaluated in the current study. See Methods for details.
2.3. Data

To make a quantitative comparison, here we focus on the outbreaks
of COVID-19 caused by the novel coronavirus — SARS-CoV-2, which
currently spreads severely worldwide. We download the data of daily
reported confirmed infected cases 𝐶(𝑡) from the China CDC (http://
www.chinacdc.cn/). As a first example, the public epidemic data of
Shanghai is studied. Shanghai is in the east of China and is considered
as one of the best controlled cities in China during the battle against
COVID-19. A forty-day period from Jan. 20th, 2020 to Feb. 28th, 2020
is equally divided into four sequential series by every ten days.

Similarly, a larger data set is collected during almost the same time
period in six different regions in China selected mainly according to
their geographic locations (see Fig. 2), including Heilongjiang province
4

(northeast China), Tianjin (northern), Guangdong province (southern),
Chongqing (southwest), Hunan province (central) and Xiaogan city
in Hubei province (central, the city with the second largest reported
infected populations). Each data set is divided into two instead of four
for simplicity.

2.4. Parameter estimation

The fitting procedure of all empirical functions is done through the
nonlinear fitting mode in Origin 2019.

As to four statistical methods, since we aim at making predic-
tions on the progression of epidemics, we need to combine them with
further assumptions on the dynamics. A widely adopted one is the
exponential growth, which assumes the number of infected populations

http://www.chinacdc.cn/
http://www.chinacdc.cn/
http://www.chinacdc.cn/
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Fig. 2. The geographic locations of seven provinces/cities studied in the current research (colored in red). The maps are depicted based on the standard maps
(GS(2019)1647,GS(2019)3333) from Standard Map Service (bzdt.ch.mnr.gov.cn) by Ministry of Natural Resources of the People’s Republic of China. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
grows exponentially with the time and the exponent 𝛾 is correlated
with the basic reproduction number as 𝑅0 = 1∕∫ ∞

0 𝑒−𝛾𝜏𝜔(𝜏)𝑑𝜏. In the
current study, we assume the generating time distribution 𝜔(𝑡) obeys
the Gamma distribution 𝛤 (𝑘, 𝜃) (see Fig. S1 in SI), whose moment
generating function is explicitly known as 𝑀(𝑡) = (1 − 𝑡𝜃)−𝑘,∀𝑡 < 1∕𝜃.
From it, we immediately see 𝛾 = (𝑅1∕𝑘

0 − 1)∕𝜃. Then inserting 𝛾 into
either the recurrence formula 𝜇𝑖 = 𝑑𝐼𝑖−1𝑒𝛾(𝑅0−1) (no free parameter)
or the Logistic function (two more free parameters), the progression of
epidemics is fitted and predicted.

The unknown parameters involved in dynamical models are esti-
mated respectively by fitting the models to the epidemic data through
either the standard nonlinear least-squares approach (Peng et al., 2020)
or the Markov-Chain Monte-Carlo (MCMC) algorithms. The MCMC
algorithms are widely used in this field to sample the parameter space
and to fit the model to the data (Chen et al., 2000; Tang et al., 2020).
The MCMC is performed through an adaptive Metropolis–Hastings
algorithm, which is implemented in the R package POMP (King et al.,
2016). 80,000 iterations with a burn-in of the first 50,000 iterations are
carried out, where non-informative uniform distributions are chosen as
the prior distributions. From the posterior distributions, we obtain the
best-fit values and their 95% confidence intervals.

3. Results

In this part, we apply our three basic criteria to evaluate several
widely used models/methods in the field of epidemics. By fitting mod-
els to the training data set of Shanghai with varied time spans, their
forecasting abilities are compared and quantified through AICc, RMSE
and RC values (see Fig. 3 and Table 1). Analogously, the results for
other six cities/provinces are summarized in Fig. 4 and Table 2.

Based on extensive numerical explorations of models for COVID-
19 with epidemic data of China, our main findings are summarized as
follows:

(1) The model with the least RMSE can be picked out based on
AIC and RC. An astonishing finding of our current study is that the
model with the least RMSE to the test data can be easily picked out
by examining the values of AICc and RC, while the latter two depend
on the model and training data only! As we learned in the previous
section, the lower the AICc value is, the better trade-off between model
complexity and fitting accuracy is achieved. Meanwhile, a medium
5

RC value (0.5–0.9 in general) could take the requirements on model
robustness and sensitivity into consideration at the same time. Among
27 groups of epidemic data (9 cases times 3 groups of models) under
comparison, the AICc value helps to find out 18 models with the least
RMSE to the test data, and the rest 9 models all have the second lowest
AICc values (see Tables 1 and 2 for details). This finding is consistent
with previous reports based on Ebola epidemics that reactive models
are of better performance for short-term weekly incidence if they have
few parameters. (Viboud et al., 2018)

(2) Sigmoid functions are more suitable for epidemic forecast. Lin-
ear and exponential functions are not suitable for describing epidemic
data in general, while Hill’s, Logistic, generalized Logistic, Gompertz’s
and Richards’ functions can well capture the typical S-shaped curve for
the cumulative infected cases.

(3) At the early stage of an epidemic, no model can make long-
term reliable forecast. With respect to very limited data in the early
stage of an epidemic, there is no way to tell which model is superior
than the rest. They may either overestimate or underestimate the
epidemic size in an unpredictable way. Since the model with fewer
parameters is more robust, we suggest adopting either the exponential
function or even the linear function, though their valid regions are quite
narrow. A more elegant way is to combine the knowledge of the basic
reproduction number derived from statistical methods and the forecast
ability of exponential or logistic functions. However, it should be noted
that during the early stage the variance of the derived basic/effective
reproduction number is generally very large (see Fig. S1 in SI), making
long-term reliable forecast almost impossible.

(4)The inflection point is crucial for forecast. The inflection point
plays an essential role in forecast. It was suggested by Zhao et al.
(2019) in Zika research that, when the epidemic passes the inflection
point, predictions on the final epidemic size by the sigmoid empirical
functions, such as Logistic, Gompertz’s and Richards’ functions, will
converge to the true values. Here we basically reproduce their results.
As shown in the last row of Fig. 3, the RMSE of predictions on the
COVID-19 epidemic data of Shanghai decays in an exponential way
with respect to the size of training data, meanwhile the RMSE of fitting
keeps nearly unchanged. Interestingly, before Jan. 31st which is also
the inflection point of Shanghai, all functions fail to make a reliable
prediction (and some functions fail even earlier) and their RC values
drop to zero rapidly.
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Fig. 3. Forecast of the COVID-19 epidemic in Shanghai from 01/20/2020 to 02/28/2020 based on the data of first 10 (early), 20 (middle) and 30 (late) days respectively. The
first three panels give the results of (upper) five explicit functions, (middle) four different statistical inference methods combined with the Logistic function (the exponent 𝛾 derived
from 𝑅0), (lower) and five ODE models. The one with the smallest RMSE to the training data is drawn. The last row shows the variations of AICc (for training data), RMSE (for
test data) and RC for four explicit functions with respect to different sizes of training data set (from Jan. 20th to the date as marked).
Table 1
Summary of AICc (for training data), RMSE (for test data) and RC values for different models calculated based on the epidemic data of Shanghai.
Note the negative AICc values result from the fact that data points are fewer than the free model parameters.

Shanghai Early stage Middle stage Late stage

Model AICc RMSE RC AICc RMSE RC AICc RMSE RC

Hill’s 5.2 31 0.47 4.4 33 0.85 4.3 6.2 0.97
Logistic 4.4 120 0.68 4.2 10 0.96 4.3 4.7 0.99
Gompertz’s 3.9 25 0.37 4.2 34 0.92 4.6 6.2 0.98
Richards’ 4.9 65 0.73 4.0 7.8 0.92 3.7 2.8 0.99
G-Logistic 4.5 448 0.01 4.0 5.4 0.85 3.8 2.8 0.97

Exp.Growth 3.8 112 0.53 6.7 85 0.84 8.6 68 0.88
Max.LLH 4.1 61 0.21 7.5 268 0.11 9.0 101 1.0e−3
Seq.Bayes. 4.0 78 1.4e−4 5.1 13.3 0.39 6.6 16 0.71
Time Dep. 4.2 148 0.48 4.1 11.9 0.72 6.0 11 0.81

SIR 3.5 3.2e3 0.17 6.4 281 0.02 7.6 43 0.04
SEIR 3.5 1.1e4 0.76 6.2 184 0.11 7.2 35 0.60
SEIR-QD 8.9 5.1e3 1.2e−4 4.7 16 0.44 5.1 6.0 0.69
SEIR-AHQ −3.6 1.0e4 1.7e−5 10 84 2.8e−3 7.9 17 0.15
SEIR-PO −17.8 7.2e3 6.9e−5 5.8 8.2 0.14 4.9 3.6 0.83
(5) The Logistic function underestimates the epidemic size while
Gompertz’s function overestimates it. In all nine cases (including three
cases for Shanghai), we notice the Logistic functions always under-
estimate the total number of infected cases, while the Gompertz’s
function makes an overestimate (see Fig. 4A). This finding needs further
exploring and would be useful for estimating the lower and upper
bounds for the real total infected populations, though it still requires
further validation. The results of the other three functions are not so
consistent and their goodness-of-fit varies from case to case.

(6) Methods of sequential Bayesian and time-dependent repro-
duction number are more accurate at the late stage of an epidemic.
For statistical methods, since sequential Bayesian and time-dependent
reproduction number methods take the non-constant nature of the
effective reproduction number with the progression of epidemics into
consideration (see Fig. S1 in SI), their predictions appear to be more
accurate than the exponential growth and maximum likelihood meth-
ods in the late stage (see Fig. 4B). In addition, the sequential Bayesian
6

method seems to be less robust than the time-dependent reproduction
number method. The latter inherits the merit of Logistic function by
slightly underestimating the true epidemic size. The nice performance
of Bayesian method has been observed for Ebola too, in which ensemble
Bayesian method outperformed other 8 methods including Logistic
function and SEIR model (Viboud et al., 2018). It is further observed
that the basic reproduction number 𝑅0 estimated by the exponential
growth method exhibits a transition from overestimation to underesti-
mation with respect to the inflection point, which is in accordance with
the S-shaped curve for the total infected populations. As a consequence,
with respect to the early stage data of Shanghai COVID-19 epidemic,
the exponential growth method combining with the Logistic function
makes an underestimation on the final epidemic size, and a contrary
overestimation based on accumulated data in the late stage. Finally,
we find the maximum likelihood method overestimates the epidemic
size to a large extent in all seven cases, indicating this method may not
be suitable for studying COVID-19 epidemics.
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Fig. 4. Forecast of COVID-19 epidemics in Heilongjiang province (data for first 18 days of 38 in total are used for modeling fitting (training set), while the rest 20 data points are
used for validation (test set)), Tianjin (17/39), Hunan province (15/39), Guangdong province (15/40), Chongqing (15/39) and Xiaogan city (18/37) in Hubei province (central, city
with the second largest reported infected populations). The upper panel (A) shows the results of five empirical functions, the middle one (B) for four different statistical inference
methods combined with the Logistic function (the exponent 𝛾 derived from 𝑅0), while the lower panel (C) gives the results of five ODE models. The one with the smallest RMSE
to the training data is drawn.
(7) The SEIR-QD and SEIR-PO models are suitable for modeling
COVID-19 epidemics. The dynamical models generally require more
training data to achieve a reliable forecast than empirical functions,
since the former usually involves more free parameters and more
complicated mathematical structure. Based on their performance, the
dynamical models can be classified into three groups. As shown in
Fig. 3 and Fig. 4C, The classical SIR model and SEIR model seem to
be inadequate to describe the outbreak of COVID-19, especially the
final equilibration phase. Contrarily, the SEIR-AHQ model involves too
many free parameters as reflected through the large AICc value. As a
7

consequence, its robustness is also the poorest among all five models.
The SEIR-QD and SEIR-PO models are two suitable ones for modeling
COVID-19 by appropriately incorporating the effects of quarantine and
self-protection.

It is noted that all of our above statements have to be remained spe-
cific to COVID-19 in the countries where data were fitted. Application
to other scenarios should be done with great care and requires further
exploration.



Epidemics 37 (2021) 100501W. Yang et al.
Fig. 5. Forecast of the COVID-19 epidemics in Austria, Malaysia, Norway and Republic of Korea in 2020. Left column shows the effective reproduction number derived from the
method of time-dependent reproduction number, while the right column gives the reported confirmed cases and predicted ones by using Gompertz’s and Logistic functions.
Table 2
Summary of AICc (for training data), RMSE (for test data) and RC values for different models calculated based on the epidemic data of six provinces/cities in China.

Heilongjiang Tianjin Hunan Guangdong Chongqing Xiaogan

Model AICc RMSE RC AICc RMSE RC AICc RMSE RC AICc RMSE RC AICc RMSE RC AICc RMSE RC

Hill’s 5.9 16 0.62 3.58 69 0.79 6.09 122 0.67 6.76 447 0.42 7.42 61 0.83 10.71 73 0.66
Logistic 5.26 46 0.89 3.48 15 0.78 7.43 178 0.89 6.09 113 0.90 6.74 75 0.82 10.17 363 0.90
Gompertz’s 5.87 112 0.53 3.36 20 0.45 6.16 18 0.86 6.55 719 0.58 6.15 29 0.71 10.57 240 0.69
Richards’ 6.08 101 0.92 3.61 62 0.78 6.47 132 0.93 6.86 105 0.71 6.47 77 0.88 10.79 623 0.93
G-Logistic 5.23 79 0.78 3.58 47 0.01 6.00 76 0.39 6.40 98 0.57 5.70 314 0.01 10.28 481 0.79

Exp.Growth 6.21 34 0.85 3.55 6.6 0.60 7.92 28 0.89 6.43 41 0.86 6.96 46 0.80 10.96 322 0.95
Max.LLH 7.21 283 0.31 4.04 57 0.11 8.80 475 0.56 7.82 698 0.54 7.43 260 0.40 11.73 3.1e3 0.72
Seq.Bayes. 5.30 27 0.08 3.36 7 0.65 8.87 176 0.57 7.53 434 0.02 6.50 68 0.44 10.86 242 0.58
TimeDep. 5.50 71 0.72 3.29 17 0.05 8.49 279 0.88 6.08 43 0.62 7.00 126 0.82 10.04 296 0.88

SIR 6.75 2.1e3 0.94 3.45 161 0.99 8.13 3.2e3 0.92 7.78 1.9e4 0.93 5.25 666 0.98 11.56 8.3e3 0.99
SEIR 6.98 2.1e3 0.78 3.66 169 0.68 8.55 3.1e3 0.44 8.11 2.1e4 0.30 5.58 390 0.47 11.69 6.8e3 0.65
SEIR-QD 3.13 6.8 0.90 3.15 7.0 0.86 4.27 25 0.77 5.52 107 0.76 3.15 7.0 0.88 5.86 156 0.76
SEIR-AHQ 9.38 38 0.81 7.84 17 0.37 13.80 336 0.66 13.84 351 0.57 12.03 138 0.42 15.07 601 0.38
SEIR-PO 4.56 29 0.78 4.20 19 0.63 5.50 85 0.71 6.32 217 0.60 4.42 24 0.73 6.18 185 0.84
8
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4. Epidemic trends in other countries

Based on our previous evaluations on different epidemic models and
methods, we attempt to predict the epidemic trends in several other
countries other than China, which also serves as a further validation of
our statements.

In Fig. 5, we look into four examples — the first epidemic wave
of Austria, Malaysia, Norway and Republic of Korea, which have been
randomly selected from their representative categories (four groups
of countries clustered by the k-means algorithm according to their
diverse control policies, unpublished data). In each case, the effective
reproduction number 𝑅𝑡 is derived from the method of time-dependent
reproduction number. It is well-known that the fact 𝑅𝑡 > 1 indicates a
rapid spreading of the coronavirus. In particular, an astonishing peak
of 𝑅𝑡 is observed for Republic of Korea on Feb. 19th, which might
be attributed to the appearance of super-spreaders. With respect to
the total confirmed infected cases reported in these four countries,
data after the inflection point are predicted by the Gompertz’s and
Logistic functions separately, since according to our previous findings
the Gompertz’s function usually overestimates the final epidemic size
while the Logistic function underestimates it. Here only one exception
is observed (the test data of Malaysia is larger than the prediction by
the Gompertz’s function), which is likely caused by the early occurrence
of the second epidemic wave. As a conclusion, we can still believe the
Gompertz’s function and the Logistic function provide reasonable upper
and lower bounds for the total confirmed infected case at least for the
near future.

5. Conclusion and discussion

In this paper, based on the COVID-19 data of seven provinces/cities
in China during the spring of 2020, we make a systematical investiga-
tion on the forecast ability of seven widely used empirical functions,
four statistical inference methods and five dynamical models reported
in the literature. We highlight the significance of a good balance
between model complexity and accuracy, over-fitting and under-fitting,
as well as model robustness and sensitivity for model performance.
Quantitative analyses are made with respect to the Akaike information
criterion, root mean square error and robustness coefficient.

Through extensive simulations and detailed comparisons, we find
that the inflection point plays a crucial role for making reliable fore-
casts, in agreement with previous reports (Zhao et al., 2019). The RMSE
of model prediction decays exponentially with respect to the size of
training data set, while the model robustness characterized through the
variance of final epidemic size also approaches to unity rapidly after the
inflection point. Furthermore, the forecast abilities of several epidemic
models are also closely related to the inflection point. For example, the
estimated basic reproduction number 𝑅0 by the exponential growth
method exhibits a transition from overestimation to underestimation
with the increase of the training data set, and the inflection point acts
as the demarcation.

We notice the Logistic functions always underestimate the total
number of infected cases, while the Gompertz’s function makes an
overestimation in all cases we studied. Generalized Logistic, Hill’s and
Richards’ functions do not have such a consistency. Since the sequential
Bayesian and time-dependent reproduction number methods take the
non-constant nature of the effective reproduction number with the
progression of epidemics into consideration, we think they are more ac-
curate than the exponential growth and maximum likelihood methods
especially in the late stage of an epidemic. The transition of exponential
growth method from underestimation to overestimation with respect
to the inflection point could be quite useful for constructing a more
reliable forecast. Towards the dynamic models based on ODEs, it is
observed that the SEIR-QD and SEIR-PO models generally show a better
performance than the other three, highlighting the significance of a
trade-off between model complexity and fitting accuracy. The success
9

of the former two models could also be attributed to the inclusion
of self-protection and quarantine during the progression of COVID-19
epidemics.

There are many factors, like changing the reporting rate, increas-
ing the testing capacity, improving the social awareness and self-
protection, promoting vaccine injection and herd immunity, may affect
the epidemic to a great degree. Generally, these factors are highly time-
and policy-dependent, varied from region to region, may or may not be
fully considered in various models. In the current study, the influence
of these factors has not been thoroughly examined, and we call the
readers’ attention to this point. Furthermore, besides ODE models, par-
tial differential equations (Martcheva, 2015), stochastic equations (Ma
and Jia, 2009) and time-delayed equations (Yue et al., 2020) have
been applied to this field too. For example, it has been claimed that
‘‘stochastic models should be preferred to deterministic models in most
circumstances because they afford improved accounting for real vari-
ability and increased opportunity for quantifying uncertainty’’ (King
et al., 2014). How to generalize our current research to these models
would be of great value. Interested readers may refer to Konishi and
Kitagawa (2008), Stocks et al. (2018b), Gibson et al. (2018) for further
details.
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