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Abstract

Itis well-known that the effects of spatial selection on the two-strategy competition can be
quantified by the structural coefficient o under weak selection. We here calculate the accu-
rate value of o in group-structured populations of any finite size. In previous similar models,
the large population size has been explicitly required for obtaining o, and here we analyze
quantitatively how large the population should be. Unlike previous models which have only
involved the influences of the longest and the shortest migration rang on o, we consider all
migration ranges together. The new phenomena are that an intermediate range maximizes
o for medium migration probabilities which are of the tiny minority and the maximum value is
slightly larger than those for other ranges. Furthermore, we find the ways that migration or
mutation changes o can vary significantly through determining analytically how the high-fre-
quency steady states (distributions of either strategy over all groups) impact the expression
of o obtained before. Our findings can be directly used to resolve the dilemma of coopera-
tion and provide a more intuitive understanding of spatial selection.

Introduction

The world consists of populations of reproductive individuals. In most cases, the reproductive
success of individuals is determined by not only their own behaviors but also others’ behaviors.
Evolutionary game theory provides a mathematical setting for studying the reproductive com-
petition of such populations. So far, lots of theoretical explorations in evolutionary game
dynamics have been performed in well-mixed populations [1-10], where each individual inter-
acts with all other individuals with equal probability. There is also a long-standing tradition of
research on structured populations through spatial models [11, 12]. Spatial models most com-
monly involved are games on graphs [13-26], games in phenotype space [27], and games on
sets [28]. In those three types of spatial models, the fitness of individuals is dependent on local
interactions with ‘neighbors’. For games on graphs, there is a local updating rule meaning that
individuals compete with ‘neighbors’ for reproducing or replacing the offspring. However,
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that no compefing intarests exist individuals compete with all others for reproducing the offspring. Compared with well-mixed
populations, far less investigations have been obtained analytically in structured populations.
For structured populations (including the well-mixed population), it has been proved that
the effect of spatial selection (population structure and updating rule) on the evolutionary com-
petition of two strategies can be quantified by a single parameter o called the structural coeffi-
cient under weak section (the difference of individuals’ fitness is very small) [29]. Specifically,

for a game between two strategies A and B described by the payoff matrix

A B
A a b
B c d

(each entry is the payoff of the player in the row when interacting with the player in the col-
umn), A is more abundant than B on average in the stationary distribution under weak section

if

ga+b>c+ad. (1)

Note that o is independent of the payoff values g, b, c, d.

For games on graphs, there has not been any unified formula for calculating the structural
coefficient ¢. The concrete values of o for games occurring on some particular graphs (Table 1)
have been obtained through the known condition under which natural selection favors one
strategy over the other (including the critical cost-to-benefit ratio) [29-36]. The birth-death
(BD) and the death-birth process (DB) are widely used in those studies. In each generation of
the BD process, an individual is chosen to reproduce with probability proportional to his fit-
ness, and then his offspring replaces one of his neighbors randomly. In each generation of the
DB process, an individual is chosen randomly to die, and his neighbors compete for the empty

spot proportional to their fitness.

Table 1. Structural coefficients for different population structures and updating rules.

Population structures

1. Well-mixed: an individual interacts with all others equi-
probably

2. Cycle: each individual is connected to its two neighbors

3. Star: one individual occupies the center of the star and the
others take up the periphery

4. Regular graphs of degree k: each individual is connected to k
other individuals

5. Individuals have different neighborhoods for game interaction
and for evolutionary updating

6. Games in phenotype space: each individual expresses a
phenotype and interacts with only those sharing the same
phenotype

7. Games on sets: each individual belongs to k of M sets,and two
individuals interact as many times as the common sets they have

8. Games on islands: an individual is located in one island and
interacts with those in the same island

BD'23458 WF®? Moran® DB

N-2 N-2
N N

N—2 3N-8
N N

N3 —4N?+8N-8 1
N3 —2N2+8

N—2 (k+1)N—4k
N (k—1)N'

1 (gh+)N—4gh

(gh-HN

14+4v 3+12v
2+4v <1 + \/ 3+4v)

1tvu K(v2+2v-Fvp) +M(3+2v-+p1)
vt K(v2+2v+vp) +M(1+4)

(142v)(3+2v-++ /3(1+2v) (3+2v))
2(1+v)(3+27)

Additional assumptions

DB:u— 0
BD:u — 0

u—0

Interaction graph, replacement graph and
overlap graph are regular with degree h, g,
and /

U = Nu, v=Nvfor BD y=2Nu, v=2Nv for WF
large N,y — 0
U =2Nu, v=2Nv, large N

p=Nu,v=Nv,large N,y — 0

N: population size, u: strategy mutation probability, v: phenotype mutation probability (in 6), set mutation probability (in 7), migration probability (in 8).
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For games in phenotype space [27] or games on sets [28], a unified formula [37] has been
derived for the structural coefficient o as

. <IAANB>0
7= LNy, @

where Nj is the number of individuals using B, and I, 4 (I4p) is the total number of games that
individuals using A play with individuals using A (B). It is noteworthy that each game played
by two individuals using A is counted twice for computing I, 4. The sign (X), denotes the
quantity which is averaged over all states weighted by the steady-state probabilities under neu-
tral selection (all individuals have the same fitness). The formula also holds for the well-mixed
populations (particular cases of games in phenotype space) [1] and games on islands (variants
of games in phenotype space) [38].

An alternative approach of calculating the structural coefficient o for games in phenotype
space [27], games on sets [28], games on islands [38], and the well-mixed populations [1] is
through the known condition under which natural selection favors cooperation over defection.
The corresponding values of ¢ are summarized in Table 1. The updating rules used in those
studies are the Wright-Fisher (WF) or the Moran process. In the WF process, N (population
size) individuals compete to reproduce N offspring proportional to their fitness, and they all
die in the next generation. In the Moran process (the special case of the BD process), one indi-
vidual is chosen to reproduce an offspring proportional to his fitness, and one individual is
chosen to die randomly and equi-probably from the population (including the parent).

In this paper, we focus on the competition of two strategies in the group-structured popula-
tion which is a variant of games in phenotype space [27] and games on islands [38] and is a
special case of games on sets [28] (a group in our model can be understood as a phenotype, an
island, or a set). In the previous studies [27, 28, 38, 39], the structural coefficient o can only be
obtained for large populations. Here, we will give the accurate values of ¢ for any finite popula-
tion based on the above-mentioned unified formula of 0. Moreover, the value of o calculated by
us holds for any ‘isotropic’ migration pattern, migration probability, mutation probability, and
group number. Although the large population size is explicitly required in those prior studies
[27, 28, 38, 39], it is still unknown how large the population should be. To answer the question,
the approximate value of o [38] will be compared with the accurate one obtained by us under
the same assumptions. The prior study [38] has studied ‘global migration’ and ‘local migration’
which mean that individuals can disperse from any one to any other group and between only
the nearest neighboring groups, respectively. Here, we will first calculate the accurate value of o
for any ‘isotropic’ migration pattern, and then pay attention to a representative type of migra-
tion pattern fully captured by the migration range to better clarify how the migration range
influences the evolution. The above-mentioned ‘global migration’ and ‘local migration” are the
special cases when the migration range is the longest one and the shortest one. Therefore, there
will be a more comprehensive analysis about the migration range in this paper compared with
the prior study [38]. The unified formula of the structural coefficient o [37] shows that it can
be calculated analytically through the probabilities assigned to the event that three or two indi-
viduals have the given strategies and locations under neutral selection. Our approach for calcu-
lating such probabilities is distinct from those in the prior studies [27, 28, 38, 39], and follows
the way that the same probabilities are obtained when the optional strategies are more than
two (excluding two) in a recent research [40]. In fact, our approach can be expanded beyond
the realm of evolutionary game theory, and can be used to make error estimation in many con-
trol problems [41-44] and study the effects of spatial diffusion on herbivore outbreak [45-47].
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The structural coefficient o is independent of the payoff values, and it can be applied to
the concrete game to resolve the evolution of cooperation. The most widely studied games
are the prisoner’s dilemma and the snowdrift game which describe the competition of coop-
eration and defection with the corresponding two-parameter payoff matrices [b—c,—c;b, 0]
and [b—c/2,b—c;b, 0] respectively. From Eq (1), natural selection favors cooperation over
defection if ¢/b < (c/b)" = % for the prisoner’s dilemma or if ¢/b < (c/b)" = 22 for the
snowdrift game. The larger the critical cost-to-benefit ratio (c/b)  is, the more the evolution
of cooperation is favored (cooperation is more abundant in the stationary distribution for
more values of ¢ given b). Larger o leads to higher values of (c/b) , and thus provides more
opportunities for the evolution of cooperation. The value of o obtained by us will be used to
analyse what conditions including the migration probability, the migration range, and the
mutation probability give rise to a larger value of 0. We will explore the way that those
parameters change the value of o by investigating analytically how the high-frequency (with
high steady-state probability) steady state (including the distribution of either strategy over
all groups) influences the unified expression of o [37].

Models and Method

Consider a structured population of size N where individuals are distributed over M groups
arranged in a regular circle and labeled by 1,- - -,M in clockwise direction. Individual i plays
games with all other individuals of the same group and receives the total payoff p;. The fitness
of individual i is defined as 1 + wp,, where w is the selection intensity. The extreme case w — 0
is called weak selection and is our focus. The update follows the frequency-dependent Moran
process as follows. In each generation, one individual is picked proportional to fitness to be
imitated (reproduce), and one individual (including the parent) is chosen randomly and equi-
probably to change strategy (die). The newborn offspring adopts the strategy of the parent with
probability 1-u, otherwise he mutates to one strategy equi-probably. Meanwhile, the newborn
offspring stays in the same group as his parent with probability 1-v, otherwise he migrates to a
new group according to the prespecified migration pattern.

To understand the prespecified migration pattern better, we show it by a one-dimensional
lattice consisting of integer points in [1, M] and satisfying the periodic boundary condition
j+IM = j, where [ is an integer. Each integer point represents the label of one group. An edge
exists between two points if and only if there is a potential single-step migration path between
them. In other words, the offspring can migrate to one of the points connected to the point in
which the parent resides. We concentrate on the lattices which look the same from every point.
Migration patterns of such sort have been called “isotropic” in population genetics [48].

In our model, the strategy of individual i is denoted by s; (1 for A and 0 for B), and his loca-
tion is indicated by an M-dimensional vector h; whose ky, entry is 1 if he is in the k, group and
is 0 otherwise. The numerator and the denominator in Eq (2) are given by

(LaNg)y = <ZzﬁiJ‘hi ) hj(l - Sl)si5j>0 — (L =s)s),,
(LisNg)o = <Zl.ijhi ) hj(]' —s)s(1 - Sj)>0’

Each term in the right side can be expressed by the probabilities assigned to the events that
three randomly chosen individuals have the given strategies and locations under neutral
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selection (see S1 Text for the detailed calculations),
<Zz,iJhi ‘ hj(l - 51)5i51>0 — Q1 =s)s), =N(N = 1)(N — 2)Pr(s, = 0,
s, =Ly =1hy-hy=1), (4)
<Zlﬁi.jhi.h](1_Sl)st(l_sj)>0 =N} (N=1)Pr(s, = 0,5, = 1,5, = 0,h, - hy = 1),
where Pr(s; = 61, S, = 65, $3 = 63, hy - h3 = 1) is the probability that three randomly chosen indi-
viduals labeled 1, 2, 3 satisfy s; = 01, 5, = 05,53 =03, h o h3 = 1.

When the optional strategies for an individual are {1, 2, - - -,S}, the general expression of
Pr(s; = 81, 52 = 02, 53 = 03, hy - h3 = 1) [40] has been given by

1
Pr(s; =0,,5, =0y, 8, = 03,h, - hy =1) = MZz,:M‘zerz-g,:Mm?Mwar

wy+w3=S5,250r3§ { le =212, X9 =23, =W T W2 )p=W3 + le =21+23, %9 =2, =Wy W3,

PR D DNEST—— L ¢ { ¢ { Y BN A CA I (U2 {CZY ®)
ST ). (580,80 e (5 (0,4 w0, w0 ).
where
W(f(x)),f(x,),8(0.),8(0,)) =
A—w(@ =)+ @ —wvd fx)/2+ A =vud gl)/2+uv Y f(x)g()/2 (6)
1+ (N— 1)(1 — u)v (1— 2 f(2 )) +(N=1)(1 - v)u (1— 2 g@)) (N— 1)uv<1— Zflf—(x")ég(yi))

O(f(2,).(2) . f (23), 8(w1), g (wy), 8 (wy)) =
21 —w)(A —v)+ (1 —wv(f(z) +f(z)) + (1 = v)u(gw) +g(wy)) + uv(f(z,)8(w)) + f(2,)g(w,))
24 (N—2)(1— u)v (1-2? Fa) )) (N 2)(1—v>u<1—z§‘f¥) +(N—2)uv(1—23 /G )3(W)>

if X, =2, +25,% =25,y =W, + Wy, ¥y = Wy;

20 —uw)(A —v) + (1L —wv(f(z) +f(z)) + (1 = vulg(w) + g(wy)) + uv(f(z)g(w1) +f(2,)g(w;)

)
24 (N—2)(1— u)v(l Zflf(g")) +(N=2)(1— v)u<1 Zflg(;v")> + (N - Q)W(l - e )3(W>> ¢

if x,=2,+2;,%,=2,,y, =W, + Wy, Vo= W,;

2(1—w)(1 = v) + (1 = wv(f(z) +£(z)) + (1 = v)u(g(w,) +g(w,)) + uv(f(2,)8(w,) +£(2)g(w,)

)
2 (V- 21wy (1- T+ v 20 (1o £G4 v - 2y (1 - w2, TEE0)

if X, =2z, +2,% = 2,5, =Wy, +wy,y, = w,.

g(x) (flx)) corresponds to the structure function of the random walk describing the mutation
process (the migration process) along a lineage and satisfies g(S) = 1 and g(x) = g(S—x) (M) =1
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and f(x) = fiM—-x)). It is noteworthy that w1, w,, ws, ¥1, ¥2 (21, 22, 23, X1, X) can take on only
integers between 1 and S (M) including the boundaries.

For the mutation pattern of our model (S = 2, g(x) = § + 3 cos (mx)), Pr(s; = 81, 5, = 6,
s3 =03, hy - h3 = 1) is given by (see S2 Text for the detailed calculations)

1 M
Pr(s, =0,,8, = 05,8, = 03,hy - h, =1) = mle
3¥,(f(x)) + 3%, (f(x)) + 2(P, (f () ¥, (f (%)) + P, (f (%)) ¥, (f (%)) +
@, () 0, =0,=0
3W,(f(x)) — 3¥,(f(x)), if 0, =0, # 0; or 0, = 03 # 0;
3, (f(x)) + 3, (f (x)) — 2(P, ( (x)) ¥ (f (x)) + D,(f (x)) ¥, (f (x))+
@, (f(x))o,), if 0, =10, # 0y;
where
B 1—v+vf B (I-—w)(1 —v+vf)
() = 1+ (N=1)v(1-f)’ () = 1+(N=Du+ (N=1)(1—upw(l—f)’
2—u—v+f (I—uw2—v+f)
D,(f) = “u — P » Oy(f) = “u — — ) )
2+2(N3 2) +(N 2);2 ) (1—f) 2+2(N3 2) +(N 2)?52 ) (1= f)
2-uw)(1—-v+vf) 1—u
D,(f) = o O T o
2+2(N;2)u+(NfZ)?E?fu)v(l_f) 1+ (N—=1)u
Results

The concrete expression of the structural coefficient
The structural coefficient can be obtained by substituting Eqs (8), (4) and (3) into Eq (2),

G = (N — 2) Zi;(?’\yl + 3\P2 — 2((1)11112 + (I)2\Pl + (I)Liocl)) (9)
NZi\i1(3lP1 - 3\P2> ,

where (f(x)) is omitted from ¥; and @;. It is noteworthy that self-interaction is excluded from
the calculation of I, 4 above. If self-interaction is included, the structural coefficient is

<Zl,i_jhi : hj(]' - SI)SiSj>0
<Zz,1:jhi : hj(l —s)s(1— Sj)>0
N(N -1)(N—=2)Pr(s, =0,s,=1,5, =1,h,-hy; = 1) + N(N — 1)Pr(s, = 1,5, = 0)

- N(N = 1)Pr(s, = 0,5, = 1,5, = 0, h, - hy = 1) (10)

_ (N —-2) Zi1(3‘yl + 3%, — 2(0,¥, + ®,¥, + D)) + 6M(1 —a))
NZxle (31{11 - 3‘112)

The first equal sign is self-explanation, the second is acquired from Eq (4) and (¥;;(1-s))s;) =
N(N-1)Pr(s; = 1, s, = 0), and the third from Eq (8) and Pr(s; = 1,5, =0) =1 — a; (see S3 Text
for the calculation of Pr(s; = 1, s, = 0)). The concrete expressions of 0 in Eqs (9) and (10) have
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[

ap

no limitations on the migration probability v, the “isotropic” migration pattern f(x), the muta-
tion probability u, the population size N, and the group number M.

The comparison of the accurate structural coefficient and the
approximate one

The large population size has been explicitly required for obtaining the value of the structural
coefficient ¢ in the prior studies [27, 28, 38, 39]. To quantitatively determine how large the pop-
ulation should be, the approximate value of o [38] will be compared with the accurate one cal-
culated by us.

For global migration (a migratory offspring equi-probably disperses to any location except
his parent’s location), the approximate structural coefficient [38] has been given by

2(3 — 6M + 3M* + u — 2Mp + M)
(B4+M+pu+Mu)(—3+3M — u+ Mu+ Mv)

(11)

2(1 —3M + 3M? — M® + u — 3Mp + 3M?u — M+ Mv — 2M>v + M3y + Mpuv — 2M?uv + M3uv)

B+M+p+ Mu)(1 —2M + M2 + u — 2Mu + M2 — 2v + 2Mv — uv + Mpv + Mv?) ’

where y = Nu and v = Nv. Self-interaction is considered in the above calculation. Under the
same assumptions, the structure function of the random walk describing the migration process
is

1 2mx 2n(M — 1)x
f(x)—I\H(COSM++ COSM)‘ (12)
Obviously, f(x) = 1 for x = M and f (x) = — /5 for x # M. Substituting Eq (12) into Eq (10)

1-u

and using 2 ; oy + = 3o,, we have the accurate structural coefficient as
+

AN 2 1402
(N — 2)(3((1 —oy) + (M —1)(30, + 3oy — 27,00, — 27,0, — 27,505)) + 6M(1 — o)
= » (13)
3N(1 — oy + (M — 1) (o, — 013))
where
B 1—wu B 1—Mv/(M—-1)
TN D LTI (N D)My/(M - 1)
- (1—u)(1—Mv/(M-1)) . (2—u)(1—Mv/(M—1))
P14+ (N-Du+(N=-1)(1—uMy/(M-1)" 2+2(N—2)u (N—2)(2—u)Mv’
3 3(M—1)
o (1—u)(2—Mv/(M—1)) o (2—u—Mv/(M—-1))
2 2(N—2)u (N—-2)(2—uMv’ s 2(IN—=2)u (N—2)(2—u)Mv’
2ty 3M—1) 2ty 3M—1)

Fig 1 tells us that o, is in excellent agreement with the one from Monte Carlo simulations
for all migration probabilities and all mutation probabilities and 0, is in line with the struc-
tural coefficient from Monte Carlo simulations only for low migration probabilities. This
verifies the accuracy of o, and illustrates the inaccuracy of o,, under high migration
probabilities.

To fully determine the conditions under which o, gives a perfect approximation of o,,,
they are compared for different population sizes (N), different group numbers (M), all non-
zero mutation probabilities (1), and all migration probabilities (v) in Fig 2. The population
size N plays a vital role in the comparison of o, and o,,. Through each column of Fig 2, g,
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A =0.05 B
24F T — T
= simulated value 1.9 i
So4 accurate value o, M
] “\__- - - - approximate valueo, G 1.7-
€18 ) i ” g
g il 2 1.5
8 8
g 151 €13,
S g = simulated value
g12r 5141 accurate value o,
0ol . . ‘ . g 094 . - - ._ - appr?ximate Ivalueo-af ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Migration probability v Migration probability v
C v=0.05 D v=0.1
= simulated value L = simulated value
b 3.0+ 30
= accurate value o, o accurate value o,
é 250 - - - - approximate valueaap | é 25} - - - - approximate valueo-ap 4
I3 o
8 850
=20t = r b
ERE 215f i
®» 2]
1.0+ - 1.0+ ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Mutation probability v Mutation probability v

Fig 1. The comparison of the accurate structural coefficiento,, the approximate one o, and the one
from the Monte Carlo simulation across various mutation probabilities (u) and various migration
probabilities (v). (A)-(D) shows that o, (solid line) is in agreement with the one from Monte Carlo
simulations (square, averaged over 10° generations) for all v and all u, and O (dashed line) is in line with the
one from the Monte Carlo simulation (square, averaged over 10° generations) for low v and has a significance
difference from the one from the Monte Carlo simulation (square, averaged over 10° generations) for high v.
Parameters: N =100, M =19.

doi:10.1371/journal.pone.0155787.g001

provides a better approximation of o, in large populations (e.g., N = 1000) than in small
populations (e.g., N = 100). The significant influence of N on the comparison of o,. and o,
is resulted from the fact that large populations are required in calculating o,,, when the coa-
lescence time is approximated to be exponentially distributed. Given N, less groups lead to a
smaller relative difference of 0,,, and 0, as shown in each row of Fig 2. This is because the
group number M can greatly expand the relative difference resulting from N. Given N, a,,,
has a smaller difference (red region in each panel) when u or v is low. The major reason is
that the calculation of g,,, uses the Poisson distribution to approximately describe both the
number of mutation events and the one of migration events along a lineage. Accordingly, it
has a close dependence on the group number, the migration probability, and the mutation
probability how large populations are appropriate for the prior studies [27, 28, 38, 39].

Effects of migration and mutation on the structural coefficient

In our model, M groups are arranged in a circle, and thus the distance between two groups is
taken from the values 1, 2, - - -,| M/2 | where |x] is the greatest integer not greater than x. To
better clarify how the migration range affects the structural coefficient o, we focus on a repre-
sentative type of migration patterns characterized by the migration range r (the largest dis-
placement that a single-step migration leads to). Fig 3 illustrates such migration patterns.

All possible displacements that a single-step migration leads to are assumed to form the set
Q(r) =1{1,2, - -,r}, and all elements of Q(r) are assumed to be performed equiprobably. The
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Fig 2. Comparison of the accurate structural coefficiento,. and the approximate one o, across the parameter space (v, u). A population of size

N=100 (A, B,C)or N=1000 (D, E, F) is distributed over M = 9 (A, D), M =19 (B, E), M = 49 (C, F) groups, respectively. The relative difference of o,; and
Oap, |0ac—02p|/0ac, decreases as N rises (each column) or as M diminishes (each row), and it is small when u or v is low (each panel). Note the same color
in all panels represents different values.

doi:10.1371/journal.pone.0155787.9002

corresponding f(x) is

1 2 2n(M -1 M
f(x;r):m<cos%+-~-+cos¥>, ifr:? for even M;
(14)
1 2nx 2nrx .
flx;r) = . (cos W+ -+ 4 cos i ), otherwise.

It is noteworthy that the reason why the term sin(- - -) disappears in f(x; ) is the symmetry of
migration to the left and to the right direction. Substituting f(x; r) into Eq (9) leads to the
value of o for the migration range r. It will be used to analyse what conditions including the
migration probability, the migration range, and the mutation probability yield a larger value
of 0. We will show the way that those parameters change the value of 0 by determining ana-
lytically how the high-frequency steady state influences the unified expression of o [37].

As shown in Fig 4A, the structural coefficient ¢ is below 1 for the vanishing migration prob-
ability (v = 0). Here, the state that all individuals are centered in one group is an absorbing
state that, once entered, cannot be left (Fig 5). In other words, the long-term population evolves
just like the well-mixed population. For the purpose of calculating Iy 4 Ng—I5 N and I4p Np,
the absorbing states can be characterized by a vector (x4, xg) where x, and xp are the number
of individuals using A and the one of individuals using B, respectively. Two states (x, y) and
(y, x) have the same steady-state probability, as there are no fitness differences between A and
B under neutral selection. If they are considered together,

LNy — LNy = —2xy,L,,N, = (x + y)xy. (15)

Since x and y are non-zero in most steady states under neutral selection, (In4 Np —Isp Np)o < 0
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Fig 3. Migration patterns characterized by the migration ranger. Nine groups (red node) are arranged in a regular circle and labelled from 1 to 9 in
clockwise. An edge exists between two nodes if and only if there is a potential single-step migration path between them. In other words, an offspring can
migrate to one of the nodes connected to the node in which the parent is located. The distance between two groups takes on one of the values 1, 2, 3, 4.
The migration range r means that the set of the displacements that a single-step migration leads to is Q(r) = {1, - -,r}.

doi:10.1371/journal.pone.0155787.9003

and (I, Np)o > 0, and thus ¢ = % < 1. To sum up, the absorbing state that all individuals

are centered in one group causes ¢ to be less than one.

As demonstrated in Fig 4A-4D, there exists a medium migration probability that leads to
the largest structural coefficient for each migration range. To explain this phenomenon, the
characteristics of the high-frequency steady states will be analyzed for different migration prob-
abilities (Fig 5). When the migration probability is non-zero but not high (e.g., v=0.01 or
v =0.1), individuals occupy more than one group but not all groups. Meanwhile, individuals
using a given strategy are distributed over different groups non-uniformly. However for
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sufficiently high migration probabilities (e.g., v = 1), all groups are full of individuals, and the
distribution of each strategy over all groups tends to be uniform.

How the above characteristics of the high-frequency steady states impact the unified expres-
sion of the structural coefficient will be illustrated analytically by considering the structure of
two groups. In order to calculate (I44 Ng—Ip Np)o and (I3 Ng)o, a state here can be described

by
Ny N
(16)
Ny N
where N} is the number of individuals using strategy X in the i,, group. Considering the follow-
ing four states altogether,

x—k y—m y—m x—k y—k x—m x—m y—k
k m m k k m m k

LNy — LN, = (k+ m)(x _}’)2 + 2N(k - m)2 — dxy,

we get

1N, = N(2xy — k(N — 2m) — m(N — 2k)) (18)
= N(2xy — (k + m)N + 4km).

k =m =0 corresponds to the steady states for v = 0 or for the well-mixed population. In this
case, the values in Eq (18) double the values in Eq (15), as Eq (18) counts two states (x, y) and
(y, x) twice. By observing Eq (18), the structural coefficient o is enlarged in three ways as fol-
lows. (1) When individuals find new groups, meaning k # 0 or m # 0, I44 Np— I13 N becomes
larger and I3 N smaller than those for k = m = 0, and hence o increases. (2) When individuals
using a given strategy are distributed unevenly over groups, indicating a greater difference
between k and m, both I,4 Npg—I4p Np and I, Np get larger than a smaller difference between
k and m, and it leads to the rise of ¢ that the former dominates ¢. (3) When more and more
individuals use one strategy than the other, showing the expanding disparity between x and y,
Isa Np—I4p Np gets larger and I,z Nj gets smaller, and thus o increases.

When the migration probability grows out of zero but is small (e.g., v = 0.01, 0.1), individu-
als take up more than one group (i.e., some find new groups) and individuals using a given
strategy are distributed non-uniformly over groups, and thus the structural coefficient o gets
larger than the one for v = 0. Large migration probabilities (e.g., v = 1) mean that individuals
occupy nearly all groups and the distribution of a given strategy over all groups tends to be uni-
form as the migration probability increases, and thus lowers the value of 0. Therefore, there
exists a medium migration probability leading to the maximum value of o.

Moreover, Fig 4A demonstrates the migration range giving rise to the largest structural coef-
ficient o varies with the migration probability: it is the longest range for low migration proba-
bilities, some intermediate range for medium migration probabilities, and the shortest range
for high migration probabilities. This result can be understood as follows. Low migration prob-
abilities prevent individuals from finding new groups. Here, the longest range provides most
opportunities for individuals to take up new groups, and thus leads to the maximum value of ¢
among all migration ranges. High migration probabilities raise the likelihood that individuals
using a given strategy are distributed relatively uniformly over all groups. In this case, the
shortest range prevents the distribution of a given strategy over all groups becoming even to
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the largest extent, and gives rise to the largest value of 0 among all migration ranges. The
migration probabilities for the above two cases do not cover the entire probability space. For
medium migration probabilities, an intermediate range, which balances between the above two
cases, maximizes ¢ among all migration ranges. Here, such medium migration probabilities are
of the tiny minority and the maximum value of ¢ is slightly larger than the ones of other ranges.
Therefore, intermediate-range migration furnishes a narrow margin of efficiency in the two-
strategy competition.

From Fig 4B-4D, the structural coefficient o is found to diminish with the increase of muta-
tion probability. This conclusion can be obtained from the expression of 1 whose monotonic-

o+1

ity with respect to the mutation probability is the same as the one of ¢:

o-1_, NY Y (3, — 3¥,) .
o+1 Zﬁl(@N -3)¥, - 3¥, - (N -2)(D,¥, + D,¥, + D,0,))

(19)

Obviously, this expression decreases with the mutation probability. In addition, the above con-
clusion can also be understood through how the high-frequency steady state influences the uni-
fied expression of ¢. In the low mutation probability limit, nearly all individuals adopt the same
strategy, and the huge difference between the numbers of individuals using either strategy
accounts for the maximum value of ¢. In the high mutation probability limit, two strategies are
present in the population simultaneously with approximately equal number of individuals, and
the tiny difference causes the minimum value of o.

Discussion

For structured populations, it has been proved that the effects of spatial selection (population
structure and updating rule) on the two-strategy competition have been quantified by the
structural coefficient o under weak selection [29]. The larger value of ¢ provides more opportu-
nities for natural selection to favor the evolution of cooperation in the sense that it yields a
larger critical cost-to-benefit ratio. Therefore, the calculation of ¢ is important for investigating
analytically the condition for the emergence of cooperation. In this paper, the accurate value of
o is calculated in group-structured populations of any finite size. Besides arbitrary population
size, the value of o obtained by us is appropriate for arbitrary migration probability, “isotropic”
migration pattern, mutation probability, and group number. Our values of ¢ are verified to be
in excellent agreement with the results of Monte Carlo simulations. Our model is a variant of
games in the phenotype [27] and games on island [38] and is a particular case of games on sets
[28]. The values of ¢ in those prior studies [27, 28, 38, 39] can be obtained through the known
conditions under which natural condition favors cooperation over defection. In those studies,
the large population size has been explicitly required but it is unknown how large the popula-
tion should be. By comparing the approximate value of ¢ [38] with the accurate one obtained
by us, we find that it depends closely on the mutation probability, the migration probability,
and the group number how large populations are appropriate for those studies.

The effects of the longest and the shortest migration range on the structural coefficient o
have been compared in large populations [38], and it has been found that the longest range
leads to the largest value of o for low migration probabilities and the shortest range for high
migration probabilities. Unlike the prior study, we consider all migration ranges together in
finite populations of any size. Besides the phenomena found in [38], we find a new phenome-
non that intermediate-range migration provides a narrow-margin of efficiency for the two-
strategy competition. More specifically, migration probabilities for which some intermediate
range maximizes o among all ranges are of the tiny minority and the corresponding values of o
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have small differences among all ranges. Meanwhile, we also study the influence of the migra-
tion probability on o and find that a lower mutation probability yields a higher value of o.

Our findings can be directly used to obtain how migration or mutation impacts the evolu-
tion of cooperation in any finite population when the value of ¢ is applied to a concrete game,
e.g., the prisoner’s game or the snowdrift game. The effects of migration and mutation on the
evolution of cooperation have also been implicitly given by a recent research about the two-lay-
ered group-structured population [40], as the dynamics of our model (the single-layered
group-structured population) is the same as the one of a special case of the two-layered group-
structured population (e.g., the fraction of the cooperative level of the first layer in the overall
cooperative level is 0 or 1 in that paper). Of course, the value of ¢ for our model can also be
obtained through the known cost-to-benefit ratio for the above-mentioned special case. Com-
pared with that study, we not only provide an alternative and more direct approach to calculate
0, but also show the ways that migration or mutation enlarges the value of o through determin-
ing analytically how the high-frequency (with high steady-state probability) steady state
(including the distribution of either strategy over all groups) influences the unified expression
of 0. Migration enlarges the value of o in the following three ways: (1) individuals find new
groups, (2) individuals using a given strategy are distributed unevenly over different groups,

(3) more and more individuals use one strategy than the other. However, mutation changes the
value of 0 mainly through the third way. This provides a more intuitive understanding of spa-
tial selection.
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