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Functional consequences of genetic variation in the noncoding human genome are difficult to ascertain despite demonstrat-

ed associations to common, complex disease traits. To elucidate properties of functional noncoding SNPs with effects in

human endothelial cells (ECs), we utilized our previous molecular quantitative trait locus (molQTL) analysis for transcrip-

tion factor binding, chromatin accessibility, and H3K27 acetylation to nominate a set of likely functional noncoding SNPs.

Together with information from genome-wide association studies (GWASs) for vascular disease traits, we tested the ability

of 34,344 variants to perturb enhancer function in ECs using the highly multiplexed STARR-seq assay. Of these, 5711 var-

iants validated, whose enriched attributes included: (1) mutations to TF binding motifs for ETS or AP-1 that are regulators of

the EC state; (2) location in accessible and H3K27ac-marked EC chromatin; and (3) molQTL associations whereby alleles

associate with differences in chromatin accessibility and TF binding across genetically diverse ECs. Next, using pro-inflam-

matory IL1B as an activator of cell state, we observed robust evidence (>50%) of context-specific SNP effects, underscoring

the prevalence of noncoding gene-by-environment (GxE) effects. Lastly, using these cumulative data, we fine-mapped vas-

cular disease loci and highlighted evidence suggesting mechanisms by which noncoding SNPs at two loci affect risk for pulse

pressure/large artery stroke and abdominal aortic aneurysm through respective effects on transcriptional regulation of

POU4F1 and LDAH. Together, we highlight the attributes and context dependence of functional noncoding SNPs and provide

new mechanisms underlying vascular disease risk.

[Supplemental material is available for this article.]

Genome-wide association studies (GWASs) have revealed thou-
sands of associations between genetic variants and clinical pheno-
types. A large majority of disease-associated loci, and thus
functional variants that underpin trait differences, are not pro-
tein-coding (Hindorff et al. 2009). This suggests that noncoding
disease-associated variants alter transcription through mecha-
nisms such as recruitment of transcriptional activators and/or re-
pressors at regulatory elements, or by changing chromatin
conformation. Because regulatory elements, especially enhancers,
are frequently cell type–specific (Roadmap Epigenomics Con-
sortiumet al. 2015) or restrictedby cell state in their activities (Kaik-
konen et al. 2013; Ostuni et al. 2013), identification of disease-
predisposing cells and tissues within the body remains a barrier
toward functional understanding of risk loci.

Despite significant advancements in the catalogs linking hu-
man sequence variants to clinical phenotypes and molecular
‘omic profiles, a major bottleneck in functional genomics re-
mains—namely, pinpointing functional regulatory variants and
their mechanisms of action in relevant biological systems at scale.
The identification of functional variants relative to proxy variants
in high linkage disequilibrium (LD) presents an additional chal-

lenge. Recent studies have begun to map molecular quantitative
trait loci (molQTLs) for gene regulatory traits, such as histonemod-
ification, transcription factor (TF) binding, and chromatin accessi-
bility (Hogan et al. 2017; Alasoo et al. 2018). These studies have
identified allelic differences that associate with quantitative epige-
netic differences in cis. However, causative roles for regulatory var-
iants require experimental validation by separation from linked
variants. To this end, massively parallel reporter assays (MPRAs)
represent a high-throughput solution for experimental validation,
compared to luciferase or EMSA assays, because several thousand
sequences can be tested for regulatory function simultaneously
(Arnold et al. 2013; Kheradpour et al. 2013; Zhang et al. 2018).
Various MPRA techniques have been developed and implemented
to identify genomic sequences and compare allele-specific effects
on enhancer activity (Vockley et al. 2015; Tewhey et al. 2016;
Ulirsch et al. 2016; Liu et al. 2017; Zhang et al. 2018; van
Arensbergen et al. 2019).

In a recent study, wemapped expression quantiative trait loci
(eQTLs) and molQTLs for molecular traits in a set of genetically
diverse human aortic endothelial cells (HAECs) under basal and
pro-inflammatory conditions,mimicked by stimulationwith cyto-
kine interleukin 1 beta (IL1B) (Stolze et al. 2020). This thoroughly
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phenotyped genetic panel of human cells provides a unique op-
portunity to pinpoint functional regulatory variants as well as to
experimentally define genomic features that best correspond to
validation in MPRAs. To this end, we now extend the analysis of
this resource by generating a matching MPRA data set using self-
transcribing active regulatory region sequencing (STARR-seq).
This allowed us to investigate the correlation between allele-specif-
ic activity in STARR-seq andmolQTLs, identify attributes that best
associate with variant effects, and fine-map noncoding variants at
GWAS loci.

Results

STARR-seq validates ETS and AP-1 factor motifs enriched

in HAEC enhancer elements

In STARR-seq, enhancer function was tested by placement of the
198-base pair oligo downstream from a core promoter (origin of
replication, ORI), followed by a poly-adenylation (poly[A]) track,
such that oligos that enhance transcription from the promoter
can be identified by sequencing of the resulting noncoding
RNAs (Fig. 1A). A total of 34,344 bi-allelic variants were selected
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Figure 1. Construction and characterization of the STARR-seq library. (A) Schematic of the STARR-seq library design. A candidate set of 198-bp oligos was
selected based on their overlap with binding (b)QTLs, histone mark (hm)QTLs, chromatin accessibility (ca)QTLs, and cis-eQTLs. Reference and alternative
variants were cloned into a plasmid vector under origin of replication core-promoter. The reporter library was transfected into cultured teloHAECs, and
deep sequencing was conducted. The enrichment of reporter RNA expression over the input DNA library directly and quantitatively reflects enhancer ac-
tivity. (B) Chromatin state distribution of the STARR-seq library regions across the core set of ENCODE samples. STARR-seq library regions were intersected
with previously published genome-wide chromatin partitioning into 18 chromatin states by ChromHMM. (C) STARR-seq library regions that overlap an
enhancer, relative to the total number of enhancers called in the sample. Enhancer coordinates and sample grouping were obtained from EpiMap. (D)
Sharing of STARR-seq library enhancers and promoters across a diverse set of epigenomes. STARR-seq library regions were intersected with the
ChromHMM chromatin states (18-state model) for every sample in EpiMap, an epigenetic compendium spanning the human body. For each STARR-
seq region, the number of samples with a promoter or enhancer overlap was counted. The different enhancer states (active, bivalent, genic, and weak)
were combined, as were the promoter states (active TSS, bivalent TSS, flanking TSS, flanking TSS upstream, and flanking TSS downstream).

Toropainen et al.

410 Genome Research
www.genome.org



to test for allele-specific enhancer activity in our STARR-seq library.
Alleles were either present as the sole variant nucleotide, when no
other variants in the 198-bp window were present (30% of oligos),
or in existing European haplotypes when additional polymorphic
variants (5% minor allele frequency [MAF]) were located within
the window (63% of oligos; up to the top five most frequent hap-
lotypes represented, based on 1000 Genomes EUR reference popu-
lation) (Supplemental Fig. S1C). SNP selectionwas based on one of
two approaches. First, we utilized our recent QTL analyses (Stolze
et al. 2020) to prioritize variants (58% SNPs in the library) using
combinations of the following attributes: (1) significance as a
SNP underlying molQTLs (chromatin accessibility [caQTL], his-
tone H3 lysine 27 acetylation (H3K27ac; hmQTL), and DNA bind-
ing of the TFs ERG and RELA (a component of NF-kB; bQTL) and/
or eQTLs (RNA-seq and microarray) in HAECs; (2) allele-specific
mutation to TF binding motifs; and (3) GWAS for coronary artery
disease (CAD) (Supplemental Fig. S1B; Methods). Second, GWAS
variants associated with CAD, myocardial infarction, and type 2
diabetes and overlapping accessible chromatin elements in several
disease-relevant cell types were selected (41% SNPs in the library)
(Methods). Additionally, 265 control regions were also included,
resulting in 59,976 unique oligos (Supplemental Fig. S1A).

To further categorize the regions included in the STARR-
seq library, we annotated the library utilizing the 18-state chroma-
tin annotation model generated using ChromHMM for the
Encyclopedia of DNA Elements (ENCODE) core sample set (Boix
et al. 2021). Approximately 67% of the STARR-seq library regions
are categorized into one of the active chromatin states in human
umbilical vein ECs (HUVECs), with ∼36% as enhancers, 7% as
transcription start sites (TSSs)/promoters, and 24% as other tran-
scribed regions (Fig. 1B). Using enhancer and promoter regions de-
fined by the EpiMap compendium (Boix et al. 2021), where
chromatin states were surveyed across 833 samples spanning the
human body, 82% of STARR-seq library regions overlap an en-
hancer in at least one cell or tissue type, 8% overlap a promoter,
and 5% overlap regions that are variably annotated as promoter
or enhancer depending on the sample (Fig. 1C,D). Enhancer anno-
tations of the STARR-seq regions are less frequently shared be-
tween multiple cell types than annotations of promoters (Fig.
1D). The fraction of STARR-seq oligos overlapping active enhanc-
ers differs across different cell types and tissues, with the highest
representation seen for endothelial enhancers (Fig. 1C), whereas
promoter representation by tissue or cell type is much less variable
(Supplemental Fig. S2). These data are consistent with the promot-
er chromatin state being less variant across cell types and tissues
than enhancers and demonstrates that our STARR-seq library was
enriched for endothelial cell regulatory elements relative to other
cell types.

The STARR-seq library was transfected into teloHAECs
(HAECs immortalized with hTERT) and enhancer activity was
quantified as the ratio of transcripts from each oligo relative to
the amount of DNA plasmid for that oligo (i.e., RNA/DNA ratio).
As shown in Figure 2A and Supplemental Figure S3, reporter activ-
ity for individual oligo sequences was highly concordant across
triplicate biological replicates. Oligos fromgenomic loci exhibiting
active enhancer elements inHUVECs (fromFig. 1B) had greater en-
hancer activity by STARR-seq compared to both oligos derived
from negative control regions (i.e., lacking any ENCODE [The
ENCODE Project Consortium 2012] active chromatin marks) and
scrambled sequences (Fig. 2B). This demonstrates that regions
with enhancer activity in the STARR-seq assay were indicative of
EC gene regulation.

To evaluate the cell type–specificity of STARR-seq signal
strength, we intersected STARR-seq regions with the enhancer re-
gions of more than 350 ENCODE samples individually and tabu-
lated how many ranked within the top 10% of active STARR-seq
regions as measured in teloHAECs. The results reveal that enhanc-
ers demarked in EC samples aremore likely than other cell types to
generate high STARR-seq activity in teloHAEC (P=2.24×10−8 for
ECs vs. others by Wilcoxon rank-sum test) (Fig. 2C). Further, de
novo motif analysis of the upper 10th percentile of STARR-seq re-
gions by enhancer reporter activity uncovered enrichment for the
AP-1 (FRA1), ERG (ETS), and SOX family TFmotifs when compared
to all other regions in the STARR-seq library (Fig. 2D). This is con-
sistent with our previous reports that these motifs are enriched in
HAEC enhancers in the native chromatin context (Kaikkonen
et al. 2014; Hogan et al. 2017). More specifically, the ETS motif
was frequently bound by ERG in HAECs, which is an essential TF
that regulates vascular development in mice (Lathen et al. 2014;
Birdsey et al. 2015). Similarly, the AP-1motif was also found as en-
riched at HAEC enhancers and bound by JUN (Hogan et al. 2017).
These data provide evidence of concordance between enhancer ac-
tivitymeasured by STARR-seq in teloHAECs, by ChIP-seq in the ge-
nomic context of HAECs, and by ECs from other tissues. Based on
the analyses of enhancer activity, we expect that the STARR-seq
system is a reliable means to quantify allele-specific effects of com-
mon genetic variation on the EC regulome.

Among sequence attributes, TF motif mutations are most

enriched for allele-specific regulatory activity

To assess differential enhancer activity between alleles in the
STARR-seq library, we employed the mpralm method (Myint
et al. 2019) from thempra R package that uses linear models to an-
alyzeMPRAdata (Lawet al. 2014). Of the 34,344 variants tested for
allele-specific activity, 3829 variants (11.14% of variants quanti-
fied) were significant at 5% FDR in untreated teloHAECs (Fig.
3A). For simplicity, these variants are referred to as STARR-seq “val-
idated” variants.

To test whether sequence-based genomic features differenti-
ated validated from unvalidated variants, we evaluated the follow-
ing metrics or test variables: (1) GC content in the STARR-seq
oligos; (2) genomic distance of variants to the nearest TSS; (3) av-
erage sequence conservation across vertebrates in oligo sequences;
and (4) SNPs that mutate TF binding motifs. Enrichment scores
(ESs) were calculated in each analysis by dividing the observed
number of the test variable (e.g., GC content between 0.8 and 1)
in the validated STARR-seq SNP set by the number that we would
expect by the number of the test variable included in the STARR-
seq library. Enrichments were verified using statistical testing by
a hypergeometric test (Methods). Of the genomic features tested,
we observed that oligos with GC content between 0.368 and
0.478 tended to harbor SNPs with allele-specific enhancer activity;
similarly, regionswith greater conservation scores weremore likely
to validate, and variants thatwere farther fromTSSswere alsomore
likely to validate than the other groups (Supplemental Fig. S4A).
Notably, regions with 60%–70%GC content were underrepresent-
ed in the library with a concurrent increase in data variability,
whereas GC>80% was rarely detected, suggesting that high GC
content limits the detection accuracy (Supplemental Fig. S4B,C).
Still, only 2% of the input library had GC>70%, which is why
we expect this to minimally affect downstream analysis.
Additionally, TF motif-mutating SNPs were significantly associat-
ed, as a set, with allele-specific regulatory activity (Fig. 3G); we
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reasoned this relationship was driven by a particular set of motifs
corresponding to EC-lineage determining TFs. Among the TF mo-
tifs with strongest associations were members of the AP-1 family
(AP-1, BATF, ATF3/7), as well as members of the ETS family
(EWS, ETV2, ERG, ETS1) (Fig. 3B). Mutations to both AP-1/ATF3
and ETS/ERGmotifs were enriched in validated SNPs over expecta-
tions (ES scores). In addition to qualitative enrichment, we also ob-
served that SNPs whose alleles produced a greater deviation from
an established position weight matrix (PWM) achieved more sig-
nificant STARR-seq allelic P-values (Fig. 3C,D). These data are con-
sistent with AP-1 and ETS interactions at these loci being
important for HAEC regulatory function.

It is reported that support vector machine (SVM) models ap-
plied to in vitro TF-DNA binding measurements from SNP evalua-
tion by systematic evolution of ligands by exponential enrichment
(SNP-SELEX) experiments more accurately explain effects of allelic
mutations to TFmotifs than positionweightmatrices for some TFs
(Yan et al. 2021). Therefore, we tested if SVM models were better
indicators of allelic validation in our STARR-seq data set than
PWMmutation results. All 94 TF bindingmodels that were consid-
ered to be high-confidence by the original authors were used with

reported thresholds for affecting binding. Among the 30,792 SNPs
queried, TFs were predicted to bind 28,885, and among those,
5615 SNPs demonstrated predicted allele-dependent gain or loss
of binding. Besides ETS family factors, SVM-predictions were
most successful for AP-1- and CREB-like motifs (JDP2, ATF3,
CREB1, etc.) (Supplemental Fig. S5). We observed a significant cor-
relation between SVM-based and PWM-based predicted allelic ef-
fects for many motifs, including ERG and ATF3 (Fig. 3E,F).
Though predicted effects of both approaches were enriched in val-
idated SNPs, SVM effects were slightlymore associatedwith valida-
tion in STARR-seq. These data underscore the utility for both PWM
and SVM methods for identification of functional SNPs in
enhancers.

Among epigenetic attributes, transcription factor binding most

significantly associates with allelic effects in STARR-seq

Epigeneticmarks such as chromatin accessibility andhistonemod-
ifications that are measured in native chromatin contexts are fre-
quently used to signify genomic loci with enhancer function
and to prioritize functional regulatory SNPs. By relating validated
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Figure 2. Enhancer activity profile of the STARR-seq reporter regions in teloHAEC cells. (A) STARR-seq replicate correlations for the measured reporter
activity of library inserts normalized to DNA amounts in the input plasmid pool (the RNA/DNA ratio). (B) Cumulative distribution of enhancer activity
(RNA/DNA ratio) for oligos overlapping active enhancers in HUVECs, compared to 100 scrambled regions,100 negative region oligos (that did not overlap
any active chromatin marks in the ENCODE study). The activity distributions of the all STARR-seq regions and the top 10% most active regions are also
shown.When selecting the top 10%most active STARR-seq regions, only the allele with the highest activity was considered for each region. (C ) For different
epigenomes, the fraction of enhancer-overlapping STARR-seq regions that are among the top 10% most active STARR-seq regions, as measured in
teloHAECs. The active enhancers of each ENCODE samplewere intersectedwith STARR-seq library regions to obtain the epigenome-specific set of enhancer
overlapping oligos, which was then intersected with overall strongest reporter signals from teloHAEC STARR-seq. The top 10% regions were selected as in
panel B. (D) De novomotif analysis of the STARR-seq regions showing enhancer activity within the upper 10th percentile in teloHAECs. The top 10% regions
were selected as in panel B, and motif enrichment was calculated against all other regions in the library.
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STARR-seq SNPs with genomic data measured in ECs, we sought to
better understand what genomic features are most associated with
validation. To achieve this, we utilized our previously generated
chromatin accessibility data by ATAC-seq among 44 genetically
distinct HAEC donors, H3K27ac measured by ChIP-seq across 42
HAEC donors, and the binding of the EC-relevant TF, ERG by
ChIP-seq across 22 HAEC donors (Stolze et al. 2020). Of SNPs
that were included in our STARR-seq library, 18,457were in a chro-
matin accessibility peak,H3K27ac peak, or ERGbindingpeakwith-
in HAECs, and 2615 of these validated with allele-specific

enhancer effects by STARR-seq (Fig. 4A). Upon calculating enrich-
ment scores, we initially found an enrichment of STARR-seq-vali-
dated SNPs in HAEC-accessible regions, H3K27ac marked
regions, and ERG binding regions; however, SNPs at H3K27ac
peaks were less enriched for functional effects (Fig. 4B). This led
us to consider one major distinction between these data types;
namely, the size of the peaks. ATAC-seq and ERG binding by
ChIP-seq generates focal peaks (median 90 bp and 280 bp, respec-
tively), whereas H3K27ac ChIP-seq produces distributed peaks
(median 1492 bp) (Fig. 4C). We hypothesized that functional
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Figure 3. Allele-specific enhancer function is associated with motif mutations. (A) Volcano plot of allele-specific effects in STARR-seq with the log2 fold
change on the x axis and −log10 false discovery rate on the y-axis. All oligos, representing both reference and alternative alleles for each variable position,
from each replicate were analyzed. (B) Dot-plot presenting the hypergeometric enrichment –log(P-value) and KS testing –log(P-value) of the top 50 most
enriched motifs mutated in the validated set from STARR-seq. Motifs that are directly for ETS family or AP-1 family transcription factors are indicated. (C)
PWM motif mutation score density for ERG motif mutations in validated (red) and nonvalidated (gray). (D) PWM motif mutation score density for ATF3
motif mutations in validated (red) and nonvalidated (gray). (E) PWMmotif mutation score (x-axis) versus the SVMmotif mutation score for ERG motif mu-
tation SNPs. (F ) PWMmotif mutation score (x-axis) versus the SVMmotif mutation score for ATF3 motif mutation SNPs. (G) Enrichment of SVM (blue) and
PWM motif mutations scores (orange) in the STARR-seq-validated set.
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SNPs aremore likely to occur in H3K27ac regions when they are lo-
cated near nucleosome-free regions (NFRs), where TFs bind DNA.
Restricting H3K27ac regions around their centers (100 bp, 200
bp, and 400 bp) improved enrichment scores for STARR-seq-vali-
dated variants, demonstrating that SNPs closer to the center of
the H3K27ac regions are more likely to perturb enhancer function
than those further away (Fig. 4B). This is consistent with ERGbind-
ing having the highest enrichment among epigenetic attributes,
which would bind in the NFR.

Wenext askedwhether SNPs in accessible regions in ECswere
more likely to validate than SNPs that were open in another cell
type but closed in ECs. Using DNase I hypersensitivity peaks
from 95 cell types in ENCODE, we found that open regions shared

withHAECs are farmore likely to validate
than SNPs in open regions that are closed
in HAECs (Fig. 4D). Extending this anal-
ysis to 350 ENCODE samples from Epi-
Map (Boix et al. 2021), variants residing
in EC enhancers showed a higher propor-
tion of significant allelic effects than oth-
er samples (P=1.29×10−5 for EC samples
compared to others using the Wilcoxon
rank-sum test) (Supplemental Fig. S6A).
Along these same lines, we observed di-
minished enrichment for HAEC-accessi-
ble SNPs when the same STARR-seq
library was transfected into HepG2 (Sup-
plemental Fig. S6B; Selvarajan et al.
2021). These data are consistentwith pre-
vious reports demonstrating that cell
type is an important determinant for
which regulatory elements, motifs, and
allele-specific effects are detectable
(Tewhey et al. 2016).

SNPs underlying molecular quantitative

trait loci frequently validate

in STARR-seq

MolQTL mapping is one approach to
identify functional noncoding variants.
InmolQTL analysis of epigenetic data, al-
leles/genotypes are tested for association
with differences in quantitative epige-
netic traits measured at a given locus.
Significant molQTLs provide evidence
for functional regulatory SNPs and often
suggest a mechanism of action (e.g., an
allele that perturbs TF binding). In prior
work, we identifiedmolQTLs for chroma-
tin accessibility, H3K27ac histone modi-
fication (hmQTLs), and ERG binding
(bQTLs) in untreated HAECs (Stolze
et al. 2020). Of the SNPs input into our
STARR-seq library, 8313 were significant
molQTLs (at 5% FDR), with 1618 of these
validating by STARR-seq (Fig. 4E). We
found that each set of molQTLs was sig-
nificantly enriched for validation by
STARR-seq, with modest but significant
correlation between STARR-seq valida-
tion statistics and molQTL effect sizes

(Fig. 4F; Supplemental Fig. S7A,B,D,E,G,H). It is important to
note that the enrichments we observe for molQTLs are in addition
to the enrichments noted for epigeneticmarks alone (Fig. 4B). This
is because only SNPs within the epigenetic peaks (H3K27ac ChIP-
seq peaks; ATAC-seq peaks; TF peaks) were tested in molQTL anal-
ysis. For example, of SNPs polymorphic in the HAEC population at
5% MAF, 0.57% reside in ERG binding peaks in the human ge-
nome; however, 7.65% of SNPs tested in our STARR-seq are in
ERG genomic peaks (13.4-fold enrichment over genomic). In con-
trast, we observed that 22% of STARR-seq-validated SNPs are in
ERG genomic peaks (2.9-fold over expectation). Further, only
SNPs in ERG peaks were included in ERG bQTL analysis, and
only 1.5% of SNPs in ERG peaks are significant ERG bQTLs.
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Figure 4. Epigenetic traits are linked to validation in STARR-seq. (A) Venn diagram comparing the num-
ber of SNPs in an open chromatin region in HAECs (bottom), in an H3K27ac peak (right), or validated in
STARR-seq (left). (B) Enrichment of SNPs in epigenetic trait peaks in the STARR-seq-validated SNP set.
H3K27ac (top four) restricted to various sizes around the center of the peak. (C) Peak size density of
ATAC-seq peaks and H3K27ac ChIP-seq peaks. (D) Enrichment of SNPs in ENCODE open regions that
are shared and not shared with HAECs. (E) Venn Diagram comparing the number of SNPs that are
molQTLs (right) and validated in STARR-seq (left). (F) Enrichment of molQTL SNPs in STARR-seq-validated
SNPs. (G) Heat map of number of STARR-seq-validated SNPs in subsignificant molQTL bins.
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Among SNPs mutually tested in ERG bQTL analysis and our
STARR-seq library, 14% are significant ERG bQTLs. In contrast,
we observed that 23% of STARR-seq-validated SNPs are ERG
bQTLs (1.64-fold over expectation). These values are provided for
each epigenetic mark analyzed in Table 1.

Among molQTLs, ERG bQTLs were most enriched, support-
ing ERG’s importance in EC gene regulation (Fig. 4F). This result
was replicated for bQTLs and caQTLs using Kolmogorov–
Smirnov (KS) testing (P<0.001) (Supplemental Fig. S7C,F,I). The
relatively lower enrichment of hmQTLs could be explained by
the broader size of peaks compared to bQTLs and caQTLs reducing
the power to detect enrichment or histone modifications being
less sequence-dependent than TF binding (Heinz et al. 2013;
Huang and Ovcharenko 2015). Based on these analyses, we con-
clude that molQTLs effectively prioritize functional variants with
focal epigenetic traits as most significantly associated. Still, we
were interested that there is a subset of validated SNPs that are
not significant molQTLs. We suspect
this could be due to low statistical power,
given the modest sample size of individ-
uals submitted to molQTL analysis
(n∼20–50). Consistent with this hypoth-
esis, we observed an increased concentra-
tion of validated STARR-seq SNPs in P-
value bins just above themolQTL signifi-
cance threshold (Fig. 4G), leading us to
conclude that suboptimalmolQTLs pow-
er in part explains the incomplete over-
lap between molQTLs and STARR-seq
validated SNPs.

Allele-specific enhancer activity reveals

interactions between genetic variation

and environment

Gene-by-environment (GxE) interactions
are one mechanism by which alleles can
protect or predispose individuals to
develop complex traits, including disease.
In this study, we modeled the effect of an
inflammatory environment on endothe-
lial cells in culture by pro-inflammatory
cytokine IL1B stimulation, which is a

knownhallmark anddriver of disease progression, such as in athero-
sclerosis (Ridker et al. 2017). Using the same STARR-seq library, we
measured enhancer activity in teloHAECs exposed to IL1B for 6
and 24 h, which loosely mimics early and late transcriptional re-
sponses to inflammation (Fig. 5A). In total, 3297 regions (5.6% of
the 59,058 regions tested) had differential enhancer activity be-
tween treatments (2695 up-regulated by IL1B treatment, 602
down-regulated by IL1B treatment) (Supplemental Fig. S8A,B). As
expected, the NF-kB motif was enriched in the regions with in-
creased enhancer activity after IL1B treatment (Supplemental Fig.
S8C; Hogan et al. 2017). Likewise, the ERGmotif was enriched in re-
gions with decreased enhancer activity after IL1B treatment
(Supplemental Fig. S8C). This could be explained in part by the
down-regulation of ERG protein upon pro-inflammatory stimula-
tion (Yuan et al. 2009).

We identified 5711 SNPs with allele-specific enhancer activi-
ty in at least one IL1B treatment condition (0-h, 6-h, or 24-h) with

Table 1. Percentages of SNPs meeting epigenetic, molQTL, and STARR-seq library criteria

ERG ATAC H3K27ac

In peaks
bQTLs

(in peaks) In peaks
caQTLs

(in peaks) In peaks
hmQTLs
(in peaks)

Of all genotyped
SNPs in HAECs (at
MAF >5% in given
data set)

0.5724%
(36,478/6,372,621)

0.00874%
(557/6,372,614)

1.6593%
(110,509/6,659,935)

0.05863%
(3905/6,659,935)

6.1126%
(404,620/6,619,412)

0.3871%
(25,621/6,619,412)

Of mutually tested
SNPs in the STARR-
seq library

7.6475%
(2574/33,658)

14.025%
(315/2246)

16.7895%
(5651/33,658)

39.0316%
(1854/4750)

51.2657%
(17,255/33,658)

49.5587%
(7244/14,617)

Of allele-specific SNPs
by STARR-seq

22.0162%
(843/3829)

22.72%
(177/779)

37.7906%
(1447/3829)

59.1177%
(804/1360)

62.0005%
(2374/3829)

55.9981%
(1195/2134)

Of SNPs in given data
set’s peaks

N/A 1.5269%
(557/364,78)

N/A 3.5336%
(3905/110,509)

N/A 6.3321%
(25,621/404,620)

B

A

C

Figure 5. IL1B treatment trends with molQTLs and motif mutations. (A) Diagram of treatment design
and Venn diagram of SNPs that validated in untreated (left), IL1B-treated for 6 h (right), and IL1B-treated
for 24 h (bottom). (B) Heatmap of enrichment scores comparing SNPs uniquely in specific treatment con-
ditions between STARR-seq and the molQTLs (i.e., SNPs only significant in STARR-seq 0-h and not in 6-h
or 24-h IL1B-treated). (C) Heat map of enrichment scores comparing SNPs uniquely in specific treatment
conditions between STARR-seq and the motif mutations.
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27% of these having shared effects across all treatment conditions
(Fig. 5A). The 6-h IL1B treatment had the least number of signifi-
cant results (n=2294 SNPs), with the majority being similarly sig-
nificant in either the 0-h or 24-h treatments. Thus, the 0-h and 24-
h treatments uncover most SNPs that perturb enhancer activity.
This could be indicative of the slightly lower similarity across 6-h
replicates, or perhaps reflect a limitation of our bulk assay when
in fact individual cells are in various transition activation states
(Supplemental Fig. S3).

We next evaluated relationships between allelic effects by
STARR-seq (IL1B at 6 and 24 h) and previously published
molQTL results that were measured in HAECs after 4 h IL1B treat-
ment (Stolze et al. 2020). Though there was widespread enrich-
ment across the STARR-seq data sets for several molQTL data
sets, wedid observe differenceswith intriguing implications. As ex-
pected, IL1B- restricted caQTLs validated with a higher ES in IL1B-
restricted STARR-seq data sets than in the untreated STARR-seq
data set. However, HAEC ERG bQTLs restricted to basal conditions
were enriched by STARR-seq in 0-h and 24-h IL1B treatment. In
contrast, HAEC ERG bQTLs that were uniquely detected after
IL1B treatment were most enriched in the STARR-seq-validated
SNPs at the 6-h IL1B treatment (Fig. 5B).We also observed different
rates of TF motif mutations (Fig. 5C), where both ERG and AP-1
motif mutations were most pronounced for SNPs with distinct al-
lelic effects in the 6-h STARR-seq time point, whereas NF-kB
motif mutations were preferentially evident in both IL1B STARR-
seq time points compared to 0 h. Taken together, these data dem-
onstrate the prevalence of GxE on enhancer activity and under-
score that SNPs affecting chromatin accessibility and binding of
TFs can exert their effects only in particular cellular activation
states.

Validated functional SNPs fine-map GWAS signals

for vascular diseases including abdominal aortic aneurysm

and large artery stroke

To identify functional noncoding SNPs at GWAS loci, we cross-ref-
erenced our data generated in ECs with SNPs underlying GWAS
signals for traits with appreciated vascular etiology. After restrict-
ing SNPs to those that validated by STARR-seqwith at least one sig-
nificantmolQTL and an association (lead or proxy) with a vascular
GWAS trait, we report 89 high-confidence functional regulatory
SNPs that are associatedwith a variety of complex vascular diseases
(Supplemental Fig. S9A; Supplemental Table S1), 14 of which are
associated with coronary artery disease (Table 2; Supplemental
Table S2). One of these SNPs, rs17114036, has already been shown
to alter enhancer function for the shear stress-induced transcript
phospholipid phosphatase 3 (PLPP3 [previously known as
PPAP2B]), thus serving as a positive control in our approach
(Table 2; Krause et al. 2018). We also see evidence for functional
noncoding SNPs at the 9p21 CAD locus and the rs17293632 SNP
in the SMAD familymember 3 (SMAD3) locus that has been exten-
sively characterized in smooth muscle cells of the vascular wall
(Miller et al. 2016; Turner et al. 2016). We find evidence that the
SMAD3 intronic SNP rs17293632 affects enhancer activity in
ECs, and we further confirm that CRISPR-mediated deletion of
the overlapping enhancer leads to significant reduction in the
SMAD3 expression in teloHAECs (Supplemental Figs. S9, S10).
However, lack of an eQTL in HAECs at rs17293632 and conflicting
eQTL directions in GTEx obscures mechanistic interpretations.

Two loci exhibited exceptional evidence for functional regu-
latory SNPs at enhancers that regulate target genes and modulate

risk for (1) abdominal aortic aneurysm, and (2) large artery stroke
and pulse pressure. Here, we present evidence for functional non-
coding SNPs rs13385499 and rs13382862 at the lipid droplet asso-
ciated hydrolase (LDAH) gene locus, and rs4304924 at the POU
class 4 homeobox 1 (POU4F1) locus.

At a GWAS locus for abdominal aortic aneurysm (AAA) (Jones
et al. 2017), two SNPs, rs13385499 and rs13382862, validated in
STARR-seq at all time points and underlie RELA bQTLs in HAECs
(Table 2; Supplemental Fig. S11A–C). SNPs rs13385499 and
rs13382862 are in LD with each other (EUR R2 = 0.79; HAEC pop-
ulation R2 = 0.89) (Machiela and Chanock 2015). Both SNPs cause
multiple motif mutations, including for RUNX (rs13385499) and
ERG (rs13382862) motifs, which directionally coincide with the
RELA bQTL (Supplemental Fig. S11D). These SNPs are at the 3′

end of the LDAH gene and demonstrate associationwith transcript
expression levels of LDAH in HAECs (Supplemental Fig. S11A,E).
In addition, both SNPs are eQTLs for LDAH in the same direction
in multiple GTEx tissues including for artery aorta (Supplemental
Fig. S11F). LDAH has been associated with cholesterol deposition
in atherosclerotic plaques (Goo et al. 2014); however, the role of
LDAH in ECs has not been well described. LDAH is highly ex-
pressed in teloHAECs, enabling us to test whether this enhancer re-
gion specifically regulates LDAH expression. Targeted deletion of
the 456-bp enhancer carrying both SNPs in teloHAECs resulted
in decreased LDAH expression with no statistically significant ef-
fect on other nearby genes (Supplemental Table S3; Supplemental
Figs. S10A, S11G). Unfortunately, GWAS summary statistics for the
AAA GWAS are not publicly available, precluding evaluation of
whether or not the eQTL and GWAS signals are likely to be caused
by the same genetic signal.

Another interesting locus is located on Chromosome 13 at a
pleiotropic GWAS signal for large artery stroke and pulse pressure
(Dichgans et al. 2014; Evangelou et al. 2018).We identified that al-
leles of rs4304924 co-associate with POU4F1 transcript abundance
in HAECs and in arterial tissues of GTEx (Fig. 6A,B). Importantly,
rs4304924 is the lead SNP at this locus for both pulse pressure,
large artery stroke, and POU4F1 expression in HAECs and GTEx,
strongly supporting rs4304924 as causal (Fig. 6A; Supplemental
Fig. S12). We observe marks of a regulatory element, demarked
by chromatin accessibility, ERG binding, and H3K27ac at the ge-
nomic locale of rs4304924, which is located ∼61 kb upstream
(Fig. 6A, beneath locusZoom plots). Furthermore, rs4304924 is
an hmQTL (q=3.4 ×10−8) (Fig. 6C) in HAECs with the reference
G allele predicted to mutate a CRX/GSC homeobox TF motif
(Fig. 6D). Lastly, the alternate A allele demonstrated significantly
greater enhancer activity by STARR-seq in all time points tested
(Fig. 6E). POU4F1 is a gene that encodes for a homeobox transcrip-
tion factor with described roles in neuronal differentiation
(Fedtsova and Turner 1995) and yet unknown roles in vasculature.
Taken together, our data prioritize further inquiry into what role
POU4F1 plays in the arterial vasculature.

Discussion

In this study, paired MPRA and epigenetic data from genetically
diverse HAECs enabled a series of discoveries. Importantly, it al-
lowed us to specify which genomic features most often describe
SNPs with functional effects on enhancer activity. Our findings
suggest that functional noncoding SNPs likely have one or more
of the following attributes: (1) an allelic mutation to a TF binding
motif for a factor with an important role in the cell type and/or cell
state of interest; (2) genomic location in a region marked by

Toropainen et al.

416 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276064.121/-/DC1


T
ab

le
2
.

Se
le
ct

lis
t
o
f
cr
ed

ib
le

fu
n
ct
io
n
al

n
o
n
co

d
in
g
SN

Ps

Functional noncoding SNPs in endothelial cells

Genome Research 417
www.genome.org



accessible chromatin and H3K27ac; and (3) association to an epi-
genetic measurement in cis- (molQTL), with effects on chromatin
accessibility and TF binding beingmost significant. Using IL1B as a
modulator of cell state and environmental simulant, we observe
robust evidence for context-specific regulatory SNPeffects, thereby
underscoring the prevalence of GxE effects on enhancer function.

We find that AP-1 and ETS motif mutations are the most en-
riched at functional regulatory loci detected in our STARR-seq ex-
periment (Fig. 3). Previous findings indicate that perturbed ERG
and JUN bindings are likely affected by these motif mutations, al-
though other members of the ETS and AP-1 families could also be
affected (Hogan et al. 2017). The enrichment of functional muta-
tions in ETS and AP-1 motifs is consistent with other reports dem-
onstrating that functional mutations in regulatory elements often
reveal motifs of TFs that are selectively active in the respective cell
types (van Arensbergen et al. 2019). Additionally, both AP-1 and
ETS factors are recognized as pioneering factors, able to establish
accessible chromatin, that serve as binding sites for collaborating

TFs. We and others have previously shown that genetic variants
that perturb the binding of AP-1 and ETS factors consequently af-
fect binding of signal-dependent TFs (Heinz et al. 2013; Hogan
et al. 2017; Alasoo et al. 2018). Irrespective of cell type, AP-1motifs
have been shown to produce high enhancer activities (Nguyen
et al. 2016), whereas ETS factors seem to show high episomal activ-
ity (Klein et al. 2020), suggesting that these motifs might be more
evident in validated elements byMPRAs. Still, based on similar en-
richment values of STARR-seq-validated SNPs, we show that SVM-
based ERG motif mutations have only slightly lower enrichment
among validated SNPs than the combination of being within
an ERGpeak and an ERGbQTL, supporting the high value ofmotif
mutation prediction in identifying functional SNPs. Importantly,
many validated SNPs did not fall into any motif mutations. This
could be due to poor prediction power of the PWM for weak TF
binding and the lack of SVM-based binding models for all TFs
and highlights the need for improved algorithms to identify func-
tional variants in the future (Yan et al. 2021).

E

BA

C

D

Figure 6. Large artery stroke- and pulse pressure–associated locus at gene POU4F1. (A) Locus zoom plots depicting the SNPs present in the region sur-
rounding POU4F1 locus and the –log(P-values) in the following data sets: eQTL within HAECs (Stolze et al. 2020); eQTLs in artery aorta by GTEx; GWAS
statistics for pulse pressure (Evangelou et al. 2018); andGWAS statistics for large artery stroke (Dichgans et al. 2014). Additional information about genomic
region is at the bottom, containing the putative enhancer where rs4304924 resides and the surrounding genes. Tracks display H3K27ac, ATAC-seq, ERG
binding, RELA binding, and RNA-seq expression from HAECs. (B) POU4F1 gene expression in HAECs by microarray (Probe set ID: 206940_s_at) and three
arterial tissues from GTEx compared between genotypes at rs4304924. (C ) RPKM-normalized H3K27ac tags in HAECs surrounding the rs4304924 SNP by
genotype. (D) PWM for the CRX/GSCmotif and themotif sequences created by the two alleles at rs4304924. (E) STARR-seq allele-specific expression (RNA/
DNA ratio) for rs4304924 across the different treatment points.
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Many SNPs that fit the epigenetic and/or mutation criteria
outlined above did not validate in STARR-seq. This could be ex-
plained by the possibility that (1) causal alleles of weak effect
may fall below the limit of detection in STARR-seq, or (2) their
detection requires longer sequence context that is not captured
in the 198-bp oligo, (3) SNP effects might require the endogenous
genomic position, chromatinization not captured by episomal as-
says, and (4) perturbations of silencing effects by alleles are unlike-
ly to be detected due to the low basal activity of the minimal
promoter. These are limitations that should be addressed in future
experimental iterations. Further insight into such discrepancies
between genomic features and MPRA results will be necessary to
accelerate discovery into the functional noncoding genome.

A major motivation for this study was to fine-map functional
noncoding variants at disease loci for complex human vascular
diseases, as summarized in Table 2. These include the SMAD3 locus
where rs17293632 introduces an AP-1 motif mutation and repre-
sents a candidate causal variant in smooth muscle cells (Miller
et al. 2016; Turner et al. 2016; Zhao et al. 2019; Örd et al. 2021).
Despite the absence of cis-eQTL for SMAD3 in HAECs, we demon-
strate that deletion of the rs17293632-carrying enhancer does
abrogate SMAD3 expression in ECs (Supplemental Fig. S9F),
suggesting potential context dependence of this enhancer variant
on gene expression. The current study is the first study to implicate
this SNP in ECs. Still, further investigation will be required to dis-
sect mechanisms of action at this interesting locus.

One of the most interesting findings from our study was the
in-depth characterization of a locus associated with large artery
stroke and pulse pressure.We present strong evidence for the caus-
al role of rs4304924 in an enhancer regulating expression of
POU4F1 (Fig. 6). The G allele of this SNP mutates a homeobox TF
motif, exhibits diminished H3K27ac in the adjacent chromatin,
and has reduced POU4F1 expression compared to the A allele.
This eQTL is replicated in all three arterial GTEx tissues. To our
knowledge, there are no publications linking this transcript with
function in the arterial vasculature. The other most interesting
finding is at a locus associated with AAA where we find two
SNPs, rs13385499 and rs13382862, whose alternate alleles corre-
spond to diminished RELA binding and expression of the nearby
gene LDAH (Supplemental Fig. S11). The alternate alleles mutate
TF motifs, and rs13382862 is likewise an eQTL for LDAH in
GTEx’s artery aorta data set. A limitation of this finding, however,
is the lack of GWAS summary statistics to evaluate shared signal
strength between eQTL and GWAS results. Still, our findings sup-
port a role for these SNPs in enhancer function in HAECs that war-
rants deeper investigations. LDAH itself has beenmostly described
in macrophages where up-regulation of LDAH is linked with a re-
duction in intracellular cholesterol (Goo et al. 2014; Robichaud
et al. 2021). LDAH has also been shown to be highly expressed
in macrophage-laden atherosclerotic plaques (Goo et al. 2014).

Taken together, the implication of our findings is that a com-
prehensive understanding of noncoding functional SNPs will re-
quire experimental observations from comprehensive sets of cell
types and cell states. Such context specificity exemplifies the vast
complexity of gene regulatory networks.

Methods

Quantitative trait locus analysis

All QTL analysis was done in a prior study (Stolze et al. 2020).
Briefly, eQTL analysiswas performed using the programmatrixeqtl

(Shabalin 2012) for SNPs within 1Mb of the test gene on three sep-
arate data sets: RNA-seq collected for 53 HAEC donors in untreated
conditions; RNA-seq collected for 53 HAEC donors under 4-h IL1B
treatment; and microarray expression collected for 157 HAEC do-
nors in untreated conditions. eQTL analysis was followed by a P-
value calculation on the gene level (SNP P-values were corrected
for all the SNPs tested for a specific gene’s expression). eQTLs
were called using an adjusted P-value threshold of 0.05. Molecular
QTL analysis was performed using the program RASQUAL (Kuma-
saka et al. 2016) on seven separate data sets: ChIP-seq for transcrip-
tion factor ERG binding in 22 HAEC donors in untreated
conditions; ChIP-seq for ERG binding in 20 HAEC donors under
4-h IL1B treatment; ChIP-seq for H3K27ac in 42 HAEC donors in
untreated conditions; ChIP-seq for H3K27ac in 42 HAEC donors
under 4-h IL1B-treated conditions; ChIP-seq for transcription fac-
tor RELA (NF-kB) binding in 36HAEC donors under 4-h IL1B treat-
ment; ATAC-seq for 45 HAEC donors in untreated conditions; and
ATAC-seq for 44HAECdonors under 4-h IL1B treatment. The SNPs
tested against these traits were restricted towithin the peaks (Heinz
et al. 2010). MolQTLs were called using a 0.05 FDR threshold. The
QTL data used in this study is available from the NCBI Gene Ex-
pression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession numbers GSE30169 and GSE139377, the NCBI
database of Genotypes and Phenotypes (dbGaP; https://www
.ncbi.nlm.nih.gov/gap/) accession phs002057.v1.p1, and sum-
mary statistics are available on figshare (https://doi.org/10.6084/
m9.figshare.17303804.v1).

Generating haplotypes for STARR-seq library

The selection of genomic loci and SNPs for the STARR-seq library
involved a multifaceted approach. As shown in Supplemental Fig-
ure S1, three major strategies were used: (1) QTL overlap (QTL_set:
36,024 oligos; 19,581 SNPs); (2) GWAS overlap (GWAS_and_acces-
sibilty, 16,507 oligos; SNPs = 10,640); and (3) custom selection
(custom_other: 7245 oligos; SNPs =4104 [remaining 200 oligos
and 19 SNPs were contained in control regions]) (Supplemental
Fig. S1A). For the QTL overlap set, we utilized results from our pre-
vious study that identified molQTLs in genetically diverse HAEC
cultures (Shabalin 2012; Kumasaka et al. 2016; Stolze et al.
2020). In the current study, we selected STARR-seq regions by over-
lapping all of the molQTL-associated SNPs to select SNPs that had
one or more significant associations across themultiple traits (e.g.,
accessibility; ERG binding, etc.). As shown in Supplemental Figure
S1B, this resulted in library regions that contained SNPs spanning
most combinatorial categories ofQTLs. In conjunction,weutilized
results frommotifmutation analysis by SNPs (described in theMo-
tif Mutation Analysis section below). Additional prioritization for
QTL SNPs was given for those that were genome-wide-significant
in the van der Harst CADGWAS (van der Harst and Verweij 2018).

For the GWAS overlap, SNPs associated with CAD, coronary
heart disease, myocardial infarction, and type 2 diabetes were ex-
tracted from the GWAS database (Buniello et al. 2019) in May
2018. As majority of the GWAS lead SNPs came from studies that
were based on subjects of European ancestry; the co-inherited,
proximal SNPs (dbSNP version 146) in tight LD (r2 >0.80) with
the GWAS lead SNPs were determined using the 1000 Genomes
(The 1000 Genomes Project Consortium 2015) (phase 3, version
5a) European samples using PLINK (Purcell et al. 2007) version
1.90b5.3 with the following settings: ‘‐‐extract < dbSNP v146
rsIDs>, ‐‐keep<EUR sample IDs>, ‐‐maf 0.01, ‐‐r2, ‐‐ld-snp-list <
GWAS lead SNP rsIDs>, ‐‐ld-window 100000, ‐‐ld-window-kb
1000, ‐‐ld-window-r2 0.8’.21. The set of candidate SNPs that over-
lapped the peaks extracted from the following data sources were se-
lected for the STARR-seq library: ATAC-seq/DNaseHS and TF
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peaks from HCASMCs (GEO; GSM1876021-28); HAECs (GEO;
GSM2394391-8); macrophages (GEO; GSM2592781-4); AoSMCs
(GEO; GSM816638); monocytes (GEO; GSM1008582); HUVECs
(GEO; GSM816646); HepG2 (GEO; GSM816662, GSE32465,
GSE98983); SGBS (GEO; GSE64233, GSE41629) (The ENCODE
Project Consortium 2012); liver (GEO; GSM2400294); adipose tis-
sue (ENCSR350CYJ), and strong common DNase hypersensitive
peaks assayed in a large collection of cell types by the ENCODE
project that can be found under “DNase I Hypersensitivity in 95
cell types” (hotspots) and “wgEncodeRegDnaseClusteredV3.-
bed.gz” (score ≥1000). The overlap analysis was performed using
the HOMER v4 (Heinz et al. 2010) command “mergePeaks”
-cobound option. For the custom set, we selected HUVEC enhanc-
ers from topologically associated domains (TADs) enriched for
hypoxia-responsive genes and TADs that harbor VEGF family
members (GEO; GSE94872, GSE52642). In addition, top enhanc-
ers responsive to hypoxia, oxPAPC, VEGF, and IL1B in HUVECs
were selected based on published studies (GEO; GSE136813,
GSE94872, GSE52642). As controls, 65 IFN-responsive enhancers
(Muerdter et al. 2018), 100 scrambled regions, and 100 random
negative regions that did not overlap any active chromatin marks
in the ENCODE database were selected.

The following computational pipeline was used to generate
198-bp sequences representing up to five haplotypes at each locus
of interest for inclusion in the STARR-seq library. First, genomic
loci of interest were identified using multiple criteria including
overlap of HAECepigenetic features and sequence analysis and for-
matted as HOMERpeak files (Heinz et al. 2010). Second, phased al-
leles along haplotypes, in VCF format, were utilized from our
previous study of 53 genotyped, imputed, and phased individuals
that generated the HAEC epigenetic data (Stolze et al. 2020). Note
that alleles were only included if they hadminor allele frequencies
greater than 5% in this population. Third, the HOMER subpro-
gram annotatePeaks.pl was used by inputting the peak file from
step 1 along with the options “-vcf phased.vcf.file -size given”
which outputs another HOMER formatted peak file with columns
noting the base pair positions within each peak and alleles of each
haplotype. Fourth, the sequence of the reference hg19 human ge-
nome was retrieved within each peak’s boundaries using the R (R
Core Team 2020) package seqinr() (Charif and Lobry 2007). We
do not expect that remapping all data to theGRCh38would signif-
icantly affect the conclusions because the sequences selected and
tested into the STARR-seq assay would have remained the same.
A custom R script was then used to iterate through each peak to
paste custom sequences together for each haplotype (Supplemen-
tal Code S1). Specifically, strings of nonpolymorphic sequence
were separated from polymorphic alleles using coordinates in the
previous peak file, and then these were pasted together again for
each haplotype. Because 63% of oligos had two or more SNPs, rep-
resented as commonhaplotypes, all combinatorial alleles were not
inserted; instead, only up to the five most common haplotypes
were inserted. For example, a region with three SNPs that would
typically be in LD is very unlikely to be represented by eight oligos
for two reasons. First, we only included up to five common haplo-
types per oligo. Secondly, less than eight haplotypes are likely to
exist. This is how the SNP set N is represented by fewer than 2N
oligos.

Massively parallel reporter assay

The hSTARR-seq_ORI plasmid (Addgene 99296) (Muerdter et al.
2018) was used as a backbone for the plasmid constructs. DNA in-
serts, 230 bp long and containing 198 bp of enhancer variant se-
quence, were synthesized by Agilent. The oligos were designed to
have a 2-bp barcode in the 5′ end of the enhancer sequence and

15 bp matching to Illumina NGS sequencing primers in both
ends. The first round of emulsion PCR using a Micellula DNA
Emulsion & Purification kit (Roboklon) was performed to com-
plete the sequencing primers and to double-strand the oligos.
The second round was used to amplify the material. The plasmid
was linearized using AgeI and SalI restriction enzymes, and inserts
were cloned into the linearized plasmid in 17 reactions using the
standard InFusion cloning (Clontech) protocol. The cloned DNA
library was transformed to XL-10 gold ultracompetent bacteria
(Agilent) in 15 reactions. Plasmid was purified using an EndoFree
Maxiprep kit (Qiagen).

Immortalized human aortic endothelial cells (teloHAECs)
were purchased from ATCC and cultured in Vascular Cell Basal
Medium (ATCC PCS-100-030), supplemented with Vascular
Endothelial Cell Growth kit-VEGF (ATCC PCS-100-041), 100 U/
mL penicillin, and 100 µg/mL streptomycin. Cells were incubated
at 37°C in 5%CO2 and passaged every 3 d until the number of cells
needed for the experiment was achieved.

The plasmid library was transfected in triplicate to 90 million
cells/replicate using the Neon transfection system (Invitrogen).
The cells were detached with trypsin, centrifuged, washed with
PBS, and resuspended in resuspension buffer R at 5 ×107 cells/
mL. The cell suspension was mixed with 15 µg of the STARR-seq
library/reaction and subjected to electroporation using the 100-
µL tip and three 1350V pulses of 10 msec width. The cells were al-
lowed to recover from electroporation for 24 h, after which they
were treated with inflammatory stimulus (IL1B, 10 ng/mL). The
cells were divided into three treatment groups, each with 30 mil-
lion cells: 6-h stimulus, 24-h stimulus, and nonstimulated control.
Cells were harvested 48 h posttransfection and RNA was extracted
using an RNeasy midi kit (Qiagen). Messenger RNA was purified
from bulk RNA using Dynabeads Oligo(dT)25 beads (Invitrogen)
with a 2:1 beads to total RNA volume ratio. The purified mRNA
was treated with Turbo DNase I (Ambion) and purified using an
RNeasy MinElute clean up kit (Qiagen). Reverse transcription
was performed using UMI-primers. Unique molecular identifiers
(UMIs) were added during cDNA synthesis to tag identifiable rep-
licates of the constructs, which improves the data analysis by ac-
counting for PCR duplicates (Kalita et al. 2018). The samples
were pooled and RNase A–treated, and the cDNA was purified
with AMPure XP beads using a 1.8:1 beads to cDNA ratio. The li-
braries were amplified using junction PCR. The junction PCR for
the RNA library was performed with junction_RNA_fwd and
junction_RNA_rev primers (Muerdter et al. 2018), which allow am-
plification of correctly inserted enhancer sequence cDNA. The
jPCR products were purified using AMPure XPbeads with a beads
to sample ratio of 0.8. A second PCR step was run to add the index
primers for sequencing (NEBNext Multiplex Oligos for Illumina
Dual Index Primers Set 1 and 2). PCR products were purified using
SPRIselect beads (Beckman) (bead to sample ratio 0.8). High-
throughput sequencing was performed on an Illumina NextSeq
500 platform as paired-end 75-cycle dual index runs using the fol-
lowing parameters: Read1: 37 bp (insert sequence), Index1: 10 bp
(contains the UMI instead of an i7 index), Index2: 8 bp (i5 index
for demultiplexing), Read2: 37 bp (insert sequence). Raw data
from STARR-seq experiments is available at NCBI GEO (accession
GSE180846).

Sequencing read demultiplexing was carried out using the i5
index (Index2) only, and the Index1 read (containing the UMI)
was extracted as regular sequence read. UMI-tools version 1.0.1
(Smith et al. 2017) was used to remove any reads where the UMI
did not match the expected sequence pattern RDHBVDHBVD
(Kalita et al. 2018). The remaining reads with valid UMIs were
aligned to a custom reference genome consisting of all the oligonu-
cleotide sequences included in the library. Alignment was
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performed with the STAR aligner (Dobin et al. 2013) by running
the nf-core RNA-seq pipeline version 1.4.2 (Ewels et al. 2020).
UMI deduplicationwas performed on the resulting BAM files using
the UMI-tools default method. Reads mapping uniquely and
strand-specifically to a library oligonucleotide were summed using
featureCounts (Subread Python package version 1.6.5) (Liao et al.
2014). To identify enhancers displaying allele-specific expression,
STARR-seq read counts for each genetic variant were summed by
variant allele (reference or alternative), and the mpralm R package
version 1.4.1 (Myint et al. 2019) with the “mean” aggregation
method was used. Only regions having at least one count in every
replicate for both DNA and RNA samples were considered. The
three biological replicates were inputted into mpralm as indepen-
dent samples. To account for multiple testing, P-values were ad-
justed using the FDR (Benjamini–Hochberg) method and p-adj <
0.05 was considered significant.

De novo motif analysis

De novo motif analysis was performed using HOMER (Heinz et al.
2010) to identify short nucleotide sequences that are overrepre-
sented statistically within a subset of STARR-seq oligos. The com-
mand “findMotifs.pl” was used with FASTA files containing
STARR-seq oligonucleotide sequences as input and default settings
formotif finding parameters. For selecting the top 10%most active
STARR-seq regions, only themost active haplotype of each STARR-
seq region was considered. Regions in the upper 10th percentile of
enhancer activity in teloHAECs (untreated) were compared to all
other regions of the STARR-seq library.

PWM-based and SVM-based TF motif mutation analysis

To test for evidence of functional SNPs by identifying alleles distin-
guishing DNA motifs, we used the MMARGE software package
(Link et al. 2018). The human reference hg19 build (International
Human Genome Sequencing Consortium 2001) was input with
genotyped and imputed SNPs of our HAEC population (dbGaP:
phs002057.v1.p1) to create reference and alternate builds using
MMARGE’s “prepare_files” function. A MMARGE-formatted peak
file was created using reference genomic chromosome and posi-
tion boundaries for all oligos input into the STARR-seq library.
These were input intoMMARGE’s mutation_analysis function, us-
ing the “-keep” flag to save temporary output files, along with all
TF motifs available in the HOMER (Heinz et al. 2010) database.
The temporary files returned were queried to create a unique list
of genomic positions, motifs detected, andmotif scores for the ref-
erence and alternative genome sequence builds. The positions for
the alternate genome were shifted to reference coordinates to re-
move positional differences resulting from indels between refer-
ence and alternate builds. This was achieved with tabix (Li 2011)
by adding back the difference in allele base pair lengths between
reference and alternate alleles to the alternate positions. Motif
scores were compared for corresponding motif positions and the
difference is reported as the delta PWM in this study.When amotif
was only detected in either the reference or alternate, the mini-
mumPWMdetection score (fromHOMER)was used for the absent
genome. As an alternative approach for the prediction of TF bind-
ing disruption due to genetic variants, recently published del-
taSVM models (Yan et al. 2021) based on in vitro protein-DNA
binding data were run for all single-nucleotide variants in the cur-
rent study (because the models were trained by the original au-
thors using single-nucleotide variants). Code and models to run
deltaSVM were obtained from GitHub (https://github.com/ren-
lab/deltaSVM [accessed 03/12/2021]). All 94 high-confidence TF
binding models published by the original authors were included

and run with the authors’ recommended thresholds for sequence
binding and allelic disruption.

Enrichment testing

To calculate enrichment of any test data set in the STARR-seq sig-
nificant data sets, we restricted summary statistic lists of both data
sets towhatwasmutually tested in both (e.g., only include variants
that have a P-value for both STARR-seq allele specificity and the
test data set). We counted how many SNPs were significant in
the test data set that were included in the STARR-seq library
(white), how many SNPs were not significant in the test data set
that were included in the STARR-seq library (black), how many
SNPs were significant in the test data set and significant in the
STARR-seq allele-specific testing (white_drawn), and the number
of SNPs that were significant in the allele-specific testing of
STARR-seq (n_pick). These values were used in a hypergeometric
test using the following command: (1-phyper(white_drawn-1,
white, black, n_pick)). This command provides the probability of
picking the number of white drawn or higher.

To calculate the enrichment score, the same values from
above were put into a simple formula as follows: (white_drawn/
((white/(white + black)) ×n_pick)) (Supplemental Code S2).

Genomic characteristics enrichment testing

To test for enrichment of bins for conservation, the 100 vertebrate
conservation BED file for hg19 was downloaded from the UCSC
Genome Browser (https://hgdownload.soe.ucsc.edu/gbdb/hg19/
multiz100way/phastCons100way.wib). The conservation as-
signed to one SNP was determined by averaging the conservation
score of all base pairs in the region including the SNP that was in-
put into STARR-seq. These were subsequently ranked by conserva-
tion, then binned so that each bin had the same number of SNPs.
Presence or nonpresence in each bin was what was considered a
success or a failure, respectively.

For the GC content enrichment, the command annotate-
Peaks.pl fromHOMERwas used. A peak file of all of the regions in-
put into the STARR-seq library (all haplotypes) was put into
annotatePeaks.pl with the option –CpG which provides two col-
umns, one of which is a GC content for each peak. GC content
was assigned to a SNP by averaging the GC content across all of
the haplotypes where the SNP (in some form) is included. These
were then ranked and binned so that each bin had the same num-
ber of SNPs. Enrichment was done by presence or absence of a SNP
in the bin corresponding to success or failure, respectively.

ENCODE and EpiMap comparisons

To assess the native chromatin state of the regions included in the
STARR-seq library, previously published epigenetic region sets
were downloaded from the EpiMap Repository website (http://
compbio.mit.edu/epimap; accessed 09/20/2021) (Boix et al.
2021). Briefly, the EpiMap project aggregated and uniformly pro-
cessed human epigenetic data sets across multiple data generation
projects, including ENCODE and Roadmap Epigenomics, span-
ning a total of 833 epigenomes from 33 tissue groups (categories)
(Boix et al. 2021). For high-detail chromatin state annotations,
each STARR-seq library region was intersected with the 18-state
chromatin partitioning ChromHMM results for the deeply pro-
filed ENCODE 2012 subset of EpiMap. For each cell type, the
most highly annotated epigenome sample (having the least quies-
cent chromatin) was retained. An overlap of ≥100 bp was required
between a STARR-seq oligo (198 bp) and a ChromHMMchromatin
state region; thus, each STARR-seq oligo was assigned to only one
ChromHMM state in each epigenome. For allelic variants, the
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minimum overlap was 1 bp. To classify STARR-seq regions broadly
into enhancers and promoters across all EpiMap samples, all en-
hancer states (active, bivalent, genic, and weak) and all promoter
states (active TSS, bivalent TSS, flanking TSS, flanking TSS up-
stream, and flanking TSS downstream) from the 18-state
ChromHMM tracks were included (Boix et al. 2021). Similarly to
Boix et al., regions with≥75% of annotations of one type (enhanc-
er or promoter) were classified as such, whereas the remaining
regions (neither specifically enhancer nor promoter) were
classified as a separate category (“sample-dependent”). For analy-
ses intersecting STARR-seq library regionswith active regulatory el-
ements, we used the EpiMap “active enhancer” or “active
promoter” region sets that were generated by the original authors
by intersecting DNase hypersensitivity regions with H3K27ac sig-
nal regions in each sample (Boix et al. 2021). As these regions are
size-constrained, a ≥50-bp overlap was required for STARR-seq re-
gions. For calculations of overlap fractions (such as allelic effect-
significant enhancer variants relative to total enhancer-overlap-
ping variants in the same epigenome), epigenomes with ≤50,000
annotated enhancers were excluded. This removed 13 out of 390
ENCODE epigenomes (none endothelial; two adrenal, one pancre-
as, one cardiac, two neuronal, one thyroid, one colon, two stem
cell, two cancer cell line, one immortalized cell line).

To compare enrichment of allelic effect variants between
HAEC open chromatin regions versus regions that are not open
in HAECs but are open in other cell types, the ENCODE track
was downloaded in BED file format (encode.bed) from the UCSC
Genome Browser (Kent et al. 2002). This file was processed using
HOMER (Heinz et al. 2010) to restrict peak sizes to 200 bp using
command (annotatePeaks.pl encode.bed hg19 -size 200). This
peak file (encode.peaks) was then separated into those that are
shared with HAECs based on our ATAC-seq data across 44 individ-
uals (atac.peaks), also using HOMER as follows (mergePeaks
-cobound 1 encode.peaks atac.peaks).

Kolmogorov–Smirnov testing

As a validation of the enrichment testing, we verified the associa-
tions by using Kolmogorov–Smirnov testing between the QTL
analysis FDRs of the STARR-seq-validated sets of SNPs vs the
SNPs that did not validate. The FDRs for one data set (e.g., ERG
binding QTL FDRs) were pulled for all of the SNPs that validated
(valid) and all SNPs that did not validate (noValid). The R code
to perform testing is as follows using command from package
“stats”: ks.test(valid, noValid, alternative= “less”). Plotting of the
densities for graphical representation of the distributions tested
was done by using the “density” command from package “stats”.
Cumulative distributions were created with command “Freq”
from package “DescTools”.

CRISPR validation experiments

CRISPR-Cas9-mediated deletion of target regions was performed
using the Alt-R CRISPR-Cas9 System (Integrated DNA Technolo-
gies). Briefly, CRISPR-Cas9 single gRNAs (Supplemental Table S3)
flanking the target enhancers were designed using an online
CRISPR design tool (https://eu.idtdna.com/site/order/designtool/
index/CRISPR_SEQUENCE) and ordered from IDT as crRNAs.
These crRNAs were annealed to a tracrRNA (IDT 1072532) and
complexed with Cas9 endonuclease (S.p. HiFi Cas9 Nuclease V3;
IDT 1081060) to form the ribonucleoprotein complex (RNP).
The RNP complexes were then delivered into 150,000 teloHAEC
(ATCC) cells per replicate by electroporation using the Neon trans-
fection system (Invitrogen) with a 1350 V pulse of 30 msec width,
following the IDT CRISPR genome editing protocol for RNP elec-

troporation, Neon fransfection system. Two days later, transfected
cells were collected for RNA and gDNA. In order to analyze the ef-
ficiency of enhancer deletion, genomic DNAwas extracted using a
NucleoSpin tissue kit (Macherey-Nagel) and amplified by PCR us-
ing specific primers (Supplemental Table S2) flanking the deletion
sites and DreamTaq DNA Polymerase (Thermo Fisher Scientific
EP0701). PCR products were then analyzed by electrophoresis in
a 1% agarose gel. To analyze the effects of enhancer deletion on
cis target gene expression, the RNAwas extracted using an RNeasy-
PlusMicro kit (Qiagen 74034). RNA library preparationwas carried
out using a QuantSeq 3′ mRNA-seq Library Prep kit FWD for Illu-
mina (Lexogen) according to the manufacturer’s instructions.
The resultant library was quantified using aQubit dsDNAHS Assay
kit (Thermo Fisher Scientific Q32854) and its quality was checked
with a Bioanalyzer using High Sensitivity DNA kit (Agilent Tech-
nologies 5067-4626). Individual librarieswere pooled in equimolar
ratio (4 nM total) and sequenced with the NextSeq 550 platform
(Illumina) in a single-end 75-cycle high-output run. The sequenc-
ing reads were processed using the nf-core RNA-seq pipeline (ver-
sion 3.1) (Ewels et al. 2020). Genes with very low expression
were filtered out with the filterByExpr function of the edgeR pack-
age (version 3.24.3) (Robinson et al. 2010) using minimum count
five andminimumtotal count 15. The effect of CRISPRdeletionon
gene expressionwas studied for all the cis candidate genes within 1
Mb of the deleted region. The positive and negative guide RNA
transfected cells were used as controls (n=4 each). DESeq2 version
1.22.2 (Love et al. 2014) was used for the statistical analysis com-
paring the enhancer deleted samples (n=4) to the controls (n=8)
and FDR<5% was considered significant. The data is represented
as log2 fold change and standard error for the estimated coeffi-
cients on the log2 scale.
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