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Abstract

Purpose

To assess the validity of a derived algorithm, combining tri-axial accelerometry and heart

rate (HR) data, compared to a research-grade multi-sensor physical activity device, for the

estimation of ambulatory physical activity energy expenditure (PAEE) in individuals with

traumatic lower-limb amputation.

Methods

Twenty-eight participants [unilateral (n = 9), bilateral (n = 10) with lower-limb amputations,

and non-injured controls (n = 9)] completed eight activities; rest, ambulating at 5 progressive

treadmill velocities (0.48, 0.67, 0.89, 1.12, 1.34m.s-1) and 2 gradients (3 and 5%) at 0.89m.

s-1. During each task, expired gases were collected for the determination of _VO2 and subse-

quent calculation of PAEE. An Actigraph GT3X+ accelerometer was worn on the hip of the

shortest residual limb and, a HR monitor and an Actiheart (AHR) device were worn on the

chest. Multiple linear regressions were employed to derive population-specific PAEE esti-

mated algorithms using Actigraph GT3X+ outputs and HR signals (GT3X+HR). Mean bias

±95% Limits of Agreement (LoA) and error statistics were calculated between criterion

PAEE (indirect calorimetry) and PAEE predicted using GT3X+HR and AHR.

Results

Both measurement approaches used to predict PAEE were significantly related (P<0.01)

with criterion PAEE. GT3X+HR revealed the strongest association, smallest LoA and least

error. Predicted PAEE (GT3X+HR; unilateral; r = 0.92, bilateral; r = 0.93, and control; r =

0.91, and AHR; unilateral; r = 0.86, bilateral; r = 0.81, and control; r = 0.67). Mean±SD per-

cent error across all activities were 18±14%, 15±12% and 15±14% for the GT3X+HR and 45

±20%, 39±23% and 34±28% in the AHR model, for unilateral, bilateral and control groups,

respectively.

PLOS ONE | https://doi.org/10.1371/journal.pone.0209249 January 31, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ladlow P, Nightingale TE, McGuigan MP,

Bennett AN, Phillip RD, Bilzon JLJ (2019)

Predicting ambulatory energy expenditure in lower

limb amputees using multi-sensor methods. PLoS

ONE 14(1): e0209249. https://doi.org/10.1371/

journal.pone.0209249

Editor: Yih-Kuen Jan, University of Illinois at

Urbana-Champaign, UNITED STATES

Received: June 22, 2018

Accepted: December 3, 2018

Published: January 31, 2019

Copyright: © 2019 Ladlow et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The raw data

underlying this research are available from the

University of Bath data archive at https://doi.org/

10.15125/BATH-00578. Most data are openly

available but, due to privacy concerns, some data

regarding participants are available only to bona

fide researchers working on a related project,

subject to the completion of a non-disclosure

agreement. These access criteria have been

imposed by the UK Ministry of Defence Research

Ethics Committee (MODREC). Access requests for

http://orcid.org/0000-0002-6701-7603
https://doi.org/10.1371/journal.pone.0209249
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209249&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209249&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209249&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209249&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209249&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209249&domain=pdf&date_stamp=2019-01-31
https://doi.org/10.1371/journal.pone.0209249
https://doi.org/10.1371/journal.pone.0209249
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15125/BATH-00578
https://doi.org/10.15125/BATH-00578


Conclusions

Statistically derived algorithms (GT3X+HR) provide a more valid estimate of PAEE in indi-

viduals with traumatic lower-limb amputation, compared to a proprietary group calibration

algorithm (AHR). Outputs from AHR displayed considerable random error when tested in a

laboratory setting in individuals with lower-limb amputation.

Introduction

Individuals who experience traumatic lower-limb amputation have been shown to be at

increased risk of developing cardiometabolic diseases [1–3]. Reducing the development of

unfavourable body composition changes [4–6] and the secondary health conditions associated

with obesity, such as cardiovascular disease and type 2 diabetes mellitus [1–3], is a primary

objective in the long-term recovery of individuals with lower-limb amputation. It is well estab-

lished that the higher the level of amputation (above knee versus below knee) and the greater

number of lower-limbs amputated (bilateral versus unilateral) are associated with a higher

metabolic cost of walking and reduced ambulatory physical activity (PA) [7–9]. However, little

is known about the consequences of amputation severity on habitual PA levels or ambulatory

physical activity energy expenditure (PAEE). Consequently, PA requirements for the mainte-

nance or improvement of metabolic health and protection against chronic degenerative dis-

eases, is poorly understood in this population. Severe lower-limb injuries have also been

associated with high levels of mental health disorders, such as moderate to severe depression

(38%) and anxiety (29%) [10]. Strategies to mitigate the risk or managing these conditions are

of upmost importance. Exercise and PA interventions aimed at improving function, health

and wellbeing in individuals with amputation may benefit from the use of objective PA

measurements.

Criterion or ‘gold standard’ measures of energy expenditure (i.e. indirect calorimetry and

doubly labelled water) are highly accurate, but relatively expensive, requiring sophisticated

equipment rendering them impractical to use outside of the laboratory when assessing free-liv-

ing PA. The ability to detect subtle or large variances in the duration spent at different PA lev-

els during free-living conditions, patterns of PAEE (morning, afternoon, evening) and exercise

intensity are not possible using doubly labelled water technique (only total energy expendi-

ture) during a monitoring period. Pedisic and Bauman [11] suggested that accelerometer-

assessed PAEE, using algorithms intrinsic to certain devices may not be generalizable to a tar-

get population, an important consideration for individuals predisposed to significant gait defi-

ciencies such as individuals with lower-limb amputation [12, 13]. Therefore, the logical first

step prior to using objective devices in surveillance research is to ensure that the method has

been validated in the population of interest.

Research in the area of assessing PA in individuals with amputation has previously relied

on subjective amputation specific self-reported questionnaires [14, 15] in conjunction with

objective measures of functional mobility (e.g. step count and timed up and go). Limitations to

using self-reported measures of PA are well-known and include inaccurate subjective report-

ing and recall bias [16]. A systematic review [17] of instruments used for the assessment of PA

in individuals with amputation demonstrated that most instruments are not specific enough

for the population (i.e. they do not account for the loss of articular structures and sensory/

motor function in the lower-extremity) [18]. Therefore, previous instruments have been

unable to discriminate for the known differences in PAEE between persons with and without
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lower-limb amputation, thereby potentially underestimating the ‘actual’ PA levels of this popu-

lation. Having access to an objective measurement of PAEE can facilitate our understanding of

a number of other clinically important areas with greater accuracy than we might have had

before. Recently, our group demonstrated that the Actigraph GT3X+ accelerometer, worn at

the hip on the shortest residual limb, provides a valid estimation of PAEE in individuals with

unilateral and bilateral traumatic lower-limb amputation [19]. However, accelerometry data

alone doesn’t capture the physiological strain associated with certain ambulatory behaviours,

such as walking up a gradient [20]. While this initial exploration into the objective measure-

ment of PAEE in individuals with amputation is positive, multi-sensor devices, incorporating

physiological signals, might offer a greater improvement in prediction accuracy [21]. Heart

rate is known to be a valuable physiological signal in the estimation of energy expenditure due

to its near linear relationship, also the relative success of using the Physiological Cost Index

(PCI) in quantifying energy expenditure among individuals with lower limb amputation [22,

23].

Wearable PA monitors (e.g. Fitbit, Microsoft Band and Apple Watch) are growing in popu-

larity and provide an opportunity for large numbers of the public to self-monitor their own

PA behaviours [24]. Albert et al. [25] performed a feasibility study monitoring daily function

in persons with trans-femoral amputations using a commercial activity monitor (Fitbit). They

found that this monitor has the potential to be used to assess the PA levels of people with

lower-limb amputation. However, commercially available activity monitors have not been spe-

cifically validated in individuals with amputation, which is a concern for using such multi-sen-

sor devices in this population.

The Actiheart (AHR) is a research-grade multi-sensor device which incorporates heart rate

(HR) and accelerometry measurements to predict PAEE [26]. It has been widely used to mea-

sure free-living PA in able-bodied individuals but further research in diverse populations, such

as individuals with amputation, is warranted. It is unknown whether the proprietary predictive

algorithms of the AHR can accurately predict ambulatory PAEE in persons who have experi-

enced amputation. It is also unknown whether the combination of Actigraph GT3X+ acceler-

ometer and HR data (GT3X+HR) could be used to derive a predictive algorithm with

comparable or superior accuracy for the estimation of PAEE. This study aims to test the

hypothesis that a bespoke algorithm (GT3X+HR) would demonstrate greater validity and

lower random error in predicting PAEE in persons with lower-limb amputations, compared

with the proprietary predictive algorithms of the AHR device.

Materials and methods

Research ethics approval

Ethical approval was granted by the United Kingdom Ministry of Defence Research Ethics

Committee (MODREC) and written informed consent was obtained from each participant.

Sample size

An a priori power calculation was performed based on data from a previous study in spinal

cord injured humans [27]. It was estimated that a minimum of 8 participants would be

required to detect a statistically significant difference in mean absolute error between the Acti-

heartTM propietry predictive algorithms (mean absolute error 51.4±38.9%) and a bespoke indi-

vidually calibrated algorithm (mean absolute error 16.8±15.8%), giving an estimated effect size

of (Cohen d) of 1.0. The power was set at 0.8 and the alpha at 0.05. Given the distinct chal-

lenges in recruiting and retaining participants from unique clinical populations, we anticipated
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a ~20% drop-out rate and aimed to recruit 10 participants per group to achieve a final sample

of at least 8.

Participants

A final sample of UK military personnel with traumatic unilateral (n = 9) and bilateral (n = 10)

lower-limb amputation/s and nine non-injured healthy male controls volunteered to partici-

pate in this study. All participants were male and visited the Military Performance and Reha-

bilitation Laboratory (MPARL) at the Defence Medical Rehabilitation Centre (DMRC),

Headley Court, one morning after a 10 hour overnight fast (including abstinence from caffeine

and physical activity). Inclusion criteria included all injured participants having experienced

traumatic amputation and had previously received at least three 4-week admissions of inten-

sive exercise rehabilitation at DMRC Headley Court from an interdisciplinary team of health

professionals [28]. All patients received a prosthetic fitting prior to commencing the trial and

had been given clearance to ambulate on a treadmill by their physiotherapist. Exclusion crite-

ria were based upon the participant’s medical history (screened by their physician). This

includes severe traumatic brain injury, medication that alters heart rate variability, and any

mobility restricting conditions, such as painful heterotopic ossification or insufficient wound

healing around the stump. The control group are non-injured physically active men (civilian

and military who engage in aerobic or resistance based training at least three times per week).

The clinical population being tested are all UK military personnel with traumatic lower-limb

amputation/s who (pre-injury) would have been active non-injured adults. By using an age-

matched active male adult population as a control we are able to comment on the impact of

losing a limb and the ability of proprietary algorithms ability to detect such a change against

normative activity data from their non-injured peers.

Indirect calorimetry

Participants wore a sealed face mask and expired gases were analysed using a portable meta-

bolic system (Metamax 3B, Cortex, Leipzig, Germany), which has good accuracy compared to

other portable metabolic systems [29]. Expired gases passed through a flow meter and are

channelled down a sampling line into the analyser unit where the fractions of O2 and CO2 in

expired gases are measured. Metabolic data were retrieved and analysed using the Metamax

software. _VO2 steady state can be achieved within 3 minutes [30]. Oxygen uptake ( _VO2) and

carbon dioxide production (CO2) were used to estimate energy expenditure (kcal�min-1) dur-

ing the final two minute of each five minute activity. The Metamax was calibrated according to

manufacturer’s instructions prior to use.

Activity monitors. Participants wore an AHR monitor (Actiheart, Cambridge Neurotech-

nology Ltd, UK), which integrates accelerometer and HR signals to derive PAEE. The unit was

fitted using two adhesive ECG chest electrodes, according to the manufacturer’s instructions.

The AHR unit has been described previously [26]. AHR devices were initialised to long-term

recording with 30 second epochs at a sampling frequency of 32 Hz. PAEE was calculated using

Branched Model equations [31].

An Actigraph GT3X+ tri-axial accelerometer (Actigraph, Pensacola, FL, USA) was worn

around the waist, above the hip (along the anterior axillary line) on the side of the shortest

residual limb, as recommended by Ladlow et al. [19], using an elasticated belt. Following the

Nyquist principle, the devices were initialised with a sampling frequency of 30 Hz, thereby

allowing the capture of general human movement [32] and a similar sampling frequency to

the AHR monitor. The componentry and capabilities of the Actigraph GT3X+ are described

elsewhere. [33] A Polar T31 HR monitor (Polar Electro Inc., Lake Success, NY, USA) was
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firmly secured on the chest using an elastic strap and ultrasound gel was applied to the elec-

trodes to improve the connection. HR transmitted by the Polar T31 was captured by a wireless

receiver module connected to the Metamax 3B.

Testing protocol. The testing protocol is described in more detail elsewhere [19]. The

Metamax 3B and the two activity monitors were synchronised before use and a Polar HR mon-

itor was worn throughout the protocol. Resting metabolic rate (RMR; kcal�day-1) was mea-

sured between 08–00 to 09:00 in a semi-recumbent position in accordance with best practice

guidelines [34]. Following the measurement of RMR and anthropometric assessment (i.e.

body stature, body mass, waist and hip circumference), participants completed a walking pro-

tocol on a treadmill (Woodway Desmo, USA). This protocol consisted of ambulating at 5 pro-

gressive velocities 0.48, 0.67, 0.89, 1.12, 1.34 m.s-1 (1, 1.5, 2, 2.5 and 3 mph) and 2 gradients

(3% and 5%) at 0.89 m.s-1 (2 mph). Each activity lasted 5-minutes with no recovery between

each velocity. Participants were asked to complete the entire protocol without resting their

arms on the handrail. Participants were told to stop if they experience residuum pain, pros-

thetic discomfort or difficulty maintaining the speed of the treadmill belt to a point where they

felt they were at risk of falling.

PCI was calculated as the quotient of difference in working and resting heart rates and

walking speed respectively self-selected (comfort) walking speed. The PCI value reflects the

increased heart rate required for walking and is expressed as heart rate per metre by formula

[22]:

PCI = [mean HR at work – mean HR at rest] / walking velocity (m.min-1)
Using the mean HR data from the final 2 minutes of each activity, we have modified this

PCI equation using pre-determined velocities on the treadmill as oppose to comfortable self-

selected walking speed as recommended by MacGregor [35].

Statistical analyses. Expired gas data were exported into Microsoft Excel from the Meta-

max 3B software. PAEE was then calculated using the _VO2 and CO2 values (L�min-1), averaged

over the final 2-min of each activity using the Weir equation [36]. As participants were fasted,

dietary-induced thermogenesis was considered negligible and criterion PAEE was calculated

by subtracting RMR (kcal�min-1) from total energy expenditure. Predicted PAEE was derived

for both methods: GT3X+HR, by combining tri-axial accelerometer counts from the GT3X+

with HR using regression methods and; AHR, from the Actiheart software. Data from both

derived methods were compared against criterion PAEE during the final two minutes of each

activity (representative of steady-state).

AHR data was ascertained via entering the measured RMR (via indirect calorimetry), age,

weight, height and sleeping HR (measured the night before testing) into the Actiheart software

(Version 4.0.23), according to the manufacturer’s instructions. The GT3X+ accelerometer unit

was downloaded using the ActiLife software (ActiGraph, Pensocola, FL, USA). PAC

(counts�min-1) from the GT3X+, Polar HR (bpm) and AHR readings (kcal�min-1) were then

averaged over the final two minutes of each activity. PAEE estimation models for the GT3X

+HR were developed using corresponding data from each task, using multiple linear regres-

sion analyses. The dependent variable was indirect calorimetry PAEE (kcal�min-1). The inde-

pendent variables were PAC (counts�min-1) from the GT3X+ with HR (bpm). Pearson

product moment correlation coefficients (r) and coefficients of determination (R2) statistics

were conducted to assess the association between the criterion PAEE and predicted PAEE for

GT3X+HR, HR and AHR (AHR data; using proprietary group calibration). Standard Error of

the Estimate (SEE) statistics was also calculated for each relationship. Ideally the population

specific equation (GT3X+HR) would have been cross-validated using an independent sample.

However, this is not always possible in hard to recruit populations, such as individuals with
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lower-limb amputations. Therefore, we adopted a leave-one-out ‘bootstrapping’ analysis [37],

as performed and reported previously by Nightingale et al. (2015) [38].

Error statistics involved calculating the mean absolute error, mean absolute percentage

error and mean signed error for each activity (displayed graphically using modified box and

whisker plots), Bland-Altman plots with 95% limits of agreement analysis and root mean

squared error (RMSE) displayed S1 Table. One-way ANOVA tests by group were performed

with post-hoc Bonferroni corrections applied when comparing across 8 activities (rest, five

progressive treadmill speeds and 2 gradients). Statistical significance was set a priori of

P<0.05. All analyses were performed using IBM SPSS Statistics 21 for Windows (IBM,

Armonk, NY, USA).

Results

Demographic and anthropometric characteristics of the participants are described in Table 1.

Criterion PAEE (kcal�min-1), GT3X+ accelerometer outputs, HR, AHR, and METs are dis-

played in Table 2. Mean criterion PAEE, GT3X+ PAC, HR, AHR PAEE, RPE and METs all

increased with increasing treadmill velocity in the unilateral and control groups. In the bilat-

eral group, between six and eight participants were unable to complete activities at the higher

treadmill velocities and gradients, three individuals in the unilateral group were unable to

complete the highest ambulatory velocity (1.34 m.s-1) which influenced the mean criterion val-

ues. There was a significant main effect in criterion PAEE, GT3X+ predicted PAEE, Actiheart,

HR, METs and PCI in all groups (See Table 2 and S2 Table). In both amputation groups and

control participants, the GT3X+HR model demonstrated the strongest relationships, smallest

limits of agreement (LoA) (Table 3), mean absolute percentage errors and RMSE, compared to

AHR (S1 Table).

Across all treadmill walking tasks, the HR response in individuals with unilateral amputa-

tion was 1.3 to 1.5 times greater than the physically active control group. At treadmill speeds

between 1 to 2mph and a gradient of 3% at 2 mph, the HR response of individuals with

Table 1. Demographic and anthropometric characteristics of the participants.

Variable Unilateral Bilateral Control

Mean ± SD Range Mean ± SD Range Mean ± SD Range

Number of Participants 9 10 9

Age (years) 32 ± 5 23–41 29 ± 4 22–34 31 ± 6 25–45

Body Mass—without prosthesis (kg) 81 ± 11 63–108 82 ± 19 59–126 80 ± 7 68–89

Waist Circumference (cm) � 92 ± 13 75–115 100 ± 20 77–149 83 ± 4 76–90

Waist-hip ratio 0.90 ± 0.07 0.83–1.00 0.94 ± 0.09 0.86–1.17 0.86 ± 0.04 0.79–0.92

RMR (kcal�d-1) 1776 ± 269 1480–2158 1596 ± 178 1382–2051 1846 ± 191 1505–2059

Sleeping Heart Rate # 63 ± 9 46–77 57 ± 7 48–68 48 ± 3 45–55

Time Since Amputation (months) ‡ 23 ± 15 4–46 39 ± 14 21–61 -

Level of Amputation:

Below Knee 5 1 -

Through Knee 2 2 -

Above knee 2 3 -

Bilateral: Below Knee and Above Knee - 4 -

�Significant difference between individuals with bilateral amputation and control group (P<0.05)

‡ Significant difference between individuals with unilateral and bilateral amputation (P<0.05)

# Significant difference between control group and both amputation groups (P<0.05)

https://doi.org/10.1371/journal.pone.0209249.t001
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bilateral amputation was 1.5 to 1.7 times greater than control participants. At these same walk-

ing speeds the HR of the bilateral amputation group was between 1.1 to 1.3 times greater than

the group with unilateral amputation. These differences in HR increase linearly with increases

Table 2. Measured PAEE, accelerometer outputs at each anatomical location, calculated METs, RPE and number of participants for each activity (mean ± SD).

Activity PAEE Metamax 3B

(kcal�min-1)

GT3x+

(PAC�min-1)

HR Actiheart (kcal�min-1) METS (calculated) RPE RER PCI n

Unilateral Amputation: ‡ # ¶

RMR 0.00 ± 0.00 0 ± 0 66 ± 11 0.00 ± 0.00 1.0 ± 0.0 6 ± 0 0.74 ± 0.04 - 9

Treadmill 0.48 m.s-1 2.40 ± 0.71 2643 ± 866 96 ± 17 1.03 ± 0.52 3.1 ± 0.8 8 ± 1 0.76 ± 0.04 1.01 ± 0.28 9

Treadmill 0.67 m.s-1 3.00 ± 0.95 2939 ± 908 101 ± 18 1.61 ± 0.74 3.6 ± 1.0 9 ± 1 0.79 ± 0.04 0.85 ± 0.24 9

Treadmill 0.89 m.s-1 3.61 ± 1.12 3353 ± 892 106 ± 21 2.15 ± 1.05 4.1 ± 1.1 11 ± 2 0.81 ± 0.03 0.74 ± 0.26 9

Treadmill 1.12 m.s-1 4.39 ± 1.42 4107 ± 707 112 ± 24 2.84 ± 1.93 4.7 ± 1.3 12 ± 2 0.83 ± 0.03 0.67 ± 0.26 9

Treadmill 1.34 m.s-1 5.89 ± 1.70 4977 ± 581 126 ± 36 4.01 ± 3.32 5.7 ± 1.8 12 ± 2 0.86 ± 0.05 0.73 ± 0.33 6

Treadmill 3% (0.89 m.s-1) 4.17 ± 1.06 3642 ± 981 111 ± 21 2.32 ± 1.15 4.5 ± 1.1 11 ± 1 0.82 ± 0.04 0.84 ± 0.26 9

Treadmill 5% (0.89 m.s-1) 4.82 ± 1.24 4020 ± 1005 119 ± 23 2.94 ± 2.09 5.0 ± 1.2 12 ± 2 0.84 ± 0.04 0.99 ± 0.29 9

Bilateral Amputation:� § ¥

RMR 0.00 ± 0.00 0 ± 0 67 ± 10 0.00 ± 0.00 1.0 ± 0.0 6 ± 0 0.75 ± 0.04 - 10

Treadmill 0.48 m.s-1 3.72 ± 1.37 4800 ± 1410 108 ± 13 2.41 ± 1.40 4.4 ± 1.2 10 ± 2 0.78 ± 0.03 1.45 ± 0.32 10

Treadmill 0.67 m.s-1 4.59 ± 1.54 5264 ± 1603 121 ± 15 3.38 ± 1.96 5.1 ± 1.4 12 ± 2 0.81 ± 0.04 1.35 ± 0.29 10

Treadmill 0.89 m.s-1 5.46 ± 1.74 5600 ± 1502 133 ± 18 4.86 ± 2.81 5.8 ± 1.6 14 ± 3 0.84 ± 0.05 1.25 ± 0.32 10

Treadmill 1.12 m.s-1 5.54 ± 2.85 6123 ± 2823 139 ± 31 7.80 ± 5.00 5.3 ± 1.4 15 ± 3 0.91 ± 0.18 1.22 ± 0.43 3

Treadmill 1.34 m.s-1 5.23 ± 2.76 5235 ± 1212 142 ± 41 7.31 ± 4.14 5.7 ± 1.7 15 ± 0 0.86 ± 0.7 1.03 ± 0.36 2

Treadmill 3% (0.89 m.s-1) 5.93 ± 2.29 5973 ± 1592 138 ± 19 5.95 ± 4.25 6.1 ± 2 14 ± 3 0.87 ± 0.7 1.36 ± 0.40 8

Treadmill 5% (0.89 m.s-1) 5.77 ± 1.85 5806 ± 2231 146 ± 30 7.80 ± 5.26 5.7 ± 1.1 16 ± 2 0.93 ± 0.17 1.37 ± 0.56 4

Control:

RMR 0.00 ± 0.00 0 ± 0 54 ± 4 0.00 ± 0.00 1.0 ± 0.0 6 ± 0 0.75 ± 0.04 - 9

Treadmill 0.48 m.s-1 1.43 ± 0.31 1299 ± 411 72 ± 7 1.34 ± 0.54 2.2 ± 0.3 7 ± 0 0.78 ± 0.03 0.61 ± 0.15 9

Treadmill 0.67 m.s-1 1.81 ± 0.32 1811 ± 368 74 ± 6 1.88 ± 0.65 2.5 ± 0.3 8 ± 1 0.82 ± 0.04 0.50 ± 0.09 9

Treadmill 0.89 m.s-1 2.32 ± 0.40 2430 ± 459 78 ± 4 2.22 ± 0.84 2.9 ± 0.4 9 ± 1 0.82 ± 0.05 0.45 ± 0.05 9

Treadmill 1.12 m.s-1 2.80 ± 0.43 3325 ± 480 82 ± 5 2.55 ± 0.84 3.3 ± 0.5 9 ± 1 0.82 ± 0.03 0.41 ± 0.04 9

Treadmill 1.34 m.s-1 3.40 ± 0.34 4144 ± 457 85 ± 5 2.91 ± 0.88 3.7 ± 0.4 10 ± 1 0.83 ± 0.04 0.38 ± 0.04 9

Treadmill 3% (0.89 m.s-1) 2.88 ± 0.38 2551 ± 385 83 ± 5 2.38 ± 0.92 3.3 ± 0.3 10 ± 1 0.84 ± 0.04 0.54 ± 0.06 9

Treadmill 5% (0.89 m.s-1) 3.45 ± 0.43 2720 ± 311 87 ± 4 2.52 ± 0.99 3.8 ± 0.3 10 ± 1 0.83 ± 0.04 0.61 ± 0.06 9

Not all participants with amputation/s were able to complete all of the treadmill speeds in this trial. The number of participant completers at each treadmill task is

presented here. PAC from the GT3X+ combined with HR, HR alone and Actiheart data were all significantly (P<0.01) associated with criterion PAEE.

�Due to reduced participant numbers, all statistical analyses comparing the bilateral group with other groups were performed at speeds 0.48–0.89 m.s-1 and at 3%

gradient.

‡ A significant difference in criterion PAEE, HR and METs were only reported at higher intensities (1.12 m.s-1, 1.34 m.s-1 and 5% gradient at 0.89 m.s-1) between

individuals with unilateral amputation and control group (P<0.05).

§ A significant differences in criterion PAEE, HR, METs, PAC (GT3X+ worn at the longest and shortest limb) and PCI were found between bilateral amputation versus

the unilateral and control groups at all speeds analysed (P<0.05).

# Significant differences in PAC (GT3X+) were only reported at the lowest intensity of 0.48 m.s-1 and the highest intensity of 1.34 m.s-1 between individuals with

unilateral amputation and control group (P<0.05).

¥ Significant differences in Actiheart outcomes were reported between the bilateral amputation and the unilateral amputation groups at all speeds analysed and at 0.89

m.s-1 and 3% gradient at 0.89 m.s-1 versus the control group.

¶ Significant differences in PCI were only reported at the lowest intensities (0.48 m.s-1 and 0.67 m.s-1) and highest intensities (1.34 m.s-1 and 0.89 m.s-1) between

individuals with unilateral amputation and the control group

https://doi.org/10.1371/journal.pone.0209249.t002
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in treadmill intensity (Table 2). The mean PCI across all velocities for each group ranged from

0.67 to 1.01, 1.03 to 1.45 and 0.38 to 0.61 in the unilateral, bilateral and control group,

respectively.

The population specific equations (GT3X+HR) to predict ambulatory PAEE are described

below:

Unilateral amputation: PAEE = (0.000453�PAC) + (0.045487�HR) - 2.713284
Bilateral amputation: PAEE = (0.000658�PAC) + (0.025308�HR) - 1.795157
Controls: PAEE = (0.000550�PAC) + (0.036472�HR) - 1.797866
The relationships between criterion PAEE and predicted PAEE, derived from GT3X+HR

and AHR, are presented as scatter plots in Fig 1. Fig 2 illustrates the mean bias and 95% limits

of agreement (LoA) differences, when comparing the criterion PAEE data with estimated

PAEE derived from population specific prediction models (GT3X+HR) and the proprietary

group calibration algorithm of the AHR. When comparing both methods across all groups the

GT3X+HR demonstrates the smallest LoA and the AHR shows the greatest LoA. When com-

paring populations, the control group demonstrate the smallest LoA and the bilateral group

demonstrate the largest LOA for both GT3X+HR and AHR methods (Table 3).

Fig 3 demonstrates modified box and whisker plots depicting the mean percentage error of

estimation relative to criterion for each treadmill activity using the cross validated, GT3X+HR

model against the pre-determined algorithm used in the AHR device. Error statistics between

the criterion and predicted PAEE from the GT3X+HR model, HR alone and AHR for each

treadmill task are shown in S1 Table.

Participants were asked to complete 35 minutes of walking in total. Participants reasoning

for discontinuing with the trial were not asked. However, a large proportion of participants

stated an uncomfortable stump due to repeated impact and friction inside their socket. For

individuals with transfemoral bilateral amputation the inability to walk quickly enough in

their prosthesis without the risk of falling was also reported. Discontinuing with the trial due

to excessive physical exertion or fatigue was less common, as demonstrated by the RPE scores

in Table 2. The RER values during the walking tasked range from a mean 0.76 ± 0.04 to

0.86 ± 0.05 and 0.78 ± 0.04 to 0.93 ± 0.02 in the unilateral and bilateral amputation groups

respectively. RER values ranged from 0.78 ± 0.03 to 0.84 ± 0.04 in the control group.

Table 3. The relationships between the three devices of the Actigraph GT3X+ with HR, HR alone Actiheart against criterion PAEE in all groups. Limits of agree-

ment (LoA) expressed as mean ± 95% SD.

Location r R2 SEE

(kcal�min-1)

LoA

(kcal�min-1)

P Value

Treadmill Walking

Unilateral Amputation Group

GT3X+ and HR 0.92 0.85 0.78 0 ± 1.50 < 0.001

HR 0.89 0.79 0.91 0 ± 1.77 < 0.001

Acti-Heart 0.86 0.73 1.02 -1.40 ± 2.00 < 0.001

Bilateral Amputation Group

GT3X+ and HR 0.93 0.87 0.96 0 ± 1.84 < 0.001

HR 0.88 0.77 1.26 0 ± 2.44 < 0.001

Acti-Heart 0.81 0.65 1.53 0.21 ± 4.28 < 0.001

Control Group

GT3X+ and HR 0.91 0.83 0.48 0 ± 0.93 < 0.001

HR 0.84 0.71 0.62 0 ± 1.82 < 0.001

Acti-Heart 0.67 0.45 0.85 0.29 ± 1.82 < 0.001

https://doi.org/10.1371/journal.pone.0209249.t003
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Discussion

This study is a controlled laboratory validation study to assess the accuracy of a research grade

multi-sensor device (AHR) and a population specific manually derived equation, which incor-

porated both HR and PAC (GT3X+HR), to predict ambulatory PAEE in individuals lower-

limb amputation/s. Furthermore, we were able to assess the validity of these methods on both

unilateral and bilateral lower-limb amputation groups, to assess the generalizability of these

methods across this specific population. Of the two multi-sensor activity methods considered

in this study, these data indicate the GT3X+HR model, integrating accelerometry data from an

Actigraph GT3X+ worn at the hip of the shortest residual limb, with HR data, provided the

most valid estimation of ambulatory PAEE in both amputation groups. HR signals alone pro-

duced superior accuracy for the estimation of PAEE than the AHR device. Therefore, the pro-

prietary group calibration algorithm, intrinsic to the AHR, has lower validity when predicting

PAEE in individuals with unilateral or bilateral transtibial and transfemoral amputations,

potentially because the algorithms are not optimized for this population. The results of this

study also demonstrate that level of amputation impacts on the ability to accurately predict

PAEE, with all multi-sensor methods displaying greater LoA and SEE values in unilateral ver-

sus control and in bilateral versus unilateral (Table 3).

HR has benefits as a physiological variable as it increases linearly and proportionately with

exercise intensity and thus metabolic rate [32]. HR alone in this study explains 79%, 77% and

71% of the variance in the unilateral, bilateral and control group respectively. The reason HR

may have performed so well is because it is highly individualised to the groups of interest and

the task intensities were linear in nature. As HR at lower exercise intensities is affected by

other factors, such as psychological or thermal stress, it would be intuitive to hypothesise that

the integration of acceleration values may offer a more reliable estimation of PAEE. The find-

ings of this current study demonstrate evidence of this when combined with the PAC from the

GT3X+. However, the AHR, a multi-sensor device which uses proprietary group calibration

algorithms intrinsic to the device, explains less of the variance and demonstrates greater error

in the estimation of ambulatory PAEE than HR alone. The proprietary equations, derived

from Brage et al. (2004) [31] and utilised here were designed to predict EE during ambulation

in able-bodied healthy adults, not those with lower-limb impairments or significant gait

abnormalities. The AHR uses a uni-axial accelerometer unlike the GT3X+ which is a tri-axial

accelerometer, uni-axial accelerometers have been shown to have less sensitivity when predict-

ing PAEE [39]. It is also known that the anatomical location of an accelerometer is important

in the accuracy of measuring PAEE [19, 40]. The anatomical locations of the monitors used in

this study are not comparable, as the AHR device was worn on the chest whilst the GT3X+ was

worn on the hip of the shortest residual limb. It may be that there is reduced sensitivity with

accelerometers being worn at the chest compared to hip during ambulatory movements. The

activity protocol adopted in this study captured a wide range of walking speeds, which are rep-

resentative of the exercise intensities for lower-limb amputation groups undergoing in-patient

rehabilitation. The relative exercise intensities were consequently much lower for healthy able-

bodied controls (Table 2). The weaker correlations in the control group compared to the

amputation groups may be an artefact of there being a narrower range of exercise intensities.

Although not necessarily an accurate reflection of the general population, they provide norma-

tive values for physically active military personnel, thereby allowing us to draw closer

Fig 1. Scatterplots showing the relationship between estimated and criterion PAEE. Estimated PAEE from GT3X+ with heart rate and criterion PAEE (A, C, E).

Estimated PAEE from the Actiheart and criterion PAEE (B, D, F). The scatterplots show the unilateral amputation group (A, B), bilateral amputation group (C, D)

and the non-injured control group (E, F). The straight line represents the models best fit, and the dotted line indicates the line of identity.

https://doi.org/10.1371/journal.pone.0209249.g001
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comparisons to the groups of individuals with an amputation(s) pre-injury and peer-group

PAEE values.

Our previous research identified that wearing a GT3X+ on the hip of the shortest residual

limb as the most accurate anatomical position around the pelvis to predict PAEE in individuals

with unilateral and bilateral amputation [19]. When activity counts from the GT3X+ were

combined with significant covariates this created population specific estimation models, capa-

ble of accurately estimating ambulatory PAEE (mean absolute percentage error); unilateral (21

±17%), bilateral (16±15%) and controls (15±7%). When compared to our current findings

Fig 2. Bland and Altman plots for the criterion and predicted PAEE using the GT3X+ with heart rate estimation models (A, C, E), and criterion and

predicted PAEE using the Actiheart (B, D, F). The plots show the unilateral group (A, B), bilateral group (C, D) and non-injured control group (E, F). The

straight line demonstrates the mean and the dotted line indicates the 95% Limits of Agreement (LoA).

https://doi.org/10.1371/journal.pone.0209249.g002

Fig 3. Modified box and whisker plots demonstrating the mean percentage error of estimation relative to

criterion for each treadmill activity using GT3X+ with heart rate estimation models (A, C, E), and Actiheart (B,

D, F). The plots show the unilateral group (A, B), bilateral group (C, D) and control group (E, F).

https://doi.org/10.1371/journal.pone.0209249.g003
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(Table 3), the incorporation of a physiological variable (HR) with the GT3X+ monitor in the

unilateral group created stronger correlations, explained greater amounts of variance and dis-

played lower random error than the GT3X+ with covariates (level of amputation and length of

rehabilitation). In the bilateral amputation and control groups the GT3X+HR model and the

GT3X+ with covariates models (bilateral amputation group covariates; waist circumference,

and control; body mass) were very similar.

Previous research has focused on determining the effects of different prosthetic compo-

nents and design on the economy of gait in individuals with amputation [18]. Comparing gait,

prosthetic fitting and components in a controlled laboratory environment is an important

field of study in the development of ambulatory function in individuals with amputation. How

these prosthetics function outside of the laboratory however is of great importance to research-

ers, manufacturers, clinicians and patients. Research in the area of assessing mobility in indi-

viduals with amputation has relied on subjective self-reported questionnaires [14, 15].

However, subjective measurements of PA, although low cost, applicable to large populations

and practical [41], are commonly found to demonstrate low-moderate predictive validity [42]

and lack sensitivity [41] when compared to objective measures of PA. The objective model of

estimating PAEE that we have developed for this study and previously [19] could provide

insight into the amount of habitual ambulation-related PAEE individuals with amputations

engage in, whilst wearing a range of prosthetic devices outside of the laboratory.

Unfavourable body composition changes can occur after amputation [4–6] and individuals

with amputation are at increased risk of developing cardio-metabolic disorders [1–3] and a

number of other secondary physical conditions [43], including osteoporosis, low back pain

[44] and osteoarthritis [45]. The models we have developed could allow clinicians and

researchers to objectively assess the influence of different environments (e.g. weather and ter-

rain or urban versus rural living conditions) and rehabilitation settings (e.g. in-patient versus

home-based) on PAEE. Future investigations may provide insight into different vocational

prospects in the community, thus optimising the potential for full integration back into

society.

As wearable consumer PA monitors devices become more commonplace there are greater

opportunities for people to engage in the self-management of their own care as well as provid-

ing lifestyle information to health care providers [46]. As a note of comparison, the absolute

percentage error of consumer multisensory devices (e.g. Fitbit, Microsoft Band and Apple

Watch) [24] ranged from 24 to 73% during walking tasks in healthy adults. In this study using

individuals with amputation, the accuracy of the research grade AHR demonstrated a compa-

rable level of accuracy (20–28%). The GT3X+HR models developed in individuals with lower-

limb amputation demonstrate a superior level of accuracy (12–14%). Despite the welcomed

potential utility of these commercially available multi-sensor devices, until they have been vali-

dated in people with lower limb-loss it would be ill-advised to recommend there use for the

accurate measurement and monitoring of PA in these groups. While our PAEE estimation

models show promising levels of accuracy, the wider scientific community needs to agree

upon a threshold to signify an acceptable level of accuracy when using wearable devices.

A limitation of this study is the relatively small sample size and variations within partici-

pants based on the diversity in the severity of lower-limb loss injuries. However, this diversity

may be considered beneficial as the range of walking abilities captured improves the external

validity of the regression equations, making them more suitable for the wider amputee popula-

tion. Also, despite the diversity of the population, the amount of unexplained random error is

relatively small. The inclusion of a diverse range of participants is in accordance with best

practice recommendations for PA validation studies [47]. Although the participants in this

study are military personnel, the injuries sustained in our unilateral group are not dissimilar to
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what might be expected in a road traffic accident or adventure sports. We therefore believe

that our findings are applicable to physically active civilian cohorts with lower-limb amputa-

tion population. It is important to note that participants were not provided with a familiarisa-

tion of treadmill walking prior to starting the trial. However, many would have been exposed

to treadmill walking/running as part of their rehabilitation or as their preferred mode of

cardiorespiratory exercise whilst at home. We acknowledge that for some individuals (primar-

ily the bilateral ampution group) this may have affected the energy expenditure data due to the

lack of familiarity with the exercise task. However, it is likely that the GT3X+ still managed to

assess increased movement due to atypical gait, thus increased corresponding GT3X+ and HR

outputs. This study did not measure self-selected walking speed over-ground. There may have

been differences in the energy cost of walking over-ground compared with treadmill [48],

therefore potentially reducing the accuracy of using these generated equations in the assess-

ment of free-living ambulation. It is perhaps unsurprising that a bespoke algorithm, developed

for this population specifically, performed better than an algorithm that was generated on a

completed independent and physiologically different sample. Nevertheless, if the Actiheart

device is to be applicable to various clinical populations with atypical gait patterns and asym-

metries, alternative proprietary equations and/or independent HR calibrations appear neces-

sary [49].

The measurement of PAEE has proven inherently difficult to measure, even in humans

without mobility-related physical impairments. Commercial and research grade PA sensors/

algorithms are unlikely to have been developed with the movement characteristics and energy

demands of amputee populations in mind. We feel population specific algorithms are impor-

tant to account for the numerous mobility or physical barriers individuals with amputation are

likely to encounter when engaging in physical activity. An individualised approach would

improve accuracy, either from a cut-point [50] or HR and PAEE relationship perspective. This

approach is more time consuming and not necessarily feasible for large scale trials.

Future research should consider applying and further developing new data analysis tech-

niques such as artificial neural networks [51, 52], hidden Markov models [53] and classifica-

tion trees [54] which use the rich information to classify certain activities and derive a more

accurate estimate of EE. Future models should consider using additional activities (i.e. not just

walking) that better resemble free-living conditions for individuals with amputation and evalu-

ating the performance of EE prediction models during recovery after exercise (which contrib-

utes to TDEE). We encourage research groups to work collaboratively to recruit larger sample

sizes. Using a large diverse samples of participants and with different aetiologies would provide

a more robust model for the assessment of PAEE in individuals with amputations. Future stud-

ies should also aim to cross-validate these newly developed population specific equations using

a completely independent sample of participants, across a range of activities of daily living or

during habitual free-living conditions.

Conclusion

The manually derived model, integrating HR and acceleration data, from a device positioned

at the hip of the shortest residual limb (Actgraph GT3X+), has been shown to possess greater

validity for estimating ambulatory-related PAEE in persons with traumatic lower-limb ampu-

tations, compared to the proprietary group calibrated algorithm intrinsic to the AHR device.

Due to the poorer predictive validity of the AHR device, we would recommend using the

GT3X+ HR, together with the algorithms presented in this article, which demonstrate lower

unexplained variance and lower estimation error.
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