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temporal phase unwrapping using 
deep learning
Wei Yin  1,2,3, Qian chen1,2*, Shijie feng1,2,3, Tianyang tao1,2,3, Lei Huang  4, Maciej trusiak5, 
Anand Asundi6 & chao Zuo1,2,3*

The multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical phase unwrapping 
algorithm for fringe projection techniques, has the ability to eliminate the phase ambiguities even while 
measuring spatially isolated scenes or the objects with discontinuous surfaces. For the simplest and 
most efficient case in MF-TPU, two groups of phase-shifting fringe patterns with different frequencies 
are used: the high-frequency one is applied for 3D reconstruction of the tested object and the unit-
frequency one is used to assist phase unwrapping for the wrapped phase with high frequency. The 
final measurement precision or sensitivity is determined by the number of fringes used within the 
high-frequency pattern, under the precondition that its absolute phase can be successfully recovered 
without any fringe order errors. However, due to the non-negligible noises and other error sources in 
actual measurement, the frequency of the high-frequency fringes is generally restricted to about 16, 
resulting in limited measurement accuracy. On the other hand, using additional intermediate sets of 
fringe patterns can unwrap the phase with higher frequency, but at the expense of a prolonged pattern 
sequence. With recent developments and advancements of machine learning for computer vision 
and computational imaging, it can be demonstrated in this work that deep learning techniques can 
automatically realize TPU through supervised learning, as called deep learning-based temporal phase 
unwrapping (DL-TPU), which can substantially improve the unwrapping reliability compared with MF-
TPU even under different types of error sources, e.g., intensity noise, low fringe modulation, projector 
nonlinearity, and motion artifacts. Furthermore, as far as we know, our method was demonstrated 
experimentally that the high-frequency phase with 64 periods can be directly and reliably unwrapped 
from one unit-frequency phase using DL-TPU. These results highlight that challenging issues in optical 
metrology can be potentially overcome through machine learning, opening new avenues to design 
powerful and extremely accurate high-speed 3D imaging systems ubiquitous in nowadays science, 
industry, and multimedia.

Many imaging systems, such as fringe projection profilometry (FPP)1–3, optical interferometry4,5, synthetic 
aperture radar (InSAR)6,7, X-ray crystallography8, and magnetic resonance imaging9, make use of the phase to 
produce the physiological and physical information of the measured objects. For instance, in FPP, the phase is 
proportional to the surface profile; in optical interferometry, the phase can be exploited to infer profile, fast dis-
placement, and vibration of the object’s surface. In these existing imaging methods and systems, it generally need 
to perform the arctangent function for phase retrieval thus resulting in the wrapped phase with 2π phase jumps, 
so the operation of phase unwrapping is necessary to eliminate the phase ambiguities and convert the wrapped 
phases into the absolute ones10–15.

Numerous phase unwrapping algorithms have been proposed and can be divided into two categories with 
regard to the working domains: spatial phase unwrapping (SPU)10,11 and temporal phase unwrapping (TPU)12. 
Under the assumption of spatial continuity, SPU calculates the relative fringe order of the center pixel on a single 
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wrapped phase map by analyzing the phase information of its neighboring pixels, thus it cannot successfully 
measure discontinuities and isolated objects. Conversely, TPU approaches can realize pixel-wise absolute phase 
unwrapping via the temporal analysis of more than one wrapped phase maps with different frequencies even 
under the conditions of truncated or spatially isolated areas. Currently, there are three representative approaches 
to TPU: multi-frequency (hierarchical) approach (MF-TPU), multi-wavelength (heterodyne) approach, and 
number-theoretical approach. We have analyzed and discussed the unwrapping success rate and anti-noise per-
formance of these TPU algorithms in a comparative review, revealing that the MF-TPU approach provides the 
highest unwrapping reliability and best noise-robustness among others12.

The subsequent content of this paper will be focused on the MF-TPU approach, with an emphasis on the 
application of high-speed FPP16,17. In such a context, to improve the measurement efficiency, it is necessary to 
make MF-TPU as reliable as possible while using a minimum number of projection patterns18. For the simplest 
and most efficient case in MF-TPU, two groups of phase-shifting fringe patterns with different frequencies are 
used: the high-frequency one is applied for 3D reconstruction of the tested object and the unit-frequency one is 
used to assist phase unwrapping for the wrapped phase with high frequency. The final measurement precision 
or sensitivity is determined by the number of fringes used within the high-frequency pattern, under the pre-
condition that its absolute phase can be successfully recovered without any fringe order errors. However, due to 
the non-negligible noises and other error sources in actual measurement, the frequency of the high-frequency 
fringes is generally restricted to about 16, resulting in limited measurement accuracy12. On the other hand, using 
an additional intermediate set of fringe patterns (totally 3 sets of phase-shifting patterns) can unwrap the phase 
with higher frequency or higher success rate18. As a result, the increased number of required patterns reduces the 
measurement efficiency of FPP, which is not suitable for measuring dynamic scenes.

In this work, we demonstrated that a trained deep neural network can greatly improve the ability of TPU 
compared with conventional MF-TPU. This learning-based framework uses only two (one unit-frequency, one 
high-frequency) wrapped phases calculated using 3-step phase-shifting fringe patterns as input, and directly 
outputs an unwrapped version of the same phase map with high reliability. Deep learning19 is a method based on 
the representation of data in machine learning for data analysis and prediction and have been applied to various 
fields such as automatic drive, face recognition, and mechanical translation, where they have produced results 
that surpass the performance of traditional algorithms and are comparable or superior in some cases to human 
experts. Recently, machine learning-based methods have been further successfully applied to solving challenging 
problems in computational imaging20–24 and the analysis of nanostructures devices25–27, such as phase retrieval20, 
lensless on-chip microscopy21, fringe pattern analysis22, computational ghost imaging23,24, and the assist design of 
electromagnetic nanostructures26.

Inspired by the great successes of deep learning techniques for these fields, here we adopt deep neural net-
works to beat the TPU problem, which can substantially improve the unwrapping reliability compared with 
MF-TPU even in the presence of different types of error sources. To validate the proposed approach, we recover 
the absolute phases of various tested objects by projecting fringe patterns with different frequencies, such as 1, 
8, 16, 32, 48, and 64, all of which demonstrate the successful removal of phase unwrapping errors arising from 
the intensity noise, low fringe modulation, intensity nonlinearity, and motion artifacts. Furthermore, as far as 
we know, our method was demonstrated experimentally that the high-frequency phase with 64 periods can be 
directly and reliably unwrapped from one unit-frequency phase, facilitating high-accuracy high-speed 3D surface 
imaging with use of only 6 projected patterns without exploring any prior information and geometric constraint. 
These results highlight that machine learning is able to potentially overcome challenging issues in optical metrol-
ogy, and provides new possibilities to design powerful high-speed FPP systems.

Methods
Phase-shifting profilometry (PSP). In a typical FPP system, sinusoidal fringe-based FPP methods are 
more prevalent to a great variety of practical applications and can be generally divided into two main categories 
for phase extraction: Fourier transform profilometry (FTP)28 and Phase-shifting profilometry (PSP)29. Numerous 
dynamic 3D measurement techniques have been developed based on FTP, which have the advantage to provide 
the phase map utilizing only a single high-frequency fringe pattern16,30. How, suffering from frequency band 
overlapping problem, these methods generally yield coarse wrapped phase with low quality which limits its meas-
urement precision for dynamic 3D acquisition. In addition, not just limited to Fourier transform, the windowed 
Fourier transform (WFT) and the wavelet transform (WT) can also be applied for the phase retrieval and enhanc-
ing 3D measurement accuracy even in the case of complex surfaces and depth discontinuities31. Different from 
FTP, PSP can realize pixel-by-pixel phase measurements with higher accuracy unaffected by ambient light, but 
it needs to project at least three fringe patterns to obtain a phase map theoretically29. In this work, the standard 
3-step phase-shifting fringe patterns with shift offset of 2π/3 are adopted and represented as

π π= . + . −I x y fx n( , ) 0 5 0 5 cos(2 2 /3), (1)n
p p p p

where =I x y n( , ) ( 0, 1, 2)n
p p p  represent fringe patterns to be projected, f is the frequency of fringe patterns. After 

projected onto the object surfaces, the deformed fringe patterns captured by the camera can be described as

π= + Φ −I x y A x y B x y x y n( , ) ( , ) ( , )cos( ( , ) 2 /3), (2)n
c

where A(x, y), B(x, y), and Φ(x, y) are the average intensity, the intensity modulation, and the phase distribution of 
the measured object. According to the least-squares algorithm, the wrapped phase φ(x, y) can be obtained as32–34:
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Due to the truncation effect of the arctangent function, the obtained phase φ(x, y) is wrapped within the range 
of (−π, π], and its relationship with Φ(x, y) is:

φ πΦ = +x y x y k x y( , ) ( , ) 2 ( , ), (4)

where k(x, y) represents the fringe order of Φ(x, y), and its value range is from 0 to N − 1. N is the period number 
of the fringe patterns (i.e., N = f). In FPP, the core challenge for the absolute phase recovery is to obtain k(x, y) for 
each pixel in the phase map quickly and accurately.

Multi-frequency temporal phase unwrapping (MF-TPU). In temporal phase unwrapping (TPU), the 
wrapped phase φ(x, y) is unwrapped with the aid of one (or more) additional wrapped phase map with different 
frequency. For instance, two wrapped phases φh(x, y) and φl(x, y) are both retrieved from phase-shifting algo-
rithms by using Eq. (3), ranging from −π to π. It is easy to find that the two absolute phases Φh(x, y) and Φl(x, y) 
corresponding to φh(x, y) and φl(x, y) have the following relationship:

φ π
φ π










Φ = +
Φ = +
Φ = Φ

x y x y k x y
x y x y k x y
x y f f x y

( , ) ( , ) 2 ( , ),
( , ) ( , ) 2 ( , ),
( , ) ( / ) ( , ), (5)

h h h

l l l

h h l l

where fh and fl are the frequency of high-frequency fringes and low-frequency fringes. Based on the principle of 
MF-TPU, kh(x, y) can be calculated by the following formula:

φ

π
=

Φ −
.k x y

f f x y x y
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( / ) ( , ) ( , )
2 (6)h
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Since the fringe order kh(x, y) is integer, ranging from 0 to fh − 1, Eq. (6) can be adapted as

φ

π
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2

,
(7)

h
h l l h

where Round() is the rounding operation. When fl is 1, there will be no phase ambiguity so that Φl(x, y) is inher-
ently an unwrapped phase. Theoretically, for MF-TPU, this single-period phase can be to directly assist phase 
unwrapping of φh(x, y) with relatively higher frequency. However, the phase unwrapping capability of MF-TPU is 
greatly constrained due to the influence of noise in practice. Assuming phase errors in the wrapped phase maps 
φh(x, y) and Φl(x, y) are Δφh(x, y) and Δφl(x, y) respectively, from Eq. (6) we have:

φ φ

π
Δ =

Δ − Δ
k x y

f f x y x y
( , )

( / ) ( , ) ( , )
2

,
(8)

h l l h

Let φ φ φ∆ = |∆ | |∆ |max x y x y( ( , ) , ( , ) )max h l , from Eq. (8) we can find the upper bound of Δk(x, y):

φ φ

π
φ

π
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= Δ
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To avoid errors in determining the fringe orders, from Eqs. (7) and (9) we have:

φ
π
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+
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Subsequently, we can confirm the boundary of φΔ x y( , )max :

φ
π

≤ Δ <
+

.x y
f
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(11)
max

l

h l

Notably, Eq. (11) defines the range of Δφmax where the absolute phase can be correctly recovered. Otherwise, 
error will occur in determining the exact kh(x, y). In MF-TPU, since the frequency of the low-frequency fringes 
is fixed to 1, it can be found from Eq. (11) that the higher the frequency of the high-frequency fringes, the nar-
rower the range of Δφmax, and the worse the reliability of the phase unwrapping. Consequently, for a normal FPP 
system, MF-TPU can only reliably unwrap the phase with about 16 periods due to the non-negligible noises and 
other error sources in actual measurement. Thus, it generally exploits multiple (>2) sets of phases with different 
frequencies to hierarchically unwrap the wrapped phase step by step, and finally arrives at the absolute phase 
with high frequency instead of only using the phase with a single period. Obviously, MF-TPU, which consumes 
additional time for projecting patterns with intermediate frequencies, is not a good choice to realize high-speed, 
high-precision 3D shape measurement based on FPP.

https://doi.org/10.1038/s41598-019-56222-3


4Scientific RepoRtS |         (2019) 9:20175  | https://doi.org/10.1038/s41598-019-56222-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Deep-learning based temporal phase unwrapping (DL-TPU). Aiming at this problem, we choose 
to use the deep neural networks (DNN) to overcome the limitations of MF-TPU, and the specific diagram of the 
proposed method is shown as in Fig. 1. The input data of the network are the two wrapped phases of the single 
period and high frequency, which is the same as the two-frequency TPU. To realize the highest unwrapping 
reliability, we adopt the residual network as the basic skeleton of our neural network35, which can speed up the 
convergence of deep networks and improve network performance by adding layers with considerable depth. 
Then, we introduce the multi-scale pooling layer to down-sampling the input tensors, which can compress and 
extract the main features of the tensors for reducing the computation complexity and preventing the over-fitting. 
Correspondingly, it is inconsistent for the tensors sizes in the different paths after the processing of the pooling 
layer. Therefore, upsampling blocks will be used to make the sizes of the tensors in the respective paths uniform 
(see Supplementary Section 1 for details)36. In summary, our network mainly consists of convolution layers, resid-
ual blocks, pooling layers, upsampling blocks, and concatenate layers. To maximize the efficiency of the model, 
after repeatedly adjusted the hyper-parameters of the network (number of layers and nodes), we found that in 
the whole network the number of residual blocks for each path should be set to 4, and the basical filter numbers 
of the convolution layers should be 50. The tensor data of each path in the network will be performed 1, 1/2, 1/4, 
and 1/8 downsampling operations by adopting pooling layers with different scales respectively, and then differ-
ent numbers of upsampling blocks will be adopted to make the sizes of the tensors in the corresponding paths 
uniform. Besides, it has been found that implementing shortcuts between residual blocks contributes to making 
the convergence of the network more stable. Furthermore, to avoid over-fitting as the common problem of the 
deep neural network, L2 regularization is adopted in each convolution layer of residual blocks and upsampling 
blocks instead of all convolution layers of the proposed network, which can enhance the generalization ability of 
the network.

Although the purpose of building the network is to achieve phase unwrapping and obtain the absolute phase, 
there is no need to directly set the absolute phase as the network’s label. Since Φh(x, y) is simply the linear com-
bination of kh(x, y) and φh(x, y) according to Eq. (4), Φh(x, y) can be obtained immediately if kh(x, y) is known. 
Once kh(x, y) is set as the output data of the network, the purpose of our network is to implement semantic seg-
mentation37, which is a pixel-wise classification. It is easy to understand that the complexity of the network will be 
greatly reduced so that the loss of the network will converge faster and more stable, and the prediction accuracy 
of the network is effectively improved. Different from the traditional SPU and TPU that the phase unwrapping 
is performed by utilizing the phase information solely in the spatial or temporal domain, it should be noted that 
our proposed method based on deep neural network is able to learn feature extraction and data screening, thus 
can exploit the phase information in the spatial and temporal domain simultaneously, providing more degrees 
of freedom and possibilities to achieve significantly better unwrapping performance (refer to Supplementary 
Section 3 for details).
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Figure 1. The diagram of the proposed method. The whole framework is composed of data process, deep 
neural network, and phase-to-height mapping. Data process is performed to extract phases and remove 
the background from fringe images according to Eq. (3) and Supplementary Eq. S1. Deep neural network, 
consisting of convolutional layers, pooling layers, residual blocks, upsampling blocks, and concatenate layer, 
is used to predict the period order map kh(x, y) from the input data (Φl(x, y) and φh(x, y)). Then, using Eq. (4), 
Φh(x, y) is obtained and converted into 3D results after phase-to-height mapping.
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Then, using Eq. (4), Φh(x, y) is obtained and converted into 3D results after phase-to-height mapping. In 
preparation for phase-to-height mapping, the projection matrices of the camera and projector need to be obtained 
through system calibration38,39. Besides, in order to speed up the reconstruction, we suggest phase-to-height map-
ping to be implemented with a graphics processing unit40 or several look-up tables41, which can greatly save the 
time cost of the 3D reconstruction.
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Figure 2. (a) Comparison of the average error rates of phase unwrapping with different high frequencies 
(such as 8, 16, 32, 48 and 64) on the testing dataset using MF-TPU and DL-TPU. (b) Comparison of the 3D 
reconstruction results after phase unwrapping with different high frequencies (such as 8, 16, 32, 48 and 64) for a 
representative sample on the testing dataset using MF-TPU and DL-TPU.
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Results
Quantitative comparison with MF-TPU. In the first experiment, to verify the actual performance of 
the proposed DL-TPU, the trained DNN models for phase unwrapping with different high-frequency fringes 
are utilized to make predictions on the testing dataset (200 image pairs) (refer to Supplementary Section 2 for 
details), and MF-TPU is also implemented for comparison. In order to quantitatively analyze the accuracy of 
phase unwrapping for DL-TPU and MF-TPU, the phases with different high frequences are independently 
unwrapped by the two algorithms, and the average error rates for phase unwrapping on the testing dataset are 
calculated and plotted against fh in Fig. 2(a). It should be noted that these results are calculated only by comparing 
the differences between the obtained phases and the label’s phases for each valid point from the testing dataset 
(refer to Supplementary Section 2 for identifying the valid points). The label’s phases can be correctly acquired as 
the ‘ground-truth’ phase by exploiting multiple sets of phases with different frequencies to hierarchically unwrap 
the wrapped phase step by step. It can be seen from Fig. 2(a) that with the increase of fh the reconstructed phases 
of MF-TPU are completely obviated, with a substantial increase of phase unwrapping error rate from 0 to 12.71%. 
The result shows again that MF-TPU cannot successfully unwraps a phase map when fh ≥ 16 due to the non-neg-
ligible noises and other error sources in actual measurement. However, our approach always provides acceptable 
results, with more than 95% of all valid pixels being properly unwrapped. These experimental results confirm 
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Figure 3. (a) The captured images (fh = 32) of a standard ceramic plate under different exposure times. (b) 
Comparison of intensity in line 230 of the captured images. (c,d) Comparison of the 3D reconstruction results 
after phase unwrapping under different exposure times using MF-TPU and DL-TPU.
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that compared with MF-TPU our method can achieve much better unwrapping results and decrease the phase 
unwrapping errors by almost an order of magnitude.

In order to reflect the specific performance of DL-TPU and MF-TPU more intuitively, the 3D reconstruction 
results after phase unwrapping for a representative sample on the testing dataset are illustrated and compared in 
Fig. 2(b), and the phase unwrapping error rates can be obviously seen in the background. It can be found from 
Fig. 2(b) that our approach provides the smallest phase unwrapping errors and the significant improvement of 
phase measurement quality with the period number fh as expected. It can be further observed that the fringe order 
errors are mostly concentrated on the dark regions and object edges where the fringe quality is low. Different from 
MF-TPU, phase unwrapping errors caused by the low signal-to-noise ratio (SNR) region of phases is significantly 
reduced by using DL-TPU. For these low SNR region, the remaining phase errors have the characteristics of accu-
mulation and can be easily further corrected by some compensation algorithm for fringe order errors42–44 (refer 
to Supplementary Section 4 for details of these compensation algorithms). Consequently, the trained models can 
substantially decrease error points to provide better phase unwrapping results (even fh = 64) and lower error rates, 
which demonstrates the capability and reliability of DL-TPU for phase unwrapping.

Performance analysis under different types of phase errors. Intensity noise. In the following series 
of experiments, we will further verify the superiority of DL-TPU in the presence of different types of phase errors. 
In high-speed 3D measurement, the quality of the fringe patterns is poorer than that of the static measurement 
because it is projected and captured with limited exposure time. To emulate the practical measurement condi-
tions, we measure a standard ceramic plate using DL-TPU (fh = 32) but artificially adjust the camera’s exposure 
time to 39 ms, 20 ms, 15 ms, and 10 ms. To better analyze and compare the reliability of the accuracy results for 
phase unwrapping, the absolute phase map obtained using the 12-step phase-shifting algorithm and combining 
with a highly redundant multi-frequency temporal phase unwrapping strategy (with different frequencies includ-
ing 1, 8, 16, and 32) can serve as the reference phase. Next, the error rate of phase unwrapping and the variance of 
the phase error σ φΔ h for different approaches are easily calculated by making a comparison between the 
unwrapped phase and the reference phase for each valid point.

Obviously, as the exposure time decreases, the quality of the phase measurement drops significantly presented 
in Fig. 3(a,b). Since the exposure time is a key factor affecting the speed and quality of phase measurement, the 
shorter the exposure time the algorithm can withstand, the faster the measurement can be achieved with six pro-
jection patterns in FFP. Therefore, a more robust phase unwrapping method is essential to eliminate the phase 
ambiguity introduced by reduced exposure times and make phase unwrapping correct. In Fig. 3(c,d), it can be 
found that DL-TPU can always provide higher success rate of phase unwrapping and lower phase error σ φΔ h com-
pared with MF-TPU, making it more appropriate for the high-speed 3D shape measurement applications.
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Figure 4. (a) The tested object with the low-modulation logo. (b) The captured fringe image (fh = 64). (c,d) 
Comparison of the 3D reconstruction results after phase unwrapping for the low-quality region using MF-TPU 
and DL-TPU.
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Low fringe modulation. Another attractive attribute of DL-TPU is its good tolerance to noise that can sig-
nificantly suppress phase unwrapping errors in low-fringe-modulation areas, which frequently appear in 
practical measurement for the surfaces of complex objects, like the tested object shown in Fig. 4(a,b). For the 
low-modulation logo region, conventional MF-TPU results provide spinous results teemed with significant 
delta-spike artifacts, as shown in Fig. 4(c). In contrast, the DNN approach successfully overcomes the low-SNR 
problem and produces smooth measurement results with negligible errors, as shown in Fig. 4(d). This experimen-
tal result confirms once again that DL-TPU can provide superior capability and stability of phase unwrapping for 
suppressing unwrapping errors caused by low fringe modulation.

Intensity nonlinearity. In this section, we test the proposed DL-TPU under different degrees of intensity gamma 
distortion. The gamma distortion, or so called intensity nonlinearity, is a common error source in FPP due to 
the nonlinear response of the commercial projector, introducing high-order harmonics to the projected fringe 
patterns. The intensity of the fringes with the gamma distortion can be expressed as

π π= . + . −γ γI x y fx n( , ) {0 5 0 5 cos(2 2 /3)} , (12)n
p p p p,

where γ represents the nonlinearity parameter of projector that means the nonlinear response of the commercial 
projector. Then, we choose an industrial workpiece of metal as the measured object to validate the resistance of 
DL-TPU to the gamma distortion. A set of fringe patterns with different nonlinearity intensities, ranging from 
0.5 to 1.5, are generated using Eq. (12) and projected onto the measured object in Fig. 5(a). It can be found from 
the 3D results shown in Fig. 5(b) that MF-TPU cannot provide acceptable phase unwrapping results even under 
low-level gamma distortions. On the contrary, DL-TPU is able to achieve a close to ideal phase unwrapping 
result even when γ is 0.8. It should be also noticed that, when γ is as low as 0.5 or as high as 1.5, both of the two 
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Figure 5. (a) The captured fringe images (fh = 32) and the comparison of intensity in line 363 of the 
corresponding images under different degrees of intensity gamma distortion. (b) The 3D reconstruction results 
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approaches can produce meaningful results since the phase errors artificially introduced is much larger than 
the “safe line” without triggering phase unwrapping errors, so that the success/error rate of unwrapping is about 
fifty-fifty. In Fig. 5(c–e), for phase unwrapping with different high frequencies (such as 32, 48 and 64) under dif-
ferent degrees of intensity gamma distortion, the statistics curves of phase unwrapping for MF-TPU are shown 
as the solid lines, and the results are significantly improved by using DL-TPU as shown by dashed lines. These 
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Figure 6. (a,b) The objects with fast translation movement and rapid rotatory motion. (c) Comparison of the 
3D results of phase unwrapping for the fast translation movement using MF-TPU, MF-TPU (3f), and DL-TPU. 
(d) The 3D result comparison in line 250 for the fast translation movement. (e) Comparison of the 3D results of 
phase unwrapping for the rapid rotatory motion using MF-TPU, MF-TPU (3f), and DL-TPU.
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results verify that our method can significantly reduce the fringe order errors of phase unwrapping and produce 
high-quality absolute phases even under a certain degree of gamma distortion in the FPP system.

Application to high-speed 3D surface imaging. Finally, our system, which can project and capture 
the fringe images at the speed of 25 Hz, is applied to imaging some classical dynamic scenes for fast 3D recon-
struction: objects with fast translation movement and rapid rotatory motion. In Fig. 6(a), a standard ceramic 
plate, fixed on precise displacement platform, is performed to periodic translational movement at the speed of 
1.25 cm/s. In traditional MF-TPU, it is more much difficult to recovery the high-frequency absolute phase using 
only one unit-frequency phase in Fig. 6(c) due to the unavoidable noises in actual measurement. Therefore, to 
guarantee a stable phase unwrapping success rate for the high-frequency phase, three sets of phase-shifting fringe 
patterns, so-called MF-TPU (3f) in which the frequency of the second set of fringe patterns is 8, are used to 
achieve high-accuracy but inefficient phase unwrapping. When measuring dynamic scenes, the relative motion 
between the object and the phase-shifting fringe patterns sequentially projected will cause motion artifacts and 
thus introduce additional phase errors into the initial phase map which is non-negligible and becomes more 
severe because of projecting more patterns as presented in Fig. 6(c). However, without the assistance of additional 
patterns, it illustrates the reliability and efficiency of DL-TPU from Fig. 6(c) that the trained models can still 
achieve better phase unwrapping results. We try to take one cross-section on the 3D results of the ceramic plate 
to compare DL-TPU with MF-TPU and MF-TPU (3f). From the comparison results shown in Fig. 6(d), it can be 
found that our approach provides the highest unwrapping reliability and best noise-robustness compared with 
other methods.

And then, for measuring the rapid rotatory motion, the statue of David rotates in a counter-clockwise direc-
tion at the rotation rate of 3 rpm as shown in Fig. 6(b). Undoubtedly, in Fig. 6(e), the experiment yielded a result 
similar to that of the fast translational motion. It can be found from these results that the 3D profile information 
with high quality of the ceramic plate and the David statue are accurately acquired during the entire movement 
of the tested objects, again demonstrating the unwrapping stability of the proposed method for implementing 
high-precision, fast absolute 3D shape measurement.

Discussion
In this work, we have demonstrated that a trained deep neural network can greatly improve the ability of TPU 
with high-frequency fringes acquired by a common FPP system. This high-performance TPU (so-called DL-TPU) 
can be achieved based on a deep neural network after appropriate training. Compared with MF-TPU, DL-TPU 
can effectively recover the absolute phase from two wrapped phases with different frequencies by exploiting both 
spatial and temporal phase information in an integrated way. It can substantially improve the reliability of phase 
unwrapping even when high-frequency fringe patterns are used. We have further experimentally demonstrated 
for the first time, to our knowledge, that the high-frequency phase obtained from 64-period 3-step phase-shifting 
fringe patterns can be directly and reliably unwrapped from one unit-frequency phase, facilitating high-accuracy 
high-speed 3D surface imaging with use of only 6 projected patterns without exploring any prior information 
and geometric constraint. After that, various experiments have been designed to access the phase unwrapping 
capability of the proposed approach under the conditions of intensity noise, low fringe modulation, and intensity 
nonlinearity. Experimental results have verified that TPU using deep learning provides significantly improved 
unwrapping reliability to realize the absolute 3D measurement for objects with complex surfaces. Besides, for 
the applications to high-speed FPP, it has also been observed that the deep learning-based approach is much less 
affected by motion artifacts in dynamic measurement and can successfully reconstruct the surface profile of the 
moving and rotating objects at high speed. These results highlight that machine learning is able to potentially 
overcome challenging issues in optical metrology, and provides new possibilities and flexibilities to design more 
powerful high-speed FPP systems. Although the TPU and FPP have been the main focus of this research, we 
envisage that the similar deep learning framework might also be applicable to other 3D surface imaging modali-
ties, including, e.g., stereo vision45, DIC46, spatial-temporal stereo47, spatial-temporal correlation48, among others.
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