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Introduction
Femoral head separation (FHS) is an idiopathic bone disease 
of commercial poultry, which affects proximal femur leading 
to the separation of articular cartilage from its growth plate 
and renders the birds prone to bone infection, femoral head 
necrosis (FHN), and lameness.1–6 FHS occurs in rapidly 
growing broilers and breeders leading to production losses 

and welfare issues.7 Dystrophic and degenerative changes in 
the femoral epiphysis, most likely, predispose the articular and 
the growth plate cartilage to separate under minimal stress. 
Early identification of FHS-prone birds using biomarkers 
can facilitate their elimination from the breeding pool. How-
ever, the infrequent occurrence of FHS in a normal popula-
tion of birds can be a limiting factor for its study that can be 
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circumvented by the use of experimental models of the disease. 
Glucocorticoids induce avascular necrosis of femoral head in 
adult mammals and birds that can be the closest model for 
avian FHS.8–11 However, the early detection of FHS during 
its subclinical progression and its pathogenesis has not been 
addressed in younger animals including poultry. Previously we 
found that a synthetic glucocorticoid, prednisolone, was able to 
increase predisposition of chickens to FHS.12,13 Similarly, dex-
amethasone, another synthetic glucocorticoid, was reported to 
induce lameness in broilers that was attributed to femoral head 
problems.14 Serum or plasma metabolites and biomolecules can 
be a rich source of biomarkers because the disease-associated 
changes can lead to their qualitative and quantitative altera-
tions. Since proteins constitute both structural and functional 
basis of the tissues, we hypothesized that changes in proteins 
may be useful as biomarkers. Therefore, we used plasma protein 
and peptides to find their changes under prednisolone-induced 
predisposition of young broilers to FHS.

Methods
Animals. The animal procedures were approved and 

carried out in accordance with the University of Arkansas 
IACUC guidelines. Forty eight Cobb 500 broiler chickens 
were raised on floor pens at the density of 8  square feet/
bird from day 1 through 39, provided diets formulated as per 
National Research Council specifications15 and ad libitum 
water. The birds were divided into two groups: one received 
saline and the other prednisolone (MP Biomedicals) suspended 
in saline, administered by gavage at an approximate dose of 
10 mg/kg body weight (BW) on days 28 and 34. On day 39, 
the chickens were bled through the wing vein and blood was 
collected in K-EDTA Vacutainer tubes (BD Bioscience), and 
then the chickens were euthanized. At necropsy, the femoral 
joints were subjected to a mild dorsal pressure at the hip joint 
to induce FHS.12,13 Chickens with predisposition to FHS 
showed the separation of articular cartilage from its growth 
plate with mild to severe damage, whereas the healthy femurs 
remained intact. Femoral heads from five birds in each group 
were fixed in formalin for histology. The sample sizes for the 
analytical methods are listed in Table 1.

Clinical chemistry and histology. Blood was centrifuged 
at 2,000 g for 10 minutes to separate plasma and stored at −20 °C 
for subsequent clinical chemistry and proteomic analyses. Only 
the plasma samples from normal chickens with intact femo-
ral heads (CTRL) and those predisposed to FHS induced 
by prednisolone (FHS) were used for analyses. Albumin,  
cholesterol (CH), triglycerides (TG), and high density lipo-
protein (HDL) concentrations in plasma were analyzed using 
an Express plus automated clinical chemistry analyzer (Ciba-
Corning Diagnostics Corp). Low density lipoprotein (LDL) 
concentrations were calculated using the following formula: 
LDL  =  TC − HDL − TG/5.0 (mg/dL).16 The femoral head 
tissues were embedded in paraffin and processed for histology. 
Hematoxylin–eosin stained sections were examined and pho-

tographed using an Olympus IX-70  microscope. BW, FHS 
incidences, and serum chemistry were analyzed by a GLM pro-
cedure with pooled standard error of mean and significant means 
differentiated using Duncan’s multiple range tests using SAS 
software.17 Means were considered significant at P # 0.05.

Plasma peptide and protein analysis. For peptide analy-
ses, we used three samples from each of the CTRL and FHS 
groups, with each sample prepared by pooling equal volumes 
of plasma from three individual birds. An aliquot of plasma 
sample was mixed with two volumes of acetonitrile (ACN) 
containing 0.1% formic acid (FA) and kept at −20  °C for 
12 hours to precipitate high abundance proteins.18,19 The pre-
cipitates were centrifuged at 10,000 g for 15 minutes at 4 °C, 
and the high abundance protein depleted (HAPD) superna-
tant was transferred to fresh tubes and dried using a Centri
Vap vacuum concentrator (Labconco). The dried content in 
each tube was dissolved with 0.1% FA to the original volume 
and desalted using reverse phase (RP) C18 Bond Elut tips 
(Agilent Technologies) as per manufacturer’s protocol with 
some minor modifications, which consisted of the binding 
and washing steps repeated five times before final elution. For 
cation exchange separation, the dried ACN supernatants were 
separately dissolved in 25 mM sodium acetate buffer pH 5.5 
and fractionated using mini SCX columns (Pierce). The eluted 
materials that contained 0.5 M NaCl were then desalted with 
Bond Elut C18 tips prior to subsequent steps.

MALDI analysis. The eluted samples from both proce-
dures were spotted (1  µL per spot) on a MALDI 384 tar-
get dried and overlaid with an equal volume of sinapinic acid 
(10 mg/mL 0.1% FA in 50% ACN). The spots were analyzed 
using an Ultraflex II MALDI-TOF/TOF instrument (Bruker 
Daltonics) in positive ion linear mode. The instrument was 
calibrated using a 5–17.5 kDa protein standard (Bruker Dal-
tonics), and the MS data for peptides between the 1–10 kDa 
range were collected in an automated mode using the Bruker 
Flex control software with a constant laser power and 800 
laser shots per spot.

ClinProTools analysis. The MS spectra of peptides from 
both CTRL and FHS samples were compared using Clin
ProTools software™ (CPT, Version 2.2, Bruker Daltonics).20 
The quick classifier algorithm was used for automatic peak 
detection and integration, using peaks exhibiting a signal-
to-noise ratio $10 and a threshold intensity of at least 5% 

Table 1. Sample size for analytical methods.

Methodology Number of samples in a group

Animal experiment 48

Clinical chemistry 9–11

Histology 5

Peptide analysis 3 pooled samples (each pool is made by 
mixing equal volumes of plasma from 3 birds)

Proteomic analysis 2 pooled samples prepared as above
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relative to the largest peak.21 Individual peaks from all six 
samples were aligned and their areas analyzed for statistical 
differences. Anderson–Darling test was used to establish the 
data distribution and the statistical differences calculated using 
t- and Wilcoxon tests, respectively. As CPT does not perform 
multiple testing correction (MTC), we considered the best 
discriminating peaks with P # 0.05 in all of the three tests 
(PAD, PTTA, and PWKW) without any MTC. Although 
several peaks were different based on CPT analysis, only the 
peaks observed in reverse phase-high performance liquid 
chromotography-electrospray ionization-mass spectrometry 
(RP-HPLC-ESI-MS) were isolated by RP-HPLC.

RP-LC-ESI-MS. HAPD plasma samples of CTRL and 
FHS groups were dried, dissolved in 0.1% FA, and subjected 
to RP-HPLC using a Supelco C18 column (15 cm × 4.6 mm, 
5 µm particle size, 300 Å pore size, Sigma-Aldrich) attached 
to a Hewlett 110 HPLC system. The fractions were separated 
at a solvent flow rate of 0.7 mL/minute using 0 to 100% gradi-
ent of 0.1% FA (solvent A) and ACN (solvent B) over a period 
of 150 minutes. The HPLC was coupled online to a quadru-
pole ion trap ESI mass spectrometer (ESI-MS; Bruker Esquire 
2000, Bruker) operated in positive ion mode with a dry gas 
temperature of 300 °C and flow of 12 mL/minute, and a nebu-
lizing N2 pressure of 2.1 ×  105 kPa. The mass spectrometer 
was optimized at m/z 1000 with low skimmer voltage to avoid 
ion fragmentation and charge stripping. The fractions corre-
sponding to differentially expressed peptides determined by 
ClinproTools analyses were collected in several runs, pooled, 
dried, and reconstituted with 50 mM ammonium bicarbonate 
prior to further processing for their identification.

MALDI peptide mass fingerprinting for LC fractions. 
The pooled fractions of peptides were reduced with 10 mM 
dithiothreitol (DTT) for 1 hour at 60 °C and alkylated with 
55 mM iodoacetamide (MP Biomedicals) for 1  hour in the 
dark at room temperature. Excess iodoacetamide was neu-
tralized with DTT, and then the peptides were digested 
with trypsin (Promega) at 37  °C for 16  hours. The tryptic 
digests were desalted with Bond Elut C18 tips and spotted 
on a MALDI target plate with an equal volume of α-cyano-
4-hydroxycinnamic acid (HCCA) matrix (10 mg/mL of 50% 
ACN containing 0.1% FA). Mass spectra were obtained in 
reflector positive ion mode using a Bruker Daltonics Ultraflex 
II MALDI-TOF/TOF mass spectrometer. The MALDI pep-
tide mass fingerprint (PMF) was subjected to tandem MS/MS 
using MALDI LIFT-TOF/TOF (Bruker Daltonics). Bruker 
Biotools 3.1 was used to combine PMF and LIFT-MS/MS 
data and searched with parameters listed below.

LC-MS/MS. Two samples of HAPD plasma from the 
control and FHS groups were dried with CentriVap concen-
trator, reconstituted with 50  mM ammonium bicarbonate 
to 10th volume of starting HAPD plasma, and the protein 
content of the solutions was estimated using the micro BCA 
method (Pierce). One hundred micrograms of protein from 
two samples per group were reduced and alkylated as described 

earlier, digested with 2 µg of trypsin at 37  °C for 48 hours, 
and centrifuged at 21,000  g for 10  minutes to remove any 
insoluble materials. The supernatant was subjected to LC-MS/
MS using an Agilent 1200 series capillary C18 RP-HPLC 
coupled to a Bruker Amazon-SL quadrupole ion trap mass 
spectrometer, capable of performing data-dependent acquisi-
tion. Tryptic peptides were separated by reverse-phase liquid 
chromatography (RP-HPLC) using a Zorbax SB C18 column 
(150 × 0.3 mm, 3.5 µm particle size, 300 Å pore size, Agilent 
Technologies), with a solvent flow rate of 6 µL/minute, and a 
gradient of 0 to 40% consisting of 0.1% FA (solvent A) and 
ACN (solvent B).

Data analysis. The peaks with intensities $10,000 
counts and S/N .5 in LC-MS/MS chromatogram were used 
to obtain MS/MS peak lists and perform database search. The 
Proteinscape™ bioinformatics suite from Bruker Daltonics, 
coupled with the MASCOT 2.1 search engine (Matrix Sci-
ence), was used to identify peptides in the NCBI Gallus gallus 
protein database with following parameters: single miscleav-
age, fixed carbamidomethylation of cysteine, variable methi-
onine oxidation, and parent ion mass tolerance and fragment 
ion mass tolerance of 0.6 Da. Peptides with fragmentation ion 
score of 10 or higher were considered for protein identifica-
tion. MASCOT automatic decoy database search was also 
performed with LC-MS/MS datasets. Proteins with ,1% 
false discovery rate (FDR) with at least one unique peptide 
and a MASCOT score of $45 were reported. Common pro-
teins from two samples in each of the CTRL and FHS groups 
were selected with online software (http://www.xlcomparator.
net). The proteins present in each of the two CTRL and FHS 
samples were tallied to find all expressed common proteins in 
both groups, which were then matched to find differentially 
expressed proteins in each group. Gene Ontology (GO) anno-
tations of the proteins were done using the DAVID bioinfor-
matics software (http://david.abcc.ncifcrf.gov/).22

Results
BW, serum chemistry, and histology. Prednisolone 

treatment reduced the BW of chickens compared with saline 
(1.63  ±  0.22  kg vs 2.10  ±  0.14  kg, P  #  0.05, n  =  24) and 
increased the FHS incidence by 38%. The plasma levels of 
albumin, CH, HDL, and LDL were significantly higher in 
prednisolone-treated birds but the TG concentrations were 
not statistically different (Table 2). Histology of femoral head 
segments of the prednisolone-treated birds showed increased 
adipogenesis (Fig. 1).

CPT analysis and the identification of peptides. The 
peptide profiles of CTRL and FHS samples obtained by RP 
and SCX fractionation methods are shown in Supplementary 
Tables S1 and S2. Although several peaks between the two 
groups were different as per CPT analysis, we isolated only 
two peptides m/z 7304 and m/z 3203 (Figs. 2A and 3A) by 
RP-HPLC both of which were the fragments of chicken apo-
lipoprotein A-I (APOA1) derived from its C-terminal region. 
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The peptide m/z 3203 was internal to m/z 7304 sequence as 
shown by MS and MS/MS results (Figs. 2B, 2C, 3B, and 3C). 
In silico analysis using PROSPER23 suggested a probability of 
the generation of these fragments by the action of cysteine and 
serine proteases, respectively (Figs. 4A and 4B).

LC-MS/MS proteomics. The lists of proteins identified 
in each of the two pools of CTRL and FHS samples are pro-
vided in Supplementary Tables S3, S4, S5, and S6, respec-
tively. Among these identifications, less than a quarter (∼22%) 
were annotated while the rest belonged to the predicted (∼73%) 
and hypothetical proteins (∼5%). A qualitative comparison of 
proteins expressed in CTRL and FHS groups was done to 
identify common and differentially expressed proteins in each 
group. Comparison of proteins using GO annotations showed 
that protocadherin-15, a protein associated with adult walking 
behavior, and vascular endothelial growth factor-C (VEGF-C),  
responsible for angiogenesis, and some calcium ion binding 
proteins were absent in the FHS samples (Table 3).

Discussion
Glucocorticoids at pharmacological concentrations exert both 
anti-anabolic and catabolic effects on skeletal tissues.24–26 
In younger animals such as 4- to 6-week-old birds, the 
anti-anabolic effects may be the principal mechanism that 
causes the shrinkage and the arrest of growth plate develop-
ment, which could lead to FHS.13 The glucocorticoid-induced 

dyslipidemia and bone marrow hyper-adipogenesis noted in 
our studies have also been reported by other investigators.27,28 
However, the objective of the current study was to identify the 
changes in plasma proteins and peptides that may be relevant 
in glucocorticoid-induced FHS. Peptide and protein profiles 
were therefore compared to identify qualitative and quantita-
tive differences in both groups.

We identified two peptides derived from the C-terminal 
region of APOA1, which is a major component of HDL as 
well as LDL, VLDL, and IDL.29–31 Prednisolone raises the 
blood levels of both HDL and LDL, which may undergo 
degradation affecting the levels of their peptide fragments. 
Thus, APOA1 peptide fragments can be formed (i) by random 
degradation of their parent proteins during extraction pro-
cedure or (ii) by the action of specific proteolytic enzyme(s). 
Because, in our experiment, both CTRL and FHS samples 
were extracted identically, the differential increase in APOA1 
peptide levels in FHS samples, most probably, is related to the 
physiology of the birds rather than to the extraction proce-
dures. Based on PROSPER analysis, it appears that both 7304 
and 3203 Da fragments could be generated from APOA1 by 
the action of certain cysteine and serine proteases. Glucocor-
ticoids, at high concentrations, induce apoptosis in many cells 
particularly the endothelial cells, which can generate micro-
vascular problems and growth factor deficiencies.32,33 Apop-
totic cell death accompanies the activation of endoproteases 
such as caspase.34,35 During endothelial cell apoptosis, these 
cysteine proteases can degrade HDL generating the APOA1 
peptide fragments. However, the mechanism for the genera-
tion of APOA1 peptide fragments is not clear. Nonetheless, 
the glucocorticoid-induced hyperlipidemia and thromboem-
bolism or endothelial apoptosis raise the possibility of vascular 
and nutritional deprivation in proximal femur. Because, the 
avian growth plate is relatively more vascular than its mam-
malian counterpart,36 the integrity of epiphyseal growth plate 
may be affected because of growth factor deprivation leading 
to its separation from articular cartilage.

Comparison of proteomic data of CTRL and FHS 
groups showed that almost a third of total proteins are 

Figure 1. Histology showing prednisolone-induced bone marrow adipogenesis (arrows indicate adipocytes).

Table 2. Effect of prednisolone on plasma albumin and lipids.

Plasma variables CTRL (n = 11) FHS (n = 9)

Albumin (mg/dL) 1.31 ± 0.0a 1.5 ± 0.0b

Cholesterol (mg/dL) 122.9 ± 3.5a 138.2 ± 3.9b

High density lipoprotein  
(HDL) (mg/dL)

36.6 ± 1.1a 42.2 ± 1.2b

Low density lipoprotein  
(LDL) (mg/dL)

80.8 ± 2.5a 89.5 ± 2.6b

Triglycerides (mg/dL) 27.0 ± 0.5a 32.4 ± 3.2a

Notes: Values are reported as means ± SEM. Values with different 
superscripts indicate P # 0.05.
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Table 3. List of differentially expressed proteins and their relevant GO annotations.

Protein CTRL FHS Significance from GO annotation

Protocadherin 15 + − Adult walking behavior and calcium ion binding

Similar to myosin-9 + − Blood vessel development

Vascular endothelial growth factor C (VEGF) isoform-2 + − Growth factor activity

Aczonin + − Calcium ion binding

Mitogen-activated protein kinase kinase kinase 1 + − Ubiquitin mediated proteolysis

Cullin 2 − + Ubiquitin mediated proteolysis

Thyroid hormone receptor interactor 12 − + Ubiquitin mediated proteolysis

Zinc finger homeodomain 4 + − Regulation of transcription

SET domain containing 1B + − Regulation of transcription

Prohibitin 2 − + Regulation of transcription

Zinc finger homeobox 3 − + Regulation of transcription

Telomeric repeat binding factor (NIMA-interacting) 1 − + Regulation of transcription

common to both while the remaining were group specific. 
We presume that the proteins present only in CTRL samples 
are associated with healthy stage because they were absent in 
the FHS group, and those identified only in the FHS group 
may be associated with the disease. Analyzing these differ-
entially expressed proteins with DAVID showed that the 
proteins associated with GO, such as angiogenesis, ubiquitin-
mediated proteolysis, calcium binding, transcription factors, 
and adult walking behavior, were different in the FHS group. 
The proteins reported here, however, were selected based on 
one of the two criteria: (1) GO was totally absent in FSH but 
present in the CTRL (eg: VEGF) and (2) the same GO was 
present in both groups but the proteins classified under that 
GO were different (eg, some ubiquitin-related proteolysis and 
transcription factors). These differences might be associated 
with the mechanisms for FHS susceptibility in prednisolone-
treated birds.

Protocadherin 15 (PCDH15), a protein associated with 
adult walking behavior,37 and VEGF-C isoform 2,38,39 a protein 
associated with blood vessel development, were conspicuously 
absent in the FHS group. PCDH15 belongs to the cadherin 
family, which are calcium-dependent cell adhesion proteins 
that are involved in cell signaling and mechanotransduction.40 
The impairment of adhesion can increase the vulnerability of 
growth plate to detach from its articular cartilage. It may also 
impair signal transduction mechanisms involved in the joint 
function. Similarly, the absence of angiogenesis-associated pro-
teins VEGF-C isoform 2 and myosin-9 can contribute to “avas-
cular” conditions, which may predispose the birds to FHS.

The GO ubiquitin-mediated proteolysis was present in 
both CTRL and FHS samples. But the proteins cullin 241 
and thyroid hormone receptor interactor 12 (TRIP-12)42 
were present only in FHS samples. By contrast, the CTRL 
contained a different protein, namely, mitogen-activated 
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protein kinase kinase kinase 1, which is also classified 
under the same GO, ubiquitin-mediated proteolysis (http://
www.genome.jp/kegg-bin/show_pathway?map04120).43 
Although direct experimental evidence to correlate these 
proteins and FHS was not found, they may be involved in 
the susceptibility to FHS and healthy conditions, respec-
tively. Both CTRL and FHS samples showed the presence 
of different transcription factors in plasma, among which 
only prohibitin 2 was linked to stress44 while others were not 
characterized in relation to FHS. However, the significance 
of these differentially expressed proteins and their associa-
tion with FHS or glucocorticoid-induced changes remain to 
be understood.

In conclusion, our results suggest that prednisolone-
induced dyslipidemia and deficiencies of growth and adhesion 
factors may cumulatively contribute to the femoral head prob-
lems resulting in FHS. Plasma APOA1 and its degradation 
products may be useful as biomarkers for FHS-susceptible 
birds. Considering the limitation of these studies, which were 
performed in the glucocorticoid model, and idiopathic nature 
of the disease, these markers and association of APOA1, adi-
pogenesis, and adhesion molecules must be verified in future 
using traditional approaches.
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