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DNA methylation alterations have already been linked to cancer, and their

usefulness for therapy and diagnosis has encouraged research into the human

epigenome. Several biomarker studies have focused on identifying cancer types

individually, yet common cancer and multicancer markers are still underex-

plored. We used The Cancer Genome Atlas (TCGA) to investigate genome-

wide methylation profiles of 14 different cancer types and developed a three-step

computational approach to select candidate biomarker CpG sites. In total, 1991

pan-cancer and between 75 and 1803 cancer-specific differentially methylated

CpG sites were discovered. Differentially methylated blocks and regions were

also discovered for the first time on such a large scale. Through a three-step

computational approach, a combination of four pan-cancer CpG markers was

identified from these sites and externally validated (AUC = 0.90), maintaining

comparable performance across tumor stages. Additionally, 20 tumor-specific

CpG markers were identified and made up the final type-specific prediction

model, which could accurately differentiate tumor types (AUC = 0.87–0.99).
Our study highlights the power of the methylome as a rich source of cancer

biomarkers, and the signatures we identified provide a new resource for under-

standing cancer mechanisms on the wider genomic scale with strong applicability

in the context of new minimally invasive cancer detection assays.

1. Introduction

Cancer is the second leading cause of mortality world-

wide, with breast, prostate, lung, colorectal, and gastric

tumors being the most incident [1]. Abnormal DNA

methylation is considered a hallmark of cancer develop-

ment and where both a global hypomethylation and a

locus-specific hypermethylation have been observed [2].

Tumor cells exhibit a global loss of methylation in

otherwise extensively methylated regions (repeat ele-

ments, satellites, and retrotransposons), which leads to

widespread genomic instability and oncogene activation.

Contrastingly, hypermethylation at specific loci is

usually observed at promoter CpG islands of tumor

suppressor genes, which leads to their repression and

transcriptional silencing [3]. Such a phenomenon is
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often not limited to certain CpG islands, but occurs

at multiple independent genomic loci. This is indica-

tive of a widespread deregulation in DNA methyla-

tion patterns in the different tumor types [4].

Given that DNA methylation plays a pivotal role in

cancer, several studies have outlined the use of methy-

lated DNA loci as cancer detection markers, focusing

mainly on gene promoter markers or single CpG

markers [5,6]. Although several such methylation

biomarkers have been identified, only a few of them

have been used in the clinic. These assays are still pla-

gued by inconsistent performance across cancer stages

and inadequacy for detecting residual disease [5,7].

Moreover, existing biomarkers still mostly target one

or a couple cancer types in their mode of action.

Robust biomarkers that can detect or diagnose cancer,

based on shared methylation patterns between the dif-

ferent cancer types [8], termed pan-cancer biomarkers,

are yet to be described. Some pan-cancer differential

methylation patterns have already been studied, but

have not yet been used in the context of biomarkers

[9,10]. Contrastingly, effective multicancer tumor-specific

methylation markers are also still understudied. Most

DNA methylation profiling studies have traditionally

focused on gene promoter regions and CpG islands,

although methylation alterations in non-island loci

including gene bodies and shore regions have also been

shown to regulate gene expression [11]. Additionally,

cancer tissue-specific gene expression patterns have been

linked to differences in DNA methylation patterns in

shore and gene body regions [12].

In this study, we combined genome-wide differential

methylation profiling at a single CpG site resolution, with

machine learning to identify both pan-cancer and type-

specific detection markers. Our analysis was performed

using publicly available data from The Cancer Genome

Atlas (TCGA), one of the largest cancer patient methyla-

tion datasets (N = 6502). We present a selection of highly

informative CpG sites, identified genome-wide, that could

function as pan-cancer detection markers as well as a

selection of tumor-specific markers. We also outline com-

prehensive differential methylation profiles across cancer

types which highlight the methylome as an abundant

source of biomarkers and its applicability in translational

approach for the diagnosis and treatment of cancer.

2. Materials and methods

2.1. Datasets and study population

DNA methylation datasets were downloaded from the

TCGA Data Portal using an in-house developed

Python script as described in Ibrahim et al. [13].

TCGA includes methylation data for more than 30 dif-

ferent tumor types, but some of these sets have a low

case to control ratio or lack control samples altogether,

preventing robust statistical analyses. In accordance

with other studies on TCGA data, we only chose data-

sets that had a tumor-to-normal sample ratio of 10%

or a minimum of 10 tumor-normal pairs [14,15]. In

total, datasets for 14 distinct tumor types were used for

analysis (colon and rectal tumor datasets were com-

bined to form the colorectal cancer dataset). The final

tally comprised 6502 samples in total, 5783 cases and

719 controls. Biospecimen and clinicopathological data

for the different cancer types were similarly downloaded

from the portal. Table 1 presents an overview of the

described TCGA datasets. For independent external

validation, 10 additional Illumina 450K methylation

datasets were downloaded from the Gene Expression

Omnibus (GEO) database. These were aggregated into

one larger set comprising 332 normal and 1263 tumor

samples across eight different tumor types to represent

a pan-cancer validation set (Table S1).

2.2. Methylation data preprocessing

Methylation dataset preprocess was performed based

on the methods previously described in Ibrahim et al.

[13,16]. Sample methylation data in TCGA were

obtained using Illumina’s Infinium HumanMethyla-

tion450 BeadChip array, which contains more than

450 000 methylation sites covering 99% of the

RefSeq genes. These data come from frozen/formalin-

fixed paraffin-embedded, resection tissue samples,

containing a minimum of 60% tumor nuclei and

derived from primary or untreated tumor tissue. In

addition to genomic location and other details, the

Illumina 450K array manifest denotes probes based

on their relation to CpG islands and the type of

genomic feature they belong to; these annotations

are visualized in Fig. 1. Methylation is reported as

b-value, which is the ratio of the methylated probe

intensity over the sum of methylated and unmethy-

lated probe intensities, ranging from 0 for unmethy-

lated to 1 for fully methylated. The downloaded

methylation datasets were level 3, meaning that they

have already been aggregated, normalized, and/or

segmented. Potential batch effects were tested using

singular value decomposition, but the data did not

present significant effects, which is in line with previ-

ous studies using TCGA datasets. To account for the

non-independence between measurements from the

same individuals, a linear mixed model was fitted,

which included a random effect for sample barcodes
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while the significance of the fixed effects was tested

via the F-test with a Kenward-Roger correction for

the number of degrees of freedom.

2.3. Differential methylation analysis

Differential methylation analysis was mainly carried

out using the package CHAMP (version 2.12.2) [17].

After data read-in, samples with more than 25% of

their probed data missing were excluded, remaining

probes with missing values were filtered and b values

less than 0 were set at 0 and values > 1 were set at 1.

Underperforming probes were filtered from the down-

stream analysis; this included control probes, X-/Y-

chromosome probes, multihit probes, and probes with

known single nucleotide polymorphisms (SNPs). We

defined Db fold change (DbFC) for each probe, as the

fold change difference in mean b-value for that probe,

between group A and group B (i.e., tumor and normal

samples). The criteria for assigning pan-cancer and

tumor-specific differentially methylated probes (DMPs)

for use in the subsequent biomarker analysis were:

a log |DbFC| ≥ 2 and a corrected P-value ≤ 0.01.

P-values were adjusted for multiple testing using the

Benjamini–Hochberg correction. Differentially methy-

lated regions (DMRs) and differentially methylated

blocks (DMBs), which are extended regions of the gen-

ome that exhibit a quantifiable difference in methyla-

tion between two groups, were identified using an

implemented extension of the Bumphunter algorithm in

ChAMP, with minimum sizes of 50 and 500 bp,

respectively.

2.4. Pan-cancer biomarker identification

After the genome-wide prescreening to identify sites with

the most differential methylation between tumor and

normal samples was carried out on the individual cancer

datasets, DMPs that were common for all 14 types and

had a log |DbFC| ≥ 2 were selected for the subsequent

classifier model building. Combinations of 1, 2, 3, or 4

predictors were tested (Fig. 2), with 4 predictors yielding

the best prediction metrics. To select the final model,

binary logistic regression models were fitted to predict

tissue type (normal/tumor) using different combinations

of 4 CpG methylation values as predictors, with a total

of 24 157 combinations tested. The final model was cho-

sen based on the highest Akaike information criterion

(AIC) and the highest area under the curve (AUC) val-

ues. Model prediction accuracy was assessed by plotting

receiver operating characteristic (ROC) curves. The final

model was then validated in the aggregated GEO exter-

nal dataset and its performance was plotted. To test the

uniformity of the relationship between probe methyla-

tion and sample type across stages, we set tissue type

(normal or tumor) as a dependent variable and included

CpG methylation, stage, and the interaction between

methylation and stage, as independent variables in the

final regression model. We then tested the significance of

the interaction terms using a likelihood ratio test, com-

paring the fit of the model with both, main effects and

their interaction term against the model, with only the

main effects of methylation and stage. The final model

was then stratified per clinical cancer stage (stage I–IV)
and performance recalculated for each of the stages.

Table 1. Overview of the TCGA datasets and their clinicopathological parameters used in the analysis. NT, normal tissue; SD, standard

deviation; TP, primary tumor.

Dataset name (TCGA abbreviation) #NT #TP #Total Gender (M/F) Mean age Clinical stage (I/II/III/IV)

Bladder urothelial carcinoma (BLCA) 21 418 439 304/108a 68.10 2/131/141/136b

Breast carcinoma (BRCA) 96 791 887 9/780a 58.09 127/443/199/11b

Colorectal carcinoma (CRC) 45 411 456 211/179a 64.46 55/144/119/54b

Esophageal carcinoma (ESCA) 16 185 201 158/27a 62.45 19/79/56/9b

Head and Neck squamous cell carcinoma (HNSC) 50 528 578 386/142a 60.91 27/77/82/270b

Kidney renal clear cell carcinoma (KIRC) 160 324 484 205/114a 61.37 155/31/73/59b

Kidney renal papillary cell carcinoma (KIRP) 45 275 320 202/73a 61.68 168/18/51/14b

Liver hepatocellular carcinoma (LIHC) 50 377 427 255/122a 59.45 175/87/86/5b

Lung adenocarcinoma (LUAD) 32 473 505 215/246a 65.12 250/113/73/20b

Lung squamous cell carcinoma (LUSC) 42 370 412 276/96a 67.54 174/135/56/4b

Pancreatic adenocarcinoma (PAAD) 10 184 194 102/82a 64.76 21/151/5/5b

Prostate adenocarcinoma (PRAD) 50 502 552 498/0a 61.01 b

Thyroid carcinoma (THCA) 56 507 563 136/371a 47.26 285/52/113/55b

Uterine Corpus Endometrial Carcinoma (UCEC) 46 438 484 0/432a 64.18 243/43/101/45b

Total 719 5783 6502 2957/2772a 61.89 1701/1504/1155/687b

a

Number not including multiple samples from the same patient.
b

Field with missing values.
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Fig. 1. Overview of the differential methylation analysis results across different cancer types. (A) Violin plot of the beta-value distribution in

normal and tumor samples. (B) Bar plot showing the proportion of differentially methylated probes (DMPs) stratified into hyper- and

hypomethylation. (C) Bar plot showing the proportion of DMPs based on annotated genomic features. (D) Bar plot showing the proportion

of DMPs based on their genomic relation to CpG islands. IGR, intergenomic region; TSS, transcription start site; UTR, untranslated region.

2435Molecular Oncology 16 (2022) 2432–2447 ª 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

J. Ibrahim et al. Identification of cancer methylation biomarkers



2.5. Type-specific biomarker identification

In a similar prescreening setting, a 1-vs-all approach

was employed to identify differentially methylated

probes between 1 of the 14 tumor types and the other

13 combined, using a pooled dataset of 5783 cases

comprising the 14 tumor types. DMPs that are specific

to each of the tumor types individually, which would

serve as model predictors, were identified using a multi-

class matrix intersection approach (Venn diagram-like)

and then filtered based on the log |DbFC| ≥ 2 criterion.

We then used a 3-step approach to reduce the number

Fig. 2. Schematic diagram outlining the biomarker identification methods. Following initial differential methylation analysis and filtering,

common differentially methylated probes (DMPs) for all tumor types are considered for pan-cancer marker identification, while tumor-

specific DMPs are considered for type-specific marker identification. For pan-cancer biomarkers, binary logistic regression was used to test

classifier models using combinations of four CpG probes as predictors; the final model is then selected based on the best model metrics.

This is followed by external validation and stage stratification. For type-specific biomarkers, a more robust, 3-step approach was

implemented to select the most informative predictors from the initial pool of type-specific DMPs. The best performing combinations of six

CpG probes for each of the 14 cancer types are ultimately selected and integrated in the final classifier model. FDR, false discovery rate;

NT, normal tissue; PLSDA, partial least squares-discriminant analysis; TP, primary tumor.
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of predictors, while retaining the most informative ones

and building the multiclass prediction model (Fig. 2).

In a first step, we used a modified version of the Relief

feature selection algorithm, ReliefF, to select the most

relevant predictors for multiclass classification. In a sec-

ond step, we implemented a redundancy filter through

K-means clustering predictors, to filter out similar fea-

tures and further minimize the feature set. A total of 10

feature clusters were discovered. From each cluster, two

predictors were selected; the one closest to the cluster

centroid and the one with the highest Relief score. The

third step was model-building, where we used the par-

tial least squares-discriminant analysis (PLSDA) algo-

rithm for our multiclass classification of the tissue of

origin. To that end, the 14 datasets were pooled

together, resulting in a pooled dataset of 5783 tumors

each belonging to 1 of the 14 tumor types. The algo-

rithm was run using combinations of six probes from

the set of 20 nonredundant predictors. A total of

38 760 combinations were tested and ROC curves with

AUC values were generated for predicting each cancer

type against the 13 others. The final model was built by

integrating the best performing CpG combinations for

predicting each of the cancer types. The final model

was then externally validated in 10 external methylation

datasets downloaded from the GEO covering 8 out of

the 14 cancer types (Table S1).

2.6. Statistical analyses

The statistical software R (version 3.6.2) [18] was used

for all analyses and visualizations. The following clini-

copathological parameters from the TCGA clinical

patient data files were designated to perform association

analyses: age at diagnosis, gender, pathological tumor

stage (I–IV). In all regression models, age and tumor

stage were accounted for as a covariate, but were

excluded from the final model if their effect on the

outcome was not significant. Unless stated otherwise,

all reported P-values are two-sided, and those ≤ 0.05

were considered statistically significant. All genomic

annotations were done using the GRCh37/hg19 genome

build. A complete list of the R packages used can be

found on the last page of the supplementary materials

document.

3. Results

3.1. Patterns of differential DNA methylation

across tumor types

Most tumor types exhibited overall bimodal b-value
density distributions in both normal and cancer

samples, with slightly higher low-end densities. Eso-

phageal cancer showed a consolidation of b-values in

the midrange for both groups, while pancreatic cancer

showed a consolidation almost exclusively at the low

end of the b-value range (Fig. 1A). To allow for a

scalable comparison between different tumors (Table 1),

DMP counts are reported as normalized proportions

based on the total number of analyzed CpGs probes in

each category. Differential methylation was significantly

variable among the tumor types (Figs S1 and S2 and

Tables S2 and S3); on average, 55% differential methy-

lation was observed across the tumor types with 30%

hypomethylation and 25% hypermethylation (Fig. 1B).

Esophageal, pancreatic, and thyroid cancers had the

lowest proportion of differential methylation at around

22% while kidney, lung, and prostate cancers had

the highest proportion at 70% or higher. The most

hypomethylation was observed in liver, lung squamous

cell, and kidney cancers at around 40–48%, while the

least hypomethylation was observed in thyroid, esopha-

geal, and pancreatic cancer at around 10–15%. Con-

versely, breast, lung squamous cell, and kidney cancers

had the highest proportion of hypermethylation at 35–
39% while bladder, esophageal, and pancreatic cancers

had the lowest proportion of hypermethylation at 9–
15%. Interestingly, differential methylation was split

almost equally between hyper- and hypomethylation in

breast cancer (Fig. 1B). No significant correlation was

observed between the number of DMPs and the num-

ber of samples in the datasets (Pearson’s P-value >
0.05). DMPs across the tumor types were mapped to

17 000 unique genes on average, with four DMPs per

gene being the most common and an average of eight

DMPs per gene (Table S2). On average, 35% of DMPs

were located in the gene body, 24% in the IGR, 13% in

the TSS1500, 10% in the TSS200, 9% in the 50 UTR,

and 4% in the 30UTR and 1st exon each (Fig. 1C). With

respect to DMP distribution by relation to CpG islands,

the largest proportion of DMPs mapped to open-sea

regions at 37% on average followed by CpG islands at

31% on average. North and south shores contained an

average of 13% and 10% of DMPs, respectively, while

north and south shelves contained the lowest average

proportion of DMPs at 5% and 4%, respectively

(Fig. 1D).

A total of 15 260 DMRs were also identified across

the tumor types with an average of 1090 DMRs per

type. DMRs are extended segments of the genome

(~10 bp - kb) that show a quantitative alteration in

DNA methylation levels across different biological

samples. Similar to DMPs, kidney renal carcinoma

had the most DMRs at 2505, while esophageal carci-

noma had the least at 349. DMRs registered an
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average size of 750 bp and contained on average 12

CpG probes. An average of 726 DMRs were identified

per chromosome with chromosome 6 having the most

at 1962 on average and chromosome 21 the lowest at

81 on average (Table S4). DMRs had an overall simi-

lar genomic distribution across the tumor types. A seg-

ment of high DMR density on chromosome 6 seems

to be present in all the tumor types. Regions with simi-

lar methylation can be seen on chromosomes 3, 11, 17,

and 19. Strikingly, no DMRs could be identified on

chromosome 9 in any of the cancer types (Fig. 3). A

total of 29 481 DMBs were identified across the differ-

ent tumors. DMBs, on the other hand, are large-scale

genomic regions (10 Kb–1 Mb) that contain hundreds

of intergenic (open-sea regions) differentially methy-

lated CpGs [19]. On average 1785 DMBs were identi-

fied per tumor, with the most observed in kidney renal

papilloma at 2543 DMBs and the least in liver carci-

noma at 1020 DMBs. Being larger than DMRs and

containing more CpG probes, the identified DMBs

were 750 Kb long and contained 200 probes on aver-

age. 1135 DMBs could be mapped on average per

chromosome, with chromosome 2 and chromosome 18

having the highest and lowest number of DMBs,

respectively (Table S5). Looking at the genomic distri-

bution of DMBs, they seem to show universal features

across various cancers. This can be clearly observed in

chromosomes 1, 8, 9, 18, 19, 21, and 22 (Fig. S3).

3.2. Methylation as a pan-cancer detection

biomarker

Following the filtering steps (Fig. 2), we identified 28

pan-cancer DMPs, that were hypermethylated in the

tumor samples as compared to normals across all can-

cer types (Fig. S2 and Tables S3 and S4). Twelve of

them could be mapped to 12 distinct genes. 20 DMPs

were located in CpG island regions, three in shore

regions, three in open regions, and two in shelf regions

(Table S6). We then used binary logistic regression to

test combinations of the 28 probes that worked best in

classifying samples pan-cancer. The logistic regression

classifier models were built using combinations of 1–4
probes and externally validated in the pooled GEO

dataset. In total, 24 157 predictor combinations were

tested of which 20 475 comprised 4 probes (Fig. S4).

The average area under the curve (AUC) was 0.84

using only a single probe (Fig. S4A) and went up to

0.92 using combinations of four probes (Fig. S4D).

The reported average misclassification error was 0.11

and 0.09 for 1 and 4 predictor combinations, respec-

tively. The models performed well in the validation

datasets with average external AUC for single

predictors being 0.89 and 0.95 for four predictors

(Figs S4A,D). Using combinations of five or more

probes, we encountered large diminishing returns.

Given the exponential increase in the number of com-

binations to be tested with more probes, this was not

investigated. The final model was selected based on the

highest achieved AUC and lowest misclassification

error with the smallest standard deviation in these

measurements across the bootstraps. The final model

included four probes (Table 2) and reached cross vali-

dated AUC of 0.95 in the discovery set and an AUC

of 0.96 in the validation set. The misclassification error

rate was 0.06, while sensitivity and specificity were

90% and overall accuracy was 92%. A comparable

performance was also achieved in the validation data-

sets (Fig. 4). No significant effects of clinical cancer

stage or age on tissue type prediction could be

Fig. 3. Density plot outlining the genomic distribution of

differentially methylated regions across cancer types. Overall, the

genomic distribution of differentially methylated regions (DMRs)

looks to be similar in all of the cancer types. Highlighted regions

seem to be especially conserved. A high density of DMRs can be

observed in chromosomes 6, 11, and 19 in particular, while

chromosome 9 seems to be completely void of any DMRs.

Density is calculated and plotted in bins of 1xE6 bp.
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measured. The stage final stratified model yielded

somewhat uniform prediction results across all four

stages with AUCs above 0.90. As expected, stage I

exhibited the lowest metrics with a sensitivity and

specificity of 85% and 91%, respectively, while the

most accurate predictions were seen in stage IV with a

sensitivity and specificity of 97% and 90%, respec-

tively (Fig. 4).

3.3. Methylation as a type-specific detection

biomarker

After applying similar filter steps to the one-vs-all dif-

ferential methylation analysis, colorectal cancer

recorded the largest number of type-specific DMPs at

5181, followed by thyroid cancer at 4666. The lowest

number of type-specific DMPs was recorded for eso-

phageal cancer and lung squamous cell carcinoma at

13 and 12 DMPs, respectively (Fig. S2). After feature

selection of relevant predictors, we were left with 586

probes, roughly 3% of the initial feature set. Sub-

sequently, the redundancy filter clustering step resulted

in 20 CpG predictors, 2 from each of the 10 resulting

feature clusters. Combinations consisting of 6 out for

these 20 predictors were used to build the classifier

models; this was based on preliminary data showing the

highest average AUC, with the least number of predic-

tors, and the most practical total number of combina-

tions to test. A total of 38 760 combinations were

tested using the PLSDA algorithm using a pooled data-

set of tumors across the 14 types. The mean cross-

validated AUC for classifying the 14 tumor types was

0.85. The majority of tested combinations performed

well in classifying cancer types, with thyroid, urethral,

prostate, kidney, colorectal, liver, and head and neck

cancers having local AUC means above 0.90 (Figs S5–
S7). Pancreatic, lung, esophageal, breast, and bladder

cancers exhibited lower mean AUCs on average, but

their local AUC maxima were all above the 0.80 mark.

In fact, only esophageal cancer scored a maximal detec-

tion AUC below 0.90, at 0.87, being the most problem-

atic to discriminate amongst the 14 types under study.

Liver, prostate, uterine, and thyroid cancers could be

discriminated with the highest power against all other

types with an AUC of 0.99, while colorectal cancer fol-

lowed with an AUC of 0.98 (Figs S5–S7). The inte-

grated final model included 20 unique CpG probes

(Table 2) and performed very well in classifying tumor

Table 2. Overview of the Illumina CpG sites that were used in the final prediction models for both pan-cancer and type-specific

classification. IGR, intergenomic region; TSS, transcription start site; UTR, untranslated region.

Probe ID Chromosome Strand Gene Genomic feature Relation to CpG Island

cg17757602a 5 F – IGR Island

cg26848718a 11 R WT1 Body Island

cg05422029a 6 F – IGR Open Sea

cg22749589a 20 F – IGR North Shore

cg02615833b 5 R PCDH24 TSS200 Open Sea

cg26175343b 20 F LRRN4 TSS200 South Shore

cg14266927b 14 R BATF TSS1500 Open Sea

cg16937769b 12 R HOXC4 TSS1500 South Shore

cg24750391b 7 F PON3 TSS1500 South Shore

cg23921838b 6 F C6orf97 3’UTR Open Sea

cg21710324b 1 F TMEM63A 5’UTR North Shore

cg10588135b 17 R BCAS3 Body Open Sea

cg00851394b 19 F CNTD2 Body Island

cg22966302b 19 F NFIX Body North Shelf

cg00501869b 7 R PTPRN2 Body Island

cg23313005b 5 F FAM193B Body Open Sea

cg12126990b 2 R AFF3 Body Open Sea

cg24686845b 12 F PLXNC1 Body Open Sea

cg10210594b 1 F – IGR Island

cg11518509b 1 R – IGR Open Sea

cg19251600b 6 F – IGR Open Sea

cg16196175b 7 F – IGR North Shore

cg21312554b 8 R – IGR Open Sea

cg27628707b 15 R – IGR Open Sea

a

Denotes pan-cancer CpG markers.
b

Denotes type-specific CPG markers.
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types, with a measurable increase in metrics, especially

specificity, as compared to individual models with 6-

probe combinations (Fig. 5 and Fig. S7). The model

performed equally well in the validation set for the

available cancer types (Fig. 6). Thyroid, uterine, pros-

tate, liver, and colorectal tumors could be identified

with near perfect sensitivity. Twelve of the 14 cancer

types under study could be discriminated with sensitivi-

ties and specificities above 90%. Only esophageal and

lung squamous cell carcinomas registered specificities at

80% and 87%, respectively (Fig. 5).

4. Discussion

Epigenetic alterations, such as DNA methylation, are

an important regulator of gene transcription and

expression. Given DNA methylation’s role in carcino-

genesis and its possible use for diagnosis and therapy,

our study focused on providing a comprehensive anal-

ysis of DNA methylation patterns in 14 different

tumor types and identifying potential detection

biomarkers. Overall, we observed that differential

methylation patterns vary largely between different

cancers, which is in line with other TCGA based stud-

ies involving methylation [20–22] and with the general

dogma of intertumor epigenetic heterogeneity [23].

Hypomethylated CpGs constituted the larger portion

of DMPs in all cancer types. This could be due to a

larger portion of intergenic CpG probes on the Illu-

mina array, where global hypomethylation in cancer is

observed [24]. Gene body CpGs were the largest single

portion and accounted for around 35% on average of

DMPs. Currently, the exact function of gene body

CpGs in cancer is not yet known. Several possible

roles have been described, these include long-range

regulation, alternative promoter modulation [25] and

protection against spurious transcription initiation by

RNA polymerase II [26]. Demethylation of gene bod-

ies has also been associated with gene expression in

oncogenes [27]. Similar figures for these regions have

also been reported in methylation array studies not

involving TCGA datasets [28,29]. CpG islands are nor-

mally located in promotor regions of genes and are

typical sites of hypermethylation in cancer and consti-

tuted one of the highest portions of DMPs at around

35%, as expected. The highest proportion of DMPs

was located in open-sea regions which was also

reported by Ding et al. [22] and could again be attrib-

uted to the larger portion of open-sea probes interro-

gated by the Illumina array. Open-sea regions are

often hypomethylated in cancer and are associated

with chromosomal instability, gene transcription, and

loss of imprinting [30], all of which are characteristics

of carcinogenesis. In line with similar studies [12,31],

around 21% of DMPs in our study belong to shore

regions. These are known for widespread hypomethy-

lation and contribution to cancer progression by caus-

ing chromatin instability [31].

We also investigated genome-wide differentially

methylated regions and blocks, which are thought to

play a role in cancer development and progression,

analogous to DMPs, as they house regulatory elements

and transcription factor binding sites [32], to the best

of our knowledge, this is the first time such an analysis

has been reported. We observed an overall similarity

in DMR/DMB number and genomic distribution

across cancer types. The vast majority of identified

DMBs were hypomethylated, which is to be expected

as the algorithm scans only open-sea regions where

hypomethylation is widespread [17]. Despite large-scale

studies involving genome-wide DMBs being relatively

scarce, our findings align with early works suggesting

that large hypomethylated blocks are a universal fea-

ture of solid tumors [30]. Hansen et al. [33] even sug-

gested that such hypomethylated blocks could

encompass half of the genome and cause extreme vari-

ability in gene expression. Several DMRs showed dis-

tinct universal features across all 14 cancer types and

were hypermethylated in general. The short arm of

chromosome 6 (6p) in particular exhibited a sharp

DMR peak in all cancers. Interestingly, chromosome

6p is known to harbor several oncogenes that play a

direct role in tumor progression. Chromosome 6

amplification has also been linked to cancer progres-

sion [34]. Moreover, chromosome 6p houses the

human major histocompatibility complex (MHC).

MHC class I antigen presentation is often impaired in

cancer cells, which is one of the avenues by which can-

cer cells evade T-cell destruction [35]. The mechanism

of MHC-I loss or downregulation in several cancers

has been attributed to the hypermethylation of MHC-I

genes, suppressing their expression [36]. Therapy

approaches targeting the recovery of MHC class I

expression on tumor cells can be an effective form of

immunotherapy, where the reversible nature of methy-

lation plays a major role [37]. Irrespective of the speci-

fic mechanisms behind the observed patterns, DMRs

and DMBs are very interesting features for further

examination for diagnostic/prognostic potential in can-

cer. The identified regions themselves could serve as a

marker site for targeted methylation sequencing assays

for cancer detection, for example. They can also be

used as a source of differentially methylated CpG sites

that can be included in methylation marker panels. To

the best of our knowledge, our work is the first large-

scale pan-cancer analysis involving DMBs and DMRs.
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Much improvement in methylation-based cancer

assays has been made in the past few years, yet most

of the existing markers still target a single cancer type

only, and even the best-established ones show diagnos-

tic shortcomings in different tumor stages [6,38]. We

used pan-cancer differential methylation patterns

which were similar in all tumors and distinct from all

normal tissues to test 28 candidate CpGs for their

capacity to differentiate tumors from normals. By test-

ing out combinations of 4 CpG probes, our final

model could effectively classify tumor and normal tis-

sues with high accuracy in a pan-cancer setting. The

suggested model also performed up to par in several

external validation datasets. This reinforces the mod-

el’s scalability over external data and its generalizabil-

ity over a multitude of tumor types. In comparison to

another TCGA-based study that focused only on

CpGs in islands and promoter regions for marker

identification [39], our method focuses on identifying

the most informative CpG sites irrespective of genomic

location or gene. As Koch et al. point out, traditional

methylation biomarker studies have focused predomi-

nantly on promoter CpG islands of tumor suppressor

genes, but CpGs are not all functionally equivalent,

even those within the same CpG island. The most

important premise of biomarker identification is thus

determining the most clinically relevant locations for

accurate diagnosis [40]. Aberrant DNA methylation

varies greatly in cancer based on tumor stage and cur-

rent biomarkers are still underperforming in detecting

early-stage disease [41,42]. This aspect has been absent

in recent methylation-based biomarker studies

[22,39,43]. Our proposed CpG predictors showed no

significant effect of age and tumor stage and per-

formed equally well when stage stratified. Naturally,

sensitivity and specificity were higher in the more

advanced cancer stages, but the model was also able

to accurately classify tumor samples even in stage I.

We could not find an overlap between our marker

selection and those in similar studies—nor is there an

overlap between these studies themselves—[14,39], but

this is expected due to the different classifiers used in

the different studies. This, however, stresses the rich-

ness of the methylome as a source of cancer markers.

Tissue-specific methylation signatures in several can-

cers have already been reported [4,44]; this forms the

basis of type-specific biomarker identification. We

aimed to identify type-specific methylation markers

that could single out each cancer type from a pool of

different cancers based on differential methylation in

Fig. 4. Receiver operating charac-

teristic (ROC) curves of the final

pan-cancer model, validation datasets,

and stage stratification. The final

model included four CpG probes and

accounted for age and tumor stage.

Sensitivity and specificity at various

cutoff values for the datasets and

stages are plotted. The final model

yielded an area under the curve

(AUC) of 0.95 and a sensitivity and

specificity of 90% with similar

metrics when validated. Predictions in

stage I were the poorest, with an

AUC of 0.93 a sensitivity of 85% and

a specificity of 91%. Performance in

the subsequent stages improved,

reaching an AUC of 0.98 and a

sensitivity and specificity of 97% and

90%, respectively, in stage IV. The

dotted diagonal line represents the

line of no discrimination between

tumor and normal tissues. AUC, area

under the curve; NT, normal tissue;

TP, primary tumor.
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different tumors. We selected the best predictors for

each cancer type and integrated those into a final 20-

CpG model that could identify 14 tumor types with

high sensitivity and specificity. Recently, Liu et al. [45]

showed that DNA methylation biomarkers, identified

using bisulfite sequencing, could detect cancer tissue

of origin in liquid biopsies. Our approach, however,

yields a bigger pool from which markers could be

selected; this drastically increases the number of CpG

predictors and could be very beneficial particularly

for liquid biopsies where circulating tumor DNA is

fragmented and low in concentration. Similar to the

pan-cancer setting, probes in the final model were

not limited to promoter regions; a third of them

belonged to gene body regions and a quarter belonged

to shore regions. This again stresses the importance of

non-promoter/island CpGs, especially in a tumor-

specific setting. Irizarry et al. [12], for example, have

outlined tissue-specific gene expression patterns associ-

ated with methylation alterations in shore regions. Sev-

eral other works have also suggested that gene body

regions play a pivotal role in gene expression regulation

[11,46]. Esophageal cancer showed limited detection

sensitivity, which can be linked to its low differential

methylation but further investigation could shed light

on similarities between its methylation patterns and

other cancer types. Contrastingly, the other tumors had

very high sensitivities, which can prove essential in a

clinical setting. The heterogeneous nature of TCGA

datasets adds to the complexity of multiclass predic-

tions. We therefore had to employ feature selection and

redundancy filters to find only the most informative

predictors. Moreover, a large portion of DNA methyla-

tion variability in cancer is attributed to genomic varia-

tion, albeit a major fraction may also be the result of

tissue-specific pathogenic signaling cascades [47].

Fig. 5. Receiver operating characteristic curves of the final integrated type-specific partial least squares-discriminant analysis model. The

final model integrated the best performing 20 type-specific CpG probes as predictors. The curves represent 10-fold cross-validated area

under the curve (AUC) for classifying each of the different cancer types in a 1-vs-all approach. Sensitivity and specificity at various cutoff

values for the datasets are plotted. The final model performed highly in classifying tumor types with all metrics above 90% for the majority

of tumors. Thyroid carcinomas registered could be classified with near perfect efficiency, while esophageal carcinomas registered the

lowest performance metrics with an AUC of 0.87 and both a sensitivity and specificity of 80%. The dotted diagonal line represents the line

of no discrimination between tumor and normal tissues. AUC = area under the curve.
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The classifier models we presented exhibit high sen-

sitivity in silico and follow a conservative approach for

classifying tissues, while minimizing false positives.

Using methylation in place of mutations for example

for cancer detection holds a big technical advantage

especially in liquid biopsies, as studies have shown that

early-stage patients show less mutations than the

detection limit of downstream mutation assessment

technologies [48,49]. The performance of our proposed

methylation markers, in both pan-cancer and tumor-

specific settings, makes them an attractive for inclusion

in a minimally invasive blood-based diagnostic/detec-

tion assay. This can be achieved using digital droplet

PCR or array technologies. Despite the recent flurry in

DNA methylation in vitro diagnostics, to date, only a

couple of methylation markers have been well estab-

lished in the clinical setting, and even fewer pan-cancer

markers. Many recent strides in diagnostic and prog-

nostic tests have been made, but current clinically

available methods still target only a few cancer types

or show a variable performance in detection based on

tumor type and stage [7]. The IvyGene test for exam-

ple uses 46 markers to identify four cancer types from

cell-free DNA (cfDNA) [50]. Our proposed model uses

less information to make a wider classification;

evidently, this analysis is based on tissue biopsy sam-

ples and not cfDNA, but several methylation markers

have shown similar performance in both biopsy types

[51]. Another current assay is the EPICUP which also

employs markers from Illumina 450K methylation

arrays to classify cancer samples with 87% accuracy.

This test, however, at the time of writing, has not been

updated with a more comprehensive list of CpG sites

from the newer Infinium MethylationEPIC BeadChip

array, for example [7]. We believe that a good initial

selection of methylation markers that can give both

pan-cancer and cancer-specific performance could pro-

vide the breakthrough needed for the field. By imple-

menting feature selection and redundancy filtering

steps, our computational approach for example could

be used to update existing assays with highly informa-

tive CpG sites. Moreover, it can be used to swiftly

identify new DMPs as potential methylation markers

from new DNA methylation quantification assays such

as enzyme-based DNA conversion methods (Enzy-

matic Methyl-seq [52] and TET-assisted pyridine

borane sequencing [53]), which coupled with third-

generation sequencing technologies allow for an

increased recovery of amplifiable DNA over bisulfite

treatment and thus an increase in the total number of

Fig. 6. Receiver operating charac-

teristic curves of the final integrated

type-specific partial least squares-

discriminant model in the GEO

validation datasets. 11 GEO datasets

were used for external validation

including 332 normal and 931 tumor

tissues and covering eight tumor

types. The curves represent 10-fold

cross validated area under the curve

(AUC) for classifying each of the

different cancer types in a 1-vs-all

approach. Sensitivity and specificity

at various cutoff values for the

datasets are plotted. The validated

performance was very similar to

the discovery dataset with most

sensitivities and specificities above

90%. The dotted diagonal line repre-

sents the line of no discrimination

between tumor and normal tissues.

AUC = area under the curve.
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profiled CpG sites. Another point that can be used for

improved detection is the integration of methylation

markers with existing assays that use mutation, gene

expression, and/or protein expression [43]. The Cancer-

SEEK assay has already paved the way for this by

combining circulating tumor DNA (ctDNA) sequenc-

ing data with serum protein markers. Despite report-

ing high specificity, CancerSEEK had varying

sensitivity based on cancer type but the authors advo-

cate the use of additional markers, such as methylation

to increase overall performance [49,54]. Such assays

are very promising but still have the limitation of only

including patients with symptomatic cancers. More-

over, when holding specificity at 95%, their sensitivity

in early stages was below average. Our analysis has

showed that CpG methylation possesses significant

potential as a highly informative biomarker that war-

rants further development and integration in novel

in vitro cancer diagnostics.

5. Conclusion

Based on our previous works studying methylation

markers, our approach tried to maximize classification

performance with minimal predictors, especially for

pan-cancer markers. This approach provides a compre-

hensive reference on genome-wide methylation patterns

in several of the most common cancer types. It also

highlights the epigenome as an excellent source of can-

cer biomarkers, which could function both as pan-

cancer and as cancer-specific detection markers. Here,

we present a selection of highly robust and informative

CpG sites that can be used as effective biomarkers for

cancer detection. The observed widespread changes in

methylation across the genome, however, outline

methylation as an important starting point for biomar-

ker identification. Ultimately, our findings highlight

DNA methylation biomarkers as encouraging avenues

for the molecular characterization of cancer, through

the development of minimally invasive blood-based

assays, or integration in a multi-analyte test panel.
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Supporting information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.
Fig. S1. Upset plot showing the number of DMPs that

were common to all cancer types and those that were

found in cancer types individually.

Fig. S2. Upset plot showing the number of pan-cancer

and tumor-specific DMPs.

Fig. S3. Density plot outlining the genomic distribu-

tion of differentially methylated blocks (DMBs) across

the cancer types.

Fig. S4. Overview of pan-cancer model metrics for all

tested predictor combinations.

Fig. S5. Cleveland plot overviewing the local and max-

imal AUC means of partial least squares-discriminant

analysis (PLSDA) models for classifying each of the

14 tumor types against all others.

Fig. S6. Density plot of the distribution of partial least

squares-discriminant analysis (PLSDA) cross-validated

AUCs of different 6-probe combinations classifying

each of the 14 tumor types against all others.

Fig. S7. Receiver operating characteristic (ROC)

curves for the best performing type-specific partial

least squares-discriminant analysis (PLSDA) models 6

CpG probes as predictors.

Table S1. Overview of the GEO methylation datasets

used for external validation.

Table S2. Summary of DMPs across tumor types.

Table S3. Percent methylation overview of the pan-

cancer differentially methylated genes.
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Table S4. Details of identified DMRs across tumor

types.

Table S5. Details of identified DMBs across tumor

types.

Table S6. Genomic details of the filtered 28 Pan-Can-

cer DMPs.

Data S1. Detailed methods and list of used R pack-

ages.
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