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Abstract

TRIM proteins play important roles in the innate immune defense against retroviral infection, including human
immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5a (TRIM5arh) targets the HIV-1 capsid and blocks infection at
an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5a to the assembled capsid
is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction
is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking,
the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5arh containing coiled-coil and SPRY
domains (CC-SPRYrh). Concentration-dependent binding of CC-SPRYrh to CA assemblies was observed, while under
equivalent conditions the human protein did not bind. Importantly, CC-SPRYrh, but not its human counterpart, disrupted CA
tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into
monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C
mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking
via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5arh on the inter-hexamer interfaces also
occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5a disrupts the virion core and
demonstrate that structural damage of the viral capsid by TRIM5a is likely one of the important components of the
mechanism of TRIM5a-mediated HIV-1 restriction.
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Introduction

TRIM5a is an important component of the innate immune

defense against retroviral infection, including human immunode-

ficiency virus type -1 (HIV-1) [1,2], and numerous studies suggest

that TRIM5a interacts with assembled capsids and induces

premature capsid disassembly (uncoating), before reverse tran-

scription takes place [3–6]. TRIM5a is a 56 kD protein

comprising a tripartite motif (TRIM; with RING, B-box 2, and

coiled-coil (CC) domains) followed by a C-terminal B30.2/SPRY

domain [7–9]. Each of these domains plays distinct roles in the

antiviral function of TRIM5a. The B30.2/SPRY domain binds to

the viral capsid and determines the specificity of restriction, with

sequence variation within this domain greatly impacting binding

specificity [6,10–16]. For example, a single amino acid change in

human TRIM5a (TRIM5ahu), R332P, renders the protein

capable of binding the HIV-1 capsid, causing it to behave like

rhesus TRIM5a (TRIM5arh) with regard to HIV-1 restriction

[11,17]. The CC domain is necessary and sufficient for TRIM5a
homo-dimerization, and this is important for capsid binding and

restriction [12,18–20]. In vitro, specific recognition and binding to a

hexagonal CA lattice requires both the CC and SPRY domains

[19]. The B-box 2 domain is thought to be involved in higher-

order structure formation and self-association, and its presence in

the protein enhances TRIM5a binding to the capsid, compared to

the CC-SPRY domains alone [21,22]. Several mutations in the B-

box 2 domain abrogate HIV-1 restriction by TRIM5arh [22–24].

The N-terminal RING domain is the least explored domain of

TRIM5a. In general, RING domains are components of a

particular class of E3 ubiquitin ligases that are involved in

proteasome-mediated protein degradation (reviewed in [25]).

TRIM5a exhibits E3 activity, but the role of the ubiquitin ligase

activity in retrovirus restriction is unclear. Deletion of the N-

terminal RING domain reduces, but does not abolish antiviral

restriction [23,26], and treatment of cells with proteasome

inhibitors does not prevent restriction by TRIM5a [27]. However,

proteasome activity is necessary for the TRIM5a-mediated block

to reverse transcription [27], and engagement of restriction-

sensitive virus cores results in proteasome-dependent degradation

of TRIM5a [28]. Together, these data suggest that TRIM5a
action in host restriction of retroviruses involves all of its domains.

The negative influence of TRIM5a on viral reverse transcription

is well established [1,3,4,6,29,30], however, the detailed mechanism

of restriction has not been elucidated. TRIM5a binds to assembled

complexes composed of the CA-NC region of Pr55gag, but does not

significantly interact with monomeric or soluble CA protein [31].

Furthermore, mutations in CA that decrease capsid stability appear

to reduce TRIM5a binding in target cells, as HIV-1 particles with
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unstable cores are less effective at saturating TRIM5a-mediated

restriction [5]. Finally, recent studies using a recombinant

TRIM5arh chimera, containing the RING domain of TRIM21,

demonstrated that the hybrid protein binds to CA-NC tubular

assemblies and causes shortening of the tubes [32,33], or self-

assembles into higher-order structures, enhanced by binding to a

preformed CA-NC hexagonal template [34].

Here, we employed cryoEM to investigate the direct interac-

tions of tubular HIV-1 capsid assemblies and purified HIV-1 cores

with the TRIM5arh CC-SPRY protein and the structural

consequences of TRIM5arh CC-SPRY binding. We demonstrate

that TRIM5arh binding disrupts the tubes and creates non-

random fragments. Specific inter-hexamer interfaces are prefer-

entially broken, resulting in strings of subunits that are held

together by the CA-CTD dimer. We further demonstrate that

disruption by TRIM5arh of purified HIV-1 cores also occurred

preferentially at the inter-hexamer interfaces. Our data suggest

that TRIM5arh-mediated HIV-1 restriction involves direct

engagement of the viral capsid, and structural damage to the

capsid is likely one of the key components in this event.

Results and Discussion

Expression, purification, and biophysical characterization
of recombinant TRIM5a CC-SPRY

To investigate the direct interactions between TRIM5arh and

the HIV-1 capsid, we generated purified recombinant proteins.

Full length, wild-type TRIM5arh has been quite difficult to obtain

in sufficient quantities for biophysical and structural studies

[32,35]. Therefore, we tested the expression and solubility of a

number of different TRIM5arh constructs, including one that

comprises the CC-SPRY portion, by performing transient

expression in SF9 insect cells. TRIM5arh CC-SPRY (residues

134–497) and TRIM5ahu CC-SPRY (residues of 132–493)

exhibited sufficient protein levels and solubility and, therefore,

were selected for production in SF21 insect cells, using

recombinant baculoviruses. The quaternary state of the purified

recombinant human and rhesus TRIM5a CC-SPRY proteins was

assessed by size exclusion chromatography in conjunction with in-

line multi-angle light scattering, confirming that these proteins

were dimers. The observed molecular masses extracted from the

light scattering analyses are 92 kDa and 89 kDa, respectively

(Fig. 1A), compared to the theoretical values of 46.1 kDa and

45.6 kDa, respectively, based on amino acid sequences. Both

proteins gave rise to almost identical CD spectra with a

predominantly a-helical signature (Fig. 1B).

TRIM5arh CC-SPRY binds to HIV-1 CA and CA-NC tubular
assemblies in a dose-dependent manner

It is widely accepted that the restriction specificity of TRIM5a
resides in its SPRY domain and that this domain interacts with

retroviral capsids [1,3,11,14,15,36]. However, only recently has

direct binding been demonstrated for a TRIM5-21R fusion

chimera with CA-NC assemblies [32,34]. We used recombinant

TRIM5a CC-SPRY proteins to examine direct binding to CA and

CA-NC assemblies. Incubation of preassembled HIV-1 CA or

CA-NC tubes with TRIM5arh resulted in co-sedimentation of

TRIM5arh CC-SPRY/CA or TRIM5arh CC-SPRY/CA-NC

complexes, respectively, in the pelleted fractions (Fig. 2, Fig. S1).

More TRIM5arh was observed bound to CA assemblies than to

CA-NC assemblies (Figs. 2 & 3). In contrast, we observed

negligible binding of TRIM5ahu CC-SPRY to HIV-1 CA or

CA-NC complexes under the same assay conditions (Fig. 2). These

data are consistent with previous results that demonstrated the

inability of TRIM5ahu to bind and restrict HIV-1, but a capacity

for the same protein to recognize N-tropic murine leukemia virus

(MLV) capsid [3,4,12].

Author Summary

The cellular protein TRIM5a is a host cell restriction factor
that blocks HIV-1 infection in Rhesus macaque cells by
targeting the viral capsid. Here, we show that direct
binding of a TRIM5a protein, consisting of the coiled-coil
and B30.2/SPRY domains, to the viral capsid results in
disruption of the surface lattice and fragmentation of the
capsid, specifically at inter-hexamer interfaces. Our results
reinforce the notion that structural damage of the viral
capsid by TRIM5a is central to the mechanism of TRIM5a-
mediated HIV-1 restriction.

Figure 1. Biophysical characterization of recombinant TRIM5a CC-SPRY. (A) Multi angle light scattering data. Elution profiles (A280 values)
for rhesus monkey and human TRIM5a CC-SPRY proteins are shown in black and gray, respectively, and the calculated molecular masses obtained
from the light scattering are shown with black and gray symbols across the peaks. (B) Superposition of the CD spectra of TRIM5arh CC-SPRY (black)
and TRIM5ahu CC-SPRY (gray).
doi:10.1371/journal.ppat.1002009.g001

TRIM5a Disruption of HIV-1 Capsid
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A more quantitative analysis of TRIM5arh binding was carried

out by measuring molar ratios of CA and CA-NC-bound TRIM5arh

CC-SPRY over a range of TRIM5arh concentrations. Dose-

dependent binding was observed for both CA and CA-NC

assemblies (Fig. 3). Consistently, at all concentrations, TRIM5arh

CC-SPRY bound CA more efficiently than CA-NC. This could be

due to differences in CA and CA-NC structures on the surfaces of the

assemblies, or differences in the flexibility of these assemblies, as CA-

NC tubes were assembled in the presence of oligonucleotide. The

binding ratios were 0.41 for TRIM5arh CC-SPRY/CA and 0.21 for

TRIM5arh CC-SPRY/CA-NC, respectively, for the highest con-

centration of TRIM5arh CC-SPRY (18 mM). When a lower

concentration of TRIM5arh CC-SPRY (1 mM) was used for binding

to the CA-NC tubular assemblies (10 mM), a molar ratio of 0.034

was obtained. This ratio is somewhat lower than the value reported

by Langelier et al. for TRIM5-21R by immunoblotting [32]. The

lower binding ratio for TRIM5arh CC-SPRY is expected, since it

lacks the self-associating B-box 2 domain, compared to the TRIM5-

21R fusion protein. Furthermore, incubation with CC-SPRYrh did

not alter the fraction of pelletable CA and CA-NC, even at the

highest TRIM5arh CC-SPRY concentrations (Figs. 2&3). These

results are in accord with those reported for TRIM5-21R [32] and a

binding study with CA-NC assemblies using TRIM5arh-containing

lysates [37]. Taken together, the data indicate that dimeric

TRIM5arh CC-SPRY directly interacts with tubular CA and CA-

NC assemblies and that binding of TRIM5arh does not dissociate

these assemblies into soluble monomeric CA protein.

Binding of TRIM5arh CC-SPRY to tubular CA assemblies
releases discrete, linear fragments

Although no dramatic effect of purified TRIM5arh on uncoating

has been observed in vitro using CA-NC assemblies [32], a substantial

decrease in intact CA-NC tubes was noted when TRIM5arh-

containing cell lysates were mixed with CA-NC tubular assemblies

[37]. To investigate this apparent dichotomy, we carried out cryoEM

structural analyses of the samples that were used in the TRIM5a CC-

SPRY/CA tubular assembly binding assays (Figs. 2A&3A). CryoEM

micrographs showed well-ordered CA tubular structures after

incubation with binding buffer only (Fig. 4A) or TRIM5ahu CC-

SPRY (Fig. 4B), similar to our previously described assemblies [38].

In contrast, incubation of CA tubular assemblies with TRIM5arh

CC-SPRY (18 mM) resulted in a massive structural break-down of the

tubes (Fig. 4C), accompanied by the appearance of distinct fragments

composed of strings of hexamers (Fig. 4C inset) [38]. The remaining

tubes had generally lost the regularity of the hexagonal lattice. Some

TRIM5arh CC-SPRY densities apparently remained on several of

the fragments (Fig. 4C inset). Gold-labeling of TRIM5arh CC-SPRY

in complex with CA tubular assemblies confirmed that TRIM5arh

Figure 2. Binding of TRIM5a CC-SPRY to pre-assembled wild-type CA and CA-NC tubes. (A) SDS-PAGE analysis of binding reactions using
CA tubular assemblies (64 mM), incubated with either TRIM5ahu CC-SPRY (10 mM), TRIM5arh CC-SPRY (20 mM), or binding buffer. A control experiment
under similar condition is shown in Fig. S1. (B) SDS-PAGE analysis of binding reactions using CA-NC tubes (2 mg/ml), incubated with either TRIM5ahu

CC-SPRY (10 mM), TRIM5arh CC-SPRY (20 mM) or binding buffer. Samples of the reaction mix before centrifugation (t), of supernatant (s), and of pellet
(p) are shown.
doi:10.1371/journal.ppat.1002009.g002

TRIM5a Disruption of HIV-1 Capsid
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CC-SPRY bound to the CA assemblies (Fig. S2). These break-down

fragments were primarily present in the pellet fraction after

centrifugation (Fig. 3A), confirmed by cryoEM imaging of the pellet

samples (Fig. S3), explaining why no effect on uncoating was detected

in assays that measure soluble CA [32,37]. These results suggest that

the predominant effect of TRIM5arh is the break down of HIV-1

capsids into fragments and not the dissociation into soluble

monomers.

We further examined the effect of CA mutations on TRIM5arh

disruption. Several CA mutants, including A92E, which was used in

our previous structural study [38], and the E45A mutant, which

produces hyperstable capsids, were analyzed. The effect of

TRIM5arh CC-SPRY binding to A92E CA tubular assemblies

was similar to that observed with wild-type CA (Fig. S4A&B). The

CA tubular assemblies carrying the capsid-stabilizing E45A

mutation [46] also experienced structural damage by TRIM5arh,

but to a lesser degree (Fig. S4C&D). This suggests that the overall

stability of HIV-1 capsid assemblies may modulate or interfere with

TRIM5arh function, consistent with findings that hyperstable capsid

core mutants effectively saturate TRIM5a-mediated restriction [5].

Cross-linking of the inter-hexamer CA interface prevents
TRIM5arh disruption

To determine which interface in the capsid lattice is disrupted

by CC-SPRYrh, we tested the effect of TRIM5arh CC-SPRY on

cross-linked CA tubular assemblies. In previous work, we showed

Figure 4. CryoEM analysis of the TRIM5a CC-SPRY interaction with wild-type CA tubes. (A–C) Low-dose projection images of CA
assemblies (64 mM), incubated with binding buffer (A), human (B), or rhesus (C) TRIM5a CC-SPRY (18 mM). The displayed images are representative
examples of four independent experiments. Inset, representative CA fragments, observed after TRIM5arh CC-SPRY binding. Arrows indicate the
TRIM5arh CC-SPRY density on the CA fragments. Scale bars are 100 nm.
doi:10.1371/journal.ppat.1002009.g004

Figure 3. Analysis of TRIM5arh CC-SPRY binding to the assembly of wild-type CA and CA-NC tubes. (A&B) Increasing concentrations of
TRIM5arh CC-SPRY (0, 1, 10, 18 mM) were incubated with CA tubular assemblies (64 mM) (A) or with CA-NC tubular assembly mixture (10 mM) (B) and
analyzed by 10% SDS-PAGE. Samples of the reaction mix before centrifugation (t), of supernatant (s), and of pellet (p) are shown. (C) TRIM5arh CC-
SPRY/CA (open circles) and TRIM5arh CC-SPRY/CA-NC (closed circles) binding ratios at the indicated input concentrations of TRIM5arh CC-SPRY. Molar
ratios of CA- or CA-NC-bound TRIM5a were determined by gel densitometry of proteins stained with Coomassie Blue in the appropriate lanes of the
SDS-PAGE gels. Three independent experiments were carried out in duplicates. Mean values (6 s.d.) are plotted.
doi:10.1371/journal.ppat.1002009.g003
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that introduction of a pair of cysteines, P207C/T216C, at the

pseudo three-fold inter-hexamer interface, efficiently cross-linked

three neighboring CA molecules into trimers upon oxidation

(Fig. 5A&B). The interactions at this interface are mediated by the

CA-CTD, predominantly helices H10 and H11 [38]. Such cross-

linked P207C/T216C CA tubular assemblies are expected to

contain stronger hexamer-hexamer interactions, stabilizing the

lattice. The P207C/T216C mutant assembles into tubular

structures very similar to the wild-type CA (Fig. S5). Both oxidized

and non-oxidized P207C/T216C CA tubular assemblies bound

TRIM5arh CC-SPRY, without any significant difference between

them (Fig. 5B, lanes 1-4). However, cryoEM analysis revealed that

TRIM5arh CC-SPRY exerted very little structural damage onto

the cross-linked tubes, whereas the non-oxidized tubular assem-

blies exhibited similar structural breakdown as seen for wild type

CA tubes (Fig. 5C&D). These data suggest that TRIM5arh CC-

SPRY engages in inter-hexamer binding, most likely pulling apart

the trimer interface, thereby disrupting the assembled tubes. We

further tested this possibility by measuring the cross-linking

efficiency of P207C/T216C CA assembly after TRIM5arh CC-

SPRY treatment. As can be seen from the results illustrated in

Fig. 5B (lanes 5&6), the level of cross-linked trimers was

significantly reduced after incubation with TRIM5arh CC-SPRY.

The percentage of the cross-linked CA trimer over total CA in the

reduced sample is 3-fold less in the TRIM5arh CC-SPRY treated

sample, compared to untreated sample, confirming that the trimer

interface between three neighboring hexamers is disrupted by

TRIM5arh CC-SPRY.

An alternative scenario could involve binding of the TRIM5a
CC-SPRY dimer within a CA hexamer, with TRIM5arh CC-

Figure 5. Cross-linked CA assemblies resist structural damage by TRIM5arh CC-SPRY. (A) Amino acids at the pseudo three-fold axis in the
molecular model of the tubular CA assemblies [38] were used to guide cysteine mutagenesis (P207C/T216C) for cross-linking of CA tubes. (B) Non-
reducing SDS-PAGE analysis of TRIM5arh CC-SPRY (18 mM) binding to cross-linked P207C/T216C CA tubes (left) and cross-linking of P207C/T216C CA
tubes after TRIM5arh CC-SPRY (18 mM) binding (right), visualized by Coomassie Blue staining. Pellets of non-reduced and reduced samples were
analyzed in lanes 5&6 and 7&8, respectively. (C&D) CryoEM analysis of the structural effect of TRIM5arh CC-SPRY binding to P207C/T216C CA tubes
without (C, corresponding sample in panel B, lane2) and with cross-linking (D, corresponding sample in panel B, lane4). Some ice particles
inadvertently deposited on the EM grid during cryo-sample preparation are visible in panel C (upper right-hand region). The displayed images are
representative examples of three independent experiments. Scale bar, 100 nm.
doi:10.1371/journal.ppat.1002009.g005

TRIM5a Disruption of HIV-1 Capsid

PLoS Pathogens | www.plospathogens.org 5 March 2011 | Volume 7 | Issue 3 | e1002009



SPRY dimers pushing apart the hexamers. However, simple

geometric considerations make this a very unlikely scenario if

TRIM5arh SPRY binds near the cyclophilin A binding loop in CA

[39], since the distance between two sites (.110 Å) is too large for

the TRIM5a CC-SPRY dimer protein to span. Nonetheless, we

tested for this possibility using a A14C/E45C CA double cysteine

mutant, which can cross-link CA within hexamers [40]. Following

incubation with TRIM5arh CC-SPRY, crosslinked A14C/E45C

CA assemblies exhibited only a slight reduction in CA hexamers

(Fig. S6, compare lanes 2 & 5), compared to the dramatic reduction

of the trimer in the P207C/T216C CA assemblies (Fig. 5B, right

panel). This small effect on the CA hexamer could be caused by

minor perturbations at the intra-hexamer CA interfaces upon

TRIM5arh CC-SPRY binding. Small amounts of CA dimer

(,50kD, Fig. S6, lanes 1, 3, 5, 7&9) in the non-oxidized assemblies

and dimer of hexamers (,280kDa, Fig. S6, lanes 2&8) in the

oxidized A14C/E45C CA assemblies were observed by SDS-

PAGE, possibly due to the CA CTD dimer interaction. Interest-

ingly, the amount of hexamer dimers was greatly diminished in the

TRIM5arh CC-SPRY treated sample (Fig. S6, lane 5 compared to

lane 2&8). Again, these data further support that TRIM5arh CC-

SPRY binding perturbs the CA inter-hexamer interface.

TRIM5arh disrupts isolated HIV-1 cores similar to the in
vitro capsid assemblies

To extend the above in vitro studies to biological HIV-1 capsids,

we examined the effect of TRIM5arh CC-SPRY on isolated HIV-

1 cores. For this purpose, we purified cores from the HIV-1 CA

mutants A14C/E45C and P207C/T216C for two reasons; first,

the mutant cores appeared to be more stable through the isolation

procedure, and second, A14C/E45C and P207C/T216C cores

bear the same cysteine mutations that we used for the in vitro

analysis described in the previous section. A14C/E45C and

P207C/T216C cores were isolated from virions in high yield

(average of 44% of virion-associated CA, vs. ,15% typically

observed for wild type) by brief detergent treatment and sucrose

gradient sedimentation. The CA protein in A14C/E45C cores was

readily cross-linked into hexamers, as shown by non-reducing

SDS-PAGE analysis (Fig. S7). Despite the extensive CA hexameric

crosslinking in A14C/E45C cores, incubation with TRIM5arh

CC-SPRY resulted in a dramatic loss of intact cores observed by

cryoEM, compared to the samples treated with the same amount

of human TRIM5a CC-SPRY (Fig. 6A-C). In contrast, no

significant reduction in the number of P207C/T216C cross-linked

cores was seen upon TRIM5arh incubation (Fig. 6E and F, Fig. S7,

+oxidizer samples). However, without ensuring effective cross-

linking at the trimer interface (Fig. S7, -oxidizer), a four-fold

decrease in the number of P207C/T216C cores was seen upon

TRIM5arh treatment, compared to incubation with TRIM5ahu

(Fig. 6D and F, -oxidizer samples). Although very few, a small

number of P207C/T216C cores were observed in TRIM5arh

treated samples, presumably due to low levels of spontaneous

crosslinking of isolated P207C/T216C cores at the trimer

interface. Furthermore, similar protofilament fragments as seen

for the in vitro assemblies were also observed after TRIM5arh

treatment of cores (Fig. 6D, arrows and inset). The above data

demonstrate, for the first time, that TRIM5arh CC-SPRY is

capable of exerting direct structural damage on the isolated HIV-1

cores and TRIM5arh binding preferentially disrupts the inter-

hexamer interfaces in the HIV-1 capsid.

A model for TRIM5arh action on HIV-1 capsid
Examination of the fragments present in the cryoEM images

revealed predominantly curved linear structures (Fig. 4C). These

structures resemble fragments of protofilaments in CA helical

assemblies. Our results are consistent with previous studies that

TRIM5arh binding to CA-NC assemblies did not increase soluble

CA-NC monomers and dimers [32,37], and further suggest that

binding of TRIM5arh disrupts the hexamer-hexamer interfaces,

thereby releasing protofilaments along one of the three principal

helical directions. A model based on the above findings is depicted

schematically in Figure 7. CA assembles into helical tubes in vitro

with a hexagonal surface unit formed by CA NTDs that is

connected by CTD-CTD dimer and trimer interfaces on the inner

surfaces of the three-dimensional tube or cone [38,40,41]. In these

helical tubes, three slightly different inter-hexamer interactions

were observed (see Fig. 3 in [38]). Binding of TRIM5arh may

disrupt these interactions differentially, weakening the CTD-CTD

interfaces between hexamers. In turn, this causes release of CA

protofilament fragments, such as those illustrated in Figure 7, and,

indeed, similar types of fragments were observed in the cryoEM

images (Fig. 4C). For TRIM5-21R interacting with CA-NC,

shortening of tubes was observed in vitro, in addition to

fragmentation [32]. Examples of this type of fragmentation of

helical tubes have also been observed in other biological systems,

including microtubules in vivo and in vitro [42,43], actin filaments

[44] and dynamin spirals and tubes [45]. Thus, the disassembly of

the CA tubes into helical-type fragments is not unprecedented.

Importantly, the use of two mutants, A14C/E45C and P207C/

T216C, containing engineered disulfide bonds, allowed us to

assign the site of TRIM5arh action to the inter-hexamer interface

(vs. the intra-hexamer interface), both, for in vitro assemblies and

isolated HIV-1 cores, providing compelling evidence for specific

structural disruption of the trimer interface of the HIV-1 capsid

upon TRIM5a binding. In this manner, key insights into the

mechanistic aspects of TRIM5arh - capsid interaction were

obtained.

Retroviral uncoating is a poorly characterized process, generally

defined as viral capsid disassembly following release of the viral

core into the target cell. Studies using HIV-1 CA mutants indicate

that the stability of the viral core is optimally balanced for efficient

viral replication [46]. Therefore, a plausible mechanism for

restriction by TRIM5a involves binding to the viral capsid, capsid

destabilization, and perturbation of uncoating. Here, we show by

cryoEM that TRIM5arh CC-SPRY binding to CA assemblies

causes massive destruction of assembled HIV-1 CA complexes. A

similar effect was observed with purified HIV-1 cores. Intriguingly,

this effect was seen with the TRIM5arh CC-SPRY domain

construct lacking the RING and B-box domains, albeit at high

concentrations, even though TRIM5a protein devoid of RING

and B-box domains was reported to lack restriction activity when

expressed in cells [23,24]. These seemingly inconsistent results

could be due to several factors, including: (1) reduced binding to

the viral capsid in the cell due to lack of self-association mediated

by the B-box that can be overcome at high protein concentration

in vitro; (2) improper intracellular localization of the deletion

protein; or (3) altered association with host cell factors. We favor

the first explanation, since the CC-CypA protein has been shown

to restrict HIV-1 and FIV when expressed in target cells [47], and

oligomerization of CypA appears sufficient to induce HIV-1

restriction [48]. Given the ability of the B-box domain to promote

higher-order TRIM5a association [21], it seems plausible that this

domain in intact TRIM5arh may potentiate the effects observed

here for TRIM5arh CC-SPRY. Most importantly, while the CC-

SPRY from rhesus TRIM5a was active on our in vitro assemblies

and isolated cores, the corresponding human TRIM5a fragment

was inactive. Thus, binding of the CC-SPRY domain to CA is

essential for TRIM5a retroviral restriction and for structural

TRIM5a Disruption of HIV-1 Capsid
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disruption of the capsid. However, our current results do not

exclude the possibility of additional structural consequences

induced by higher-ordered oligomerization of TRIM5a on the

viral capsid.

Although the molecular mechanism of TRIM5a restriction is

not fully understood, current models hypothesize that after capsid

release into the target cell, TRIM5a binds and triggers premature

capsid disassembly. Our results suggest that direct binding of

TRIM5a to the capsid is sufficient to inflict direct structural

damage. Yet, cellular proteasome activity is clearly involved in the

block to reverse transcription induced by TRIM5a[27]. Recruit-

ment of proteasomes, most likely via the TRIM5a RING domain,

may further disaggregate capsid fragments and also degrade

TRIM5a [28], thereby mediating the irreversible block to

infection. In contrast to TRIM5a-mediated restriction, Fv1

restriction of MLV does not result in inhibition of reverse

transcription, yet both TRIM5a and Fv1 target the retroviral

capsid. We speculate that the common feature in TRIM5a and

Fv1 restriction is the structural damage to the capsid, with the

major mechanistic difference involving recruitment of the protea-

some in the case of TRIM5a-dependent restriction.

The findings presented here represent the first detailed

structural analysis of TRIM5a disruption of the CA lattice to

date. Additional structural studies of TRIM5a effects, especially

with regard to the CTD-CTD interfaces in CA assemblies and

HIV-1 cores, as well as the involvement of the RING and B-box

domains, will further aid to elucidate the molecular mechanisms of

TRIM5-mediated HIV-1 restriction and may offer insights into

the HIV-1 virus-cellular interplay as well as lead to novel

approaches in antiviral therapy.

Materials and Methods

Protein expression and purification
cDNAs encoding the coiled-coil and SPRY domains of human

and rhesus TRIM5a (TRIM5a CC-SPRY; residues 132-493 and

Figure 6. Effects of TRIM5a CC-SPRYrh on isolated HIV-1 cores. (A&B) Low-dose projection images of purified mutant A14C/E45C cores
(11 mg/ml) incubated with human (A) or rhesus (B) TRIM5a CC-SPRY (18 mM). Scale bars, 100 nm. Inset, enlarged view of a core fragment in the
TRIM5arh-treated sample. (C) Quantification of the number of cores on the cryoEM grids. The mean values of the average number of cores per image
from four independent experiments (80 cryoEM images) are shown, with the error bars representing one standard deviation. (D&E) Representative
low-dose projection images of purified P207C/T216C cores, incubated with rhesus TRIM5a CC-SPRY (18 mM), without (D) and with (E) oxidation for
cross-linking. Scale bars, 100 nm. Inset, enlarged view of a core fragment in the TRIM5arh-treated sample. (F) Quantification of the number of cores on
the cryoEM grids. Representative cryoEM images from samples that are shown on panels D and E, respectively.
doi:10.1371/journal.ppat.1002009.g006
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134-497, respectively) were amplified and cloned into the pENT-

TOPO vectors (Invitrogen), modified to encode a Strep-tag at the

N-terminus and a His6-tag at the C-terminus of the proteins. The

cDNAs encoding HIV-1 capsid (CA) and capsid- nucleocapsid

(CA-NC) were amplified from pNL4-3 and cloned into the pET21

vector (Invitrogen). All clones were verified by sequencing of the

entire coding region.

Baculoviruses expressing human and rhesus TRIM5a CC-

SPRY were prepared using the Baculdirect C-term (Invitrogen)

according to the manufacturer’s protocols. Proteins were

expressed in SF21 insect cells by infecting cells with recombinant

baculoviruses at a MOI of 2 for 40 h. Cells were lysed by

sonication in a buffer containing 25 mM sodium phosphate,

pH 7.5, 250 mM NaCl, 10 mM beta-mercaptoethanol, and

0.02% sodium azide. Soluble proteins were purified over a 5 mL

Ni-NTA column followed by passage over a Hi-Load Superdex

200 16/60 column (GE Healthcare) in a buffer containing 25 mM

sodium phosphate, pH 7.5, 150 mM NaCl, 2 mM DTT, 10%

glycerol, and 0.02% sodium azide. The fraction containing

TRIM5a CC-SPRY was further purified over a 5 mL Hi-Trap

QP column (GE Healthcare) using a gradient of 0–1 M NaCl or a

5 mL StrepTrap-HP column (GE-Healthcare) using 2.5 mM

desbiotin for elution. CA-NC proteins were expressed in E. coli

Rosetta 2 (DE3), cultured in Luria-Bertani medium, using 0.4 mM

IPTG for induction and growth at 18uC for 23 h. The proteins

were purified as described in Ganser et al [49]. Briefly, soluble

proteins were precipitated with 40% (w/v) ammonium sulfate after

DNA was removed by precipitation with polyethylenimine. The

precipitates were dialyzed against a buffer containing 25 mM

TrisHCl, pH 7.5, 50 mM NaCl, 1 mM ZnSO4, 10 mM beta-

mercaptoethanol, and 0.02% azide. Proteins were separated by

column chromatography over a 5 mL Hi-Trap SP (GE Health-

care) with a 0–1 M NaCl gradient and Hi-Load Superdex75 26/

60 columns, equilibrated with a buffer containing 25 mM

TrisHCl, pH 7.5, 150 mM NaCl, 1 mM ZnSO4, 10 mM beta-

mercaptoethanol, and 0.02% azide. CA proteins were prepared as

described in Byeon et al [38].

Isolation of HIV-1 core structures
HIV-1 cores were isolated from virions by a modification of the

‘‘spin-thru’’ method previously described [50]. HIV-1 viruses were

derived from the R9 molecular clone [51] and mutants thereof.

CA mutations were created by overlap PCR. SpeI-ApaI fragments

were transferred into R9, and the transferred region was verified

by PCR. HIV-1 viruses were produced by transient transfection of

sixty dishes of 66106 293T cells with 10 mg plasmid DNA (using

10 mg of HIV-1 construct R9, R9.Env-, or R9.A14C/E45C) using

polyethylenimine (3.6 mg/ml, Polysciences) [52] in each 10 cm

dish. Two days after transfection, virus-containing supernatants

were collected and clarified by filtration (0.45 mm pore-size).

Particles in clarified supernatants (600 ml) from 293T cells were

pelleted through 3ml cushions of 20% sucrose (120,000 6g, 2.5 h)

in a Beckman SW32Ti rotor then gently suspended in a total of

1.2 ml STE buffer (10 mM Tris-HCl [pH 8.0], 100 mM NaCl,

1 mM EDTA) for 2 h at 4uC. The concentrated virus suspension

was subjected to equilibrium ultracentrifugation (120,000 6 g,

16 h, 4uC, Beckman SW-32Ti rotor) through a layer of 1% Triton

X-100 into a linear gradient of 30%–70% sucrose in STE buffer.

Twelve 1-ml fractions were collected. CA concentrations were

determined by p24 ELISA [53]. The peak p24 fractions near the

bottom of the gradient were pooled and concentrated to ,100 ml

by diafiltration with an Ultracel-10K protein concentrator

(Amicon). The sample was diluted with STE buffer and

reconcentrated to reduce the final sucrose concentration in the

sample to less than 0.5%. The concentrated samples of cores were

then assayed for p24 by ELISA.

Figure 7. Model of TRIM5arh CC-SPRY in HIV-1 CA restriction. A schematic representation of the CA tubular assembly is shown at the left. CA
NTD hexamers on the outside surface of the tube are depicted as hexagons, forming an extended hexagonal surface lattice that is connected by CA
CTD dimers on the inner surface of the tube. Binding of TRIM5a CC-SPRY to assembled HIV-1 CA imposes stress on inter-hexamer interactions (middle
panel, top) and weakens the CTD trimer interface (red triangle in middle panel, bottom), thereby causing damage to the lattice and releasing
fragmented protofilaments. Based on our structural model for the CA tubular assemblies [38], three types of fragments containing linear arrays of CA
hexameric units can be generated, depending on which of the three inter-hexamer interfaces are disrupted. For the short pitch helical arrays along
the ‘‘a–b’’ direction, tightly curved or circular fragments are expected (top right), whereas significantly less curved fragments (bottom right) are
expected for the longest pitch helical arrays along the ‘‘a–c’’ direction. Predicted fragments along the ‘‘b–c’’ direction should also be more linear than
the tightly curved ‘‘a–b’’ direction fragments. Intermolecular cross-linking of the tubes strengthens the interfaces between the hexamers a, b and c,
reducing TRIM5arh CC-SPRY-mediated destructive effects.
doi:10.1371/journal.ppat.1002009.g007
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Multi-angle light scattering
Light-scattering data were obtained using an analytical Super-

dex200 column (1 cm 630 cm, GE Healthcare) with in-line multi-

angle light scattering (HELEOS, Wyatt Technology), variable

wavelength UV (Agilent 1100 Series, Agilent Technology) and

refractive index (Optilab rEX, Wyatt Technology.) detection.

Approximately 100 mL of 2 mg/mL protein solutions were injected

into the pre-equilibrated column using 25 mM sodium phosphate

buffer (pH 7.5), 250 mM NaCl, 10% glycerol, and 0.02% (w/v)

sodium azide at a flow-rate of 0.5 ml/minute for equilibration and

elution. Molecular masses were determined from the scattering data

using the ASTRA program (Wyatt Technology).

Circular Dichroism (CD)
CD spectra of TRIM5a CC-SPRY (5.4 mg/mL) were collected

in a buffer containing 1 mM sodium phosphate, pH 7.5, 14 mM

NaCl with a Jasco-810 CD spectrophotometer (Easton, MD). Data

were collected with a scan rate of 1 nm/sec from 260 to 200 nm at

a constant temperature of 12uC and averaged over 40 scans.

Binding assays
CA and CA-NC tubes were assembled containing 80 mM

(2 mg/ml) CA, 1 M NaCl and 50 mM Tris-HCl (pH 8.0) at 37uC
for one hour or 300 mM CA-NC, 60 mM TG50 oligonucleotide in

250 mM NaCl, 50 mM Tris-HCl (pH 8.0) buffer at 4uC for 19 hr,

respectively. For the TRIM5a CC-SPRY binding assays, the

binding buffer, 10 mM Tris pH 7.5, 330 mM NaCl, 1 mM

TCEP, 0.02% Azide, 5% Glycerol, is also the stock buffer for

TRIM5a CC-SPRY proteins. Briefly, binding buffer containing

different concentrations of TRIM5a CC-SPRY was added to

preassembled CA and CA-NC tubes. CA concentration was

slightly reduced to 64 mM in the binding assays. The CA-NC

assemblies were diluted to final concentrations of 80 mM

(comparable to the amount of total protein used with CA) or

10 mM (comparable to the number of tubes seen with CA) with

assembly buffer prior to the binding assays. TRIM5ahuCC-SPRY

or TRIM5arhCC-SPRY aliquots from 4 mg/ml stock solutions

were added to preassembled CA and CA-NC tubes. The reaction

mixture was incubated on a rocking platform at room temperature

for 1 hr with gentle mixing at 10 min intervals. At the end of

incubation, 5 ml samples were withdrawn from the reaction

mixtures and immediately used for cryoEM analysis. 6 ml samples

from the same reaction mixtures were mixed with 4X LDS loading

buffer (Invitrogen) supplemented with 10 mM DTT for SDS-

PAGE analysis (t). The remaining sample was pelleted at 20,000 g

with an Eppendorf centrifuge 5417R for 15 min and supernatants

(s) and pellets (p, resuspended in 1/3 of volume) were mixed with

4X LDS loading buffer for gel analysis. Total, supernatant, and

pellet samples, without boiling, were loaded on 10% SDS-PAGE

and stained with Coomassie Blue. Each experiment was carried

out at least three times.

Gold labeling of TRIM5a CC-SPRY
His-tagged TRIM5a proteins at the C-terminus, TRIM5a-

huCC-SPRY and TRIM5arhCC-SPRY, were labeled using 5 nm

Ni-NTA-Nanogold gold beads from Nanoprobes (Yaphank, NY).

For gold labeling, wild type CA protein was assembled into tubes

using 80 mM (2 mg/ml) CA in the assembly buffer (1 M NaCl

and 50 mM Tris-HCl (pH 8.0)) at 37uC for one hour.

TRIM5ahuCC-SPRY or TRIM5arhCC-SPRY (2 ml) was added

to the assembly mix (20 ml) to a final concentration of 18 mM and

incubated on a rocking platform at room temperature for 1 hr

with gentle mixing at 10 min intervals. 2.7 ml of 5 nm Ni-NTA-

Nanogold gold beads (stock concentration, 0.5 mM) in 100 mM

imidazole (pH 8.0) was added to the assemblies and allowed to

incubate at room temperature for 20 minutes. The mixture was

then centrifuged at 3,000 g and the pellet was resuspended in

assembly buffer. Samples were immediately applied to glow-

discharged EM grids for negative staining with 1% uranyl acetate

solution after resuspension. Images were acquired on an FEI

Tecnai TF20 electron microscope at a nominal magnification of

50,000 and with underfocus values about 2 mm, using a Gatan

ultrascan 4KX4K CCD camera (Gatan Inc., Pleasanton, CA,

U.S.A.).

CA double-cysteine mutant cross-linking reactions
The cross-linking experiment was set up as previously

described [54]. Briefly, 30 ml P207C/T216C or A14C/E45C

CA were preassembled in the presence of 50 mM DTT under the

conditions described above. The assembled material was then

subjected to centrifugation at 20,000 g at room temperature in an

Eppendorf centrifuge 5417R for 15 minutes. The pellet was

resuspended in 30 ml assembling buffer and oxidized with 1 ml of

30x oxidizer mix (60 mM CuSO4, (Sigma) dissolved in water, and

267 mM 1,10-Phenanthroline (Sigma) dissolved in 100% ethanol

in a 1:1 ratio) for 5 seconds, immediately followed by quenching

with 20 mM iodoacetamide (Sigma) and 3.7 mM Neocuproine

(Sigma).

SDS-PAGE gel densitometry analysis
For the dose-dependent TRIM5arh CC-SPRY binding assay,

the SDS-PAGE gels were scanned (Epson 4990 scanner) and the

integrated intensities of CA, CA-NC, and TRIM5arh protein

bands in pellet fractions were measured using Image J 1.40 g

program (NIH). The molar ratios were calculated according to the

formula (TRIM5arh band intensity/TRIM5arh molecular

weight)/(CA band intensity/CA molecular weight).

Cryo-EM analysis
Aliquots from the binding assays (above) were subjected to

cryoEM analysis. 2 ml were applied to the carbon side of a glow

discharged perforated Quantifoil grids (Quantifoil Micro Tools,

Jena, Germany), and 2.5 ml binding buffer was added to the back

side of the grids. Grids were blotted and plunge-frozen in liquid

ethane using a manual gravity plunger. Low dose (10,15 e2/Å2)

projection images were collected on an FEI Tecnai TF20 electron

microscope at a nominal magnification of 50,000 and with

underfocus values ranging from 1.0 to 2.5 mm, using a Gatan

ultrascan 4KX4K CCD camera (Gatan Inc., Pleasanton, CA,

U.S.A.).

Quantification of A14C/E45C and P207C/T216C cores in
the presence of human and rhesus TRIM5a CC-SPRY

The effect of Rhesus TRIM5a CC-SPRY on HIV-1 cores was

examined and quantified using cryoEM. 18 mM rhesus or human

TRIM5a CC-SPRY proteins were added to a solution of isolated

HIV-1 A14C/E45C or P207C/T216C cores (,11 mg/ml). After

one hour incubation at room temperature with gentle agitation,

the samples were subjected to cryoEM analysis. For each sample,

about 80 low dose projection images were collected at 19,000x

magnification. Each field of view covers about 5 mm2. The image

areas were chosen randomly, owing to the nature of cryoEM

imaging. The number of cores in each sample was quantified using

average number of cores per image frame. Mean values from four

totally independent experiments are plotted in Fig. 6 with the

standard deviation indicated.
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Supporting Information

Figure S1 SDS-PAGE analysis of binding of TRIM5a CC-

SPRY to pre-assembled wild-type CA tubes. Samples of the

reaction mix before centrifugation (t), of supernatant (s), and of

pellet (p) are shown. Controls for TRIM5a without CA, CA

without TRIM5a and CA with human TRIM5a are shown as

indicated.

(TIF)

Figure S2 Gold labeling TRIM5a CC-SPRY. A) CA tubular

assemblies incubated with TRIM5ahuCC-SPRY. (B&C) CA

tubular assemblies incubated with TRIM5arhCC-SPRY. (D) A

gallery of gold-labeled TRIM5arhCC-SPRY in complex with CA

tubes. Scale bars, 100 nm.

(TIF)

Figure S3 CryoEM micrographs of supernatant (A&B) and

pellet (C&D) fractions of the TRIM5arh CC-SPRY/CA mixture

at low magnification (3,000x, A&C) and high magnification

(50,000X, B&D). CA fragments appear in the pellet fraction after

centrifugation. Scale bars, 2 um in A&C and 100 nm in B&D.

(TIF)

Figure S4 Low dose projection images of CA mutant assemblies

treated with rhesus TRIM5a CC-SPRY. (A-B) Comparison of

A92E CA assemblies treated with 0 mM (A) or 18 mM (B) of

TRIM5arh CC-SPRY. Fragmented CA helical arrays similar to

those in observed in the wild-type CA samples are seen. Binding of

TRIM5arh CC-SPRY also causes bundling of A92E tubes

(indicated by arrows in panel B). (C&D) Comparison of E45A

CA assemblies treated with 0 mM (A) or 18 mM (B) of TRIM5arh

CC-SPRY. Fewer fragments were observed compared to wild-type

CA and A92E CA. Scale bars, 100 nm.

(TIF)

Figure S5 (A) HIV-1 P207C/T216C CA can efficiently

assemble into short tubes. (B) Addition of oxidizer to the assembly

solution does not introduce any noticeable structural changes in

the P207C/T216C CA tubes. Scale bars, 100 nm.

(TIF)

Figure S6 SDS-PAGE analysis of TRIM5arh CC-SPRY

binding to A14C/E45C CA tubes. A14C/E45C CA assemblies

were incubated with either TRIM5ahu CC-SPRY, TRIM5arh

CC-SPRY or reaction buffer followed by oxidization. Samples of

the reaction mixture before high speed centrifugation (t), and

pellets of non-reduced (p) and reduced (pDTT) samples were

analyzed by non-reducing SDS-PAGE and stained with Coomas-

sie Blue. A CA dimer is observed (lane 1, 3, 5, 7, 9) in non-oxidized

samples, whereas a dimer of CA hexamers is only seen in oxidized

A14C/E45C CA assemblies without TRIM5arh CC-SPRY

treatment (lane 2 and 8).

(TIF)

Figure S7 Non-reducing SDS-PAGE analysis of isolated HIV-1

A14C/E45C and P207C/T216C cores, detected by immunoblot-

ting with rabbit anti-CA serum. Lane 1, A CA oligomer ladder

formed by purified, cross-linked P17C/T19C CA (gift from Dr.

Owen Pornillos [Pornillos O, Ganser-Pornillos BK, Banumathi S,

Hua Y, & Yeager M (2010) Disulfide bond stabilization of the

hexameric capsomer of human immunodeficiency virus. J Mol

Biol 401(5):985-995.]); lane 2, isolated A14C/E45C cores

contained predominantly hexameric CA; lane 3, isolated P207/

T216C cores contained primarily monomeric CA; lane 4, isolated

P207/T216C cores contained primarily CA trimers after oxidiza-

tion; lane 5, molecular weight markers.

(TIF)
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