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This paper responds to a resurgence of interest in constructing long-term
time proxies of human activity, especially but not limited to models of
population change over the Pleistocene and/or Holocene. While very
much agreeing with the need for this increased attention, we emphasize
three important issues that can all be thought of as modifiable reporting
unit problems: the impact of (i) archaeological periodization, (ii) uneven
event durations and (iii) geographical nucleation-dispersal phenomena.
Drawing inspiration from real-world examples from prehistoric Britain,
Greece and Japan, we explore their consequences and possible mitigation
via a reproducible set of tactical simulations.

This article is part of the theme issue ‘Cross-disciplinary approaches to
prehistoric demography’.
1. Introduction
The last few years have seen a real resurgence of interest in how best to con-
struct long-term time proxies of human activity, whether with regard to
changes in the aggregate human population (e.g. this journal issue; [1,2]), settle-
ment patterns [3–6], land cover and land use [7,8], metal production and
deposition [9] or food storage strategies [10], to name but a few. This fresh
ambition for a systematic longitudinal view goes well beyond the traditional
construction of archaeological typologies or chronologies for their own sake
and looks to contribute more meaningfully to wider, cross-disciplinary,
longue durée debates about change over the Pleistocene and Holocene. It is
also healthy in highlighting all sorts of methodological challenges that have
been lurking in the shadows of archaeological practice for far too long.
In this paper, we wish to focus on three particularly salient issues that in differ-
ent ways can all be thought of as modifiable reporting unit problems: the impact
of (i) archaeological periodization, (ii) uneven event durations and (iii) geo-
graphical nucleation-dispersal phenomena. Examples from the archaeology of
prehistoric Britain, Greece and Japan are introduced as substantive real-world
motivations (figure 1), accompanied by ‘tactical’ simulations (see [14]) that
explore both the likely consequences of these issues and their possible
mitigation. Details about the simulations can be found in the electronic sup-
plementary material, and R scripts and data for generating all the figures are
available as a dedicated repository (https://github.com/ercrema/repunit-
probs, doi:10.5281/zenodo.3839249).
2. Periodization effects
Since the earliest days of archaeology as a formal subject, practitioners have
sought to classify past human culture in both space and time, for instance by
finding pottery types that come from the same region and belong to the
same chronological horizon (a desire to lump-or-split continuous variation in
scientific observations that is of course not restricted to archaeology: see
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Figure 1. Motivating examples from (a) prehistoric site counts and summed radiocarbon from the Peloponnese, Greece [11]; (b,c) individual radiocarbon dates,
dendrochronological dates and a duration model from the ‘Mauk E’ Bronze Age copper mine, Austria [12,13]; and (d ) counts of Middle and Late Jomon period pit-
dwellings and settlements in Eastern Tokyo Bay [3]. (Online version in colour.)
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Womble [15]; also archaeological discussion in Lucas [16] and
Perreault [17, pp. 23–39]). These culture-historical pigeonholes
still offer key building blocks for our relative dating schemes
and often become implicit narrative protagonists in our
stories about the past (e.g. ‘the rise, expansion and decline
of the corded pottery-making people’, to stereotype slightly:
see [18] for a good discussion). We certainly do not wish to
argue below that such efforts to assign culture to periods
are now somehow wholly misjudged or outdated, but we
do want to emphasize that they have unintended interpretive
and analytical consequences, especially when we look to
count up, correlate or otherwise compare quantitatively various
kinds of evidence for human activity through time (e.g.
lithics, pots, sites, houses, etc.), using these periods as modi-
fiable reporting units. For example, in Greece, an increasingly
discussed chronological and cultural problem occurs at the
transition from the Neolithic to the Bronze Age [11,19],
where despite a concerted effort to sample potential candi-
date sites, very few radiocarbon dates fall in a so-called
‘missing millennium’ at roughly 4000–3000 BCE (figure 1a).
While the settlement patterns in northern Greece largely
match this perceived drop in radiocarbon dates (not shown
here, see [11]), those in southern Greece look more compli-
cated with what at first glance appears to be a consistent
rise in site counts from later Neolithic to Final Neolithic
to Early Bronze Age (figure 1a). However, comparison of
summed radiocarbon, southern Greek site counts and associ-
ated period boundaries suggests that at least part of the
discrepancy between them may simply be about where
‘Final Neolithic’ stops and starts as a counting unit (hence
a periodization problem), while a further complicating issue
is certainly also the move from likely longer lasting, more
nucleated earlier Neolithic sites to a more dispersed later
settlement of likely shorter duration (see §§3 and 4).

In any case, archaeological periodization introduces a
host of further related problems that are certainly worth
addressing in more detail. The first form of uncertainty (fol-
lowing [20]) is to do with how confidently we can assign
any event to a particular phase or period ( phase-assignment
uncertainty), which typically arises from limitations in the
quality and quantity of culturally diagnostic elements (how
recognizable the relevant pottery, lithic or other chronological
indicators are in one period relative to another period). For
example, Roman pottery may be easier for archaeologists in
a particular region to identify than Late Bronze Age pottery,
regardless of whether the amount of activity in these two
periods was in fact similar. As a result, the count of Roman
pots and Late Bronze Age pots are difficult to compare equi-
tably (e.g. [21]). Furthermore, even if we are confident that an
event belongs to a certain period, it is rarely if ever clear what
shape of probability best expresses the likelihood of its
occurrence within that period (within-phase uncertainty). For
example, if a particular episode of house construction x
belongs to a period dated between 600 and 300 BCE, what
is px(t = 340), the probability that house was built in 340
BCE? This form of uncertainty is generally quantified by a
fairly arbitrary choice of some probability distribution that
describes how p(t) changes for any value (e.g. calendar
year) of t. The example shown in figure 2c is a ‘trapezium’
distribution (see also [22]), but elsewhere a flat, uniform dis-
tribution is often assumed (the application of aoristic analysis
in archaeology, e.g. [23–25], etc.). Finally, the boundaries of a
known period (e.g. respectively, 600 and 300 BCE) are them-
selves parameters that are imprecisely dated approximations
of more complex cultural changes and hence have their own
uncertainties ( phase boundary uncertainty). We do not really
know exactly when the Late Bronze Age stops and starts
down to the precise year (and would typically laugh at the
idea that such precision was appropriate for what most
consider an archaeological ‘ballpark’ estimate). Figure 2
tries to capture the essence of the three kinds of uncertainty
mentioned above for any hypothetical event x.

While there is no single perfect solution for quantifying
these uncertainties, a growing number of studies now
employ some combination of probabilistic estimates and
Monte Carlo approaches to generate simulation envelopes
to define how these uncertainties affect what conclusions
we can or cannot reliably draw from particular time series
(e.g. [3,20,26,27]). At a smaller scale, Monte Carlo Markov
chain approaches can also be useful for combining ‘hard’
(e.g. multiple absolute dates) and ‘soft’ (e.g. stratigraphic
relationships) into a final probabilistic model of a particular
sequence [28].

Even if we could manage all of the above uncertainties
well, there would still be a major issue arising from the fact
that archaeological periodizations are always arbitrary slicings
of the temporal dimension, just as any political, ethnic or lin-
guistic borders that are drawn on a map are invariably
arbitrary slicings of the spatial dimension too. The spatial
analogy is apt because we are referring here to the temporal



phase assignment uncertainty

BC
800 700 600 500 400 300

phase A

phase B

phase C
Px(phase A) = 0.05)
Px(phase B) = 0.8)
Px(phase C) = 0.15)

within-phase uncertainty

BC
800 700 600 500 400 300

Px(660−630)=0.02

Px(600−540)=0.28 Px(500−447)=0.31

phase boundary uncertainty

BC
800 700 600 500 400 300

a

b c

d

(a) (b) (c)
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equivalent of a modifiable areal unit problem identified long ago
by geographers (e.g. [29,30]). In what follows, we therefore
refer to this problem of cultural periods as a modifiable tem-
poral unit problem. Figure 3 illustrates the main point via a
tactical simulation. Assume we have a time series represent-
ing population change over a 500-year period of prehistory,
and that the shape of this hypothetical population trend is
logistic (as indicated by the dashed red line, implying initial
slow growth, then fast growth, then a population plateau
often assumed to imply the hitting of a local carrying
capacity). We can sample at random 1000 events from this
logistic distribution (e.g. newly built houses or individual
human burials) and then convert their absolute calendar
ages (year of birth or death) to a nominal-scale label referring
to its assigned phase.

Figure 3 explores the repercussions of this for different
numbers of periods and different period boundaries: thus a
house built in 630 BC would be affiliated with phase I in
figure 3a, but with phase II in figure 3e. The simulation can
be repeated many times (see electronic supplementary
material, for further details). And the results reveal how,
even if we only consider within-phase uncertainty (in this case
assuming a uniform probability distribution) the resulting
time series would look rather different depending on how
archaeological periodizations slice time, leading potentially
to biased estimates about when the major population growth
occurred. If either the timing of the population change corre-
sponds closely to a transition from one archaeological period
to another (figure 3a,c) or if the number of archaeological
periods is sufficiently high to ensure a detailed chronological
resolution (figure 3f ), then the bias introduced by archaeologi-
cal periodization is comparatively small. However, if there
is a mismatch between the onset of these population changes
in the time series and the way the time series evidence is seg-
mented into periods, then there could be a far greater error in
estimates of the timing and rate of change. To be fair, we
might anticipate that a major population shift will often corre-
spond with the kind of major cultural transition behind
the definition of an archaeological period, but of course this
correspondence should be independently demonstrated in
each case, not simply assumed to hold true. In real-world
settings, the problem can further be exacerbated by phase-
assignment uncertainty (how confidently any event be assigned
to a particular period/phase, see above) and typically an
archaeologically recovered sample of dwellings (or other
counted features) will not be identical to the deliberately ideal-
ized model in figure 3, but instead will be dated with varying
certainty (so some houses will be confidently assigned to one
period, some merely attributely to a broader span across
several periods).

How best to address this challenge? One option is to use a
more nuanced and tailored model with which to represent
within-phase uncertainty. Themismatch between the true popu-
lation curve and the time series derived from data aggregated
into periods is exacerbated by how the within-phase chrono-
logical uncertainty is modelled. In the case of figure 3, as
well as in the application of aoristic analysis and similar
methods, the within-phase uncertainty is modelled by a uni-
form probability distribution. Thus, for example, an event
associated with phase II in figure 3e is assumed to have the
same chance of being from the interval 650–600 BC and the
interval 500–450 BC while in reality it is far more likely that
the event is from the latter temporal bracket. An appropriate
model that captures correctly the within-phase uncertainty
would thus overcome the modifiable temporal unit problem,
but this would require unusually high chronological precision.
Analysing the frequency of residential data would, for
example, ideally require sufficiently large samples of radiocar-
bon dates associated with dwellings that are assigned to the
focal period. Of course if there is such a dataset available
there would be no need to find a statistical solution in the
first place. Another would be to reshape our relative artefact
chronologies to produce probability distributions per calendar
year (e.g. based on geomorphometric distances, Jaccard dis-
tances of trait similarities, co-occurrence seriation, etc.) but
again this is a very significant undertaking and not a strategy
for working with the mass of archaeological evidence that we
already have in legacy form (e.g. [31]). Another approach
therefore consists of testing whether observed time series
are different from theoretical models, by emulating the
information loss and bias introduced by archaeological
periodization. This is effectively the same principle behind
approaches designed to determine whether empirical
summed radiocarbon probability distributions (SPDs) deviate
from theoretical growth models (see [1,32], etc.; see also for
possible lateral offset effects in radiocarbon dates, [33]). In
this case, the choice of suitable growth model and associated
parameters might be more difficult to retrieve from the
observed data, and the statistical power of the analysis is
likely to be conditioned by both the null model and by the
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Figure 3. The effect of modifiable temporal unit problem on simulation-based approaches for handling chronological uncertainty and archaeological periodization.
The dashed line in each panel indicates the ‘true’ population dynamic based on a count set of hypothetical events such as house constructions, with a logistic growth
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(with their temporal demarcation shown at the top of each panel). This was then used to carry out a Monte Carlo analysis where the time-stamp of each event was
simulated (assuming a uniform distribution within each phase) and then aggregated into 50-year time blocks. This process was repeated 1000 times so that a
simulation envelope can be generated for each scenario as well as average estimates shown as solid dots and a line. Further details of this procedure and the
associated R script can be found in the electronic supplementary material. (Online version in colour.)
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archaeological periodization. Nonetheless, if explicit hypo-
theses are available, this approach could potentially
overcome the modifiable temporal unit problem.
3. Duration effects
Many archaeological phenomena are not discrete events, but
instead exhibit durations over time. A house can last for 1
year or for 100 before it is abandoned. A ‘settlement’ is a con-
venient, but also ambiguous, term referring to multiple
dwellings (i.e. a modifiable reporting unit). Settlements can
vary considerably, not only in size but also in duration: they
can last for six months (e.g. the recently discovered Bronze
Age pile-dwelling site of Must Farm, south-eastern Britain:
[34] or for thousands of years (e.g. a Middle Eastern tell site
such as Aleppo, north-western Syria), with very different con-
sequences for the resulting mixes or palimpsests in our
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evidence (e.g. [17,35, pp. 41–48]; one reason why we often try
to discern site sub-phases where mixing is considered less
troublesome). We also frequently create further problems by
conflating the chronological uncertainty we have about past
events with the expected duration in the past: in other
words, if we can only date a site to 1000–400 BCE based on
observable finds, we often make interpretations that assume
that the site was continuously occupied over this period.
A good example of how misleading this might be is offered
by the Late Bronze Age copper mine at Mauk E in the
Austrian Tyrol (figure 1a; [12,13]). This mine produced
some radiocarbon dates that likely exhibit ‘old wood’ effects,
but even excluding these, the rest of the sample visually
suggests a duration of many centuries, due to a combination
of the accompanying 14C measurement uncertainty and a
plateau in the calibration curve at this point (the well-
known ‘Hallstatt plateau’). Bayesian modelling of the likely
duration improves things if we assume the dates are repre-
sentative of the total activity at the site (figure 1b), but
not if we simply model the difference between likely start
and end dates (a distinction in OxCal software between a
‘span’ and an ‘interval’ model, see [28]). In fact, tree-ring
sequences from various timber supports at Mauk E suggest
an even shorter likely duration of about at most a few decades
(900–869 BCE).

We can further use copper mines as a conceptual prompt
for another tactical simulation. Imagine a simple example in
which, for each year over a millennium time span from
1750 to 750 BCE, there are always exactly 100 copper mines
of equal size each year that are producing copper for
Bronze Age Europe. The only thing we alter is the duration
of each copper mine and how certain we are about this dur-
ation. We model a gradual linear change in average mine use
duration from 200 years on average in 1750 BCE to 10 years
750 BCE on average (perhaps due to changing water table
conditions, erosion, available people to mine, political cir-
cumstance, quality of ore body, etc.). Whenever an old mine
is abandoned and falls out of use, a new mine is setup
with a use-life (aka duration) drawn at random from a nega-
tive binomial distribution whose mean declines through the
period of interest as described above. Such a choice is appro-
priate given a negative binomial distribution is frequently
used to model waiting times until a failure (in this case
mine abandonment). Figure 4a juxtaposes a correct, uniform
pattern of unchanging mine counts through time (red
dashed line), with the dramatically different pattern observed
if all mines are assumed to be of similar duration. The poten-
tial risk for misinterpretation is hopefully obvious. On a more
positive note, if sufficient absolute dating evidence exists,
the relevant signal for this problem should be retrievable.
For example, if we take just 15 mines spread out across
early, middle and late parts of the sequence and sample
five hypothetical radiocarbon dates at each mine (a plausible,
financially viable amount of radiocarbon sampling; see
electronic supplementary material, for sampling routine,
back-calibration and error modelling), an OxCal span model
does correctly indicate this likely changing trend, allowing
us perhaps to adjust our modelling and interpretation accord-
ingly. While similar issues have been explored in the past, for
instance in relation to archaeological periodization and the
contemporaneity problem (e.g. [36,37], more recently [38]),
the implications of duration have been underexplored in
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methodological applications such as aoristic analysis or
summed radiocarbon (but see [24], appendix A; [6]).
4. Aggregation effects and spatially dependent
sampling

As the above has already made clear, one lurking and
well-known issue with any count-based population proxy is
the question of whether an extra unit of the proxy straightfor-
wardly implies an extra unit of inferred activity or population
(see [4] for a relevant recent review). In other words, can
a doubling of the proxy—whether this is the count of exca-
vated dwellings, of known sites or of radiocarbon dates, for
instance—be straightforwardly interpreted as a doubling of
population? In fact, rarely is this an easy assumption to sus-
tain: such time series usually cover large periods of time in
which there are changes in residential mobility, the degree of
settlement nucleation or in energy expenditure [39]. A ‘settle-
ment’ can thus have a changing meaning, sometimes referring
to large cities while at others referring only to hamlets or farm-
steads and yet potentially counting them all as equivalent
(researchers working in settings where settlement seasonality
is likely will already be attuned to such challenges over short
time scales). Even individual dwellings cannot always be trea-
ted as equivalents over longer time periods, in the case for
example where they do not maintain consistent numbers of
co-residents (e.g. changes from or towards nuclear versus
extended families). One commonly used solution to these pro-
blems is to apply a ‘weight’ to each reporting unit (e.g. using
house floor area or settlement size, or more direct models of
area-to-population ratio based on ethnographic data (e.g.
[40,41]), but it often remains difficult to know how one
would define such a weighing scheme in a reliable way
across time, space and a very patchy archaeological record.

Spatial nucleation and dispersal also creates recovery
bias: for example, dwellings are rarely, if ever, sampled
independently of each other but instead are often ‘discovered’
(i.e. excavated or surveyed) in clusters. Figure 1d is an example
fromprehistoric Japan that illustrates this problem. The stacked
bar chart shows the total number of Jōmon pit-dwellings from
Eastern Tokyo Bay [3] organized into chrono-typological
periods and divided by archaeological sites. Some periods
(e.g. Early Kasori E) are characterized by a skewed size distri-
bution, with few sites (such as Ariyoshi-Kita) having a large
share of the total number of residential units, while other
periods (e.g. Late Kasori E) have a more even distribution of
settlement sizes. It follows that the exclusion of some sites
(e.g. Aioi) from the sample has a small impact on the time
series of pit-dwelling counts, while the removal of others (e.g.
Ariyoshi-Kita) can have a drastic impact.

To further illustrate this issue, we employ another tactical
simulation (figure 5, see electronic supplementary material,
for further details) in which the simulated data consist of
two archaeological periods with the same duration in time
and the same number of residential units, but different settle-
ment sizes. In the first period, there are a few large nucleated
settlements but many smaller sites. In the second period,
settlements are in contrast mostly of similar size (see inset
in figure 5). Because the number of residential units is the
same in both periods, the ‘true’ percentage change between
the two periods is 0 (total population is the same, only the
spatial structure of that population across the landscape has
changed). The simulation then emulates typical archaeologi-
cal excavation or survey procedures in sampling different
fractions of the total (in this case 0.1, 0.3, and 0.7), with a
size-dependent detection probability defined by the para-
meter b. When the latter is set to 0, all sites (and
consequently residential units within them) have the same
probability of being sampled. When b > 0, larger sites (i.e.
those with a larger number of residential units) have a
higher chance of being included in the sample, and when
b = 1 the probability of a site being detected is directly pro-
portional to the relative contribution of its total number of
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residential units to the total number of dwellings for both
periods. The results show that when sampling is unbiased
(i.e. when b = 0 and all settlements have the same chance of
being selected), the average percentage change of residential
frequency across the simulations converge to the true value
(i.e. 0%), with smaller sampling fraction showing more varia-
bility in the outcome as a consequence of sampling error.
However, in the presence of size-based sampling bias, the
average rate of change across the 100 simulations becomes
negative, incorrectly suggesting a decline in the number of
residential units between the two periods. The magnitude
of this false signature is greater for smaller samples and/or
stronger sampling bias. A similar interplay between sample
size, sample error and the spatial patterning of the archaeolo-
gical record has also been discussed extensively in the
literature on field survey (e.g. [42]).

This exercise highlights an important interplay between
how our population proxies are distributed across space and
how they are sampled. These two factors cannot be assumed
to be constant over time and ignoring them can lead to
major misinterpretations of the available evidence. Summed
radiocarbon date distributions are another approach where
such nucleation–dispersal issues raise problems. Sampling
for radiocarbon varies considerably from site to site: many
radiocarbon dates might be taken by a wealthy research pro-
ject at one site, while just one or two dates might be taken at
another site of similar size (e.g. one excavated under rescue
conditions). Put another way, large settlements are not
always conveniently associated with a large number of radio-
carbon dates and small settlements with a small number. To
overcome this problem, Shennan et al. [1] introduced the
idea of aggregating radiocarbon dates that are ‘close’ in time
from the same sitewhere this ‘binning’ procedure is effectively
a trade-off which reduces the impact of uneven sampling for
radiocarbon dates, but at the cost of treating all sites or
phases as of equal effective size (see also [32]).

Responding to this issue, Crema & Kobayashi [20] demon-
strated general agreement between a times series of summed
radiocarbon dates where within-site dates are binned and a
time series of dwelling counts, but they also revealed signifi-
cant short-term discrepancies in the rate of change, at likely
moments where prehistoric Japanese settlement patterns
switched from more nucleated to more dispersed patterns
(or vice versa). Downey et al. [43] proposed one possible sol-
ution by using the ‘community size’ variable in the Standard
Cross-Cultural Sample [44] to infer a scaling factor by which
to adjust the contribution of binned dates for European Meso-
lithic versus Neolithic populations. Ahn & Hwang [45] tried a
different approach and only considered radiocarbon dates
associated with individual residential units in the Korean
peninsula effectively making the resulting SPD a proxy for
residential density. Because all samples were related to a par-
ticular type of event (the use of a dwelling structure) rather
than an ensemble, they were able to combine multiple radio-
carbon dates from any given individual residential unit (via
Bayesian rules and the R_Combine function in OxCal).
Although we are not aware of other studies employing these
specific approaches to improve the construction of SPDs,
they represent a useful basis for developing more refined
ways to handle radiocarbon dates as demographic proxies,
for example by employing scaling factors such as floor area
to population size [40,46]. That said, neither of the above two
solutions is immune to further problems. The scaling solution
adopted by Downey et al. [43] allows for larger samples, but it
requires reliable criteria for classifying dates into different
groups (in their case ‘Mesolithic’ versus ‘Neolithic’), and
more crucially it assumes uniformity within each class. There
is ample evidence that the latter in particular is an incorrect
assumption—roughly contemporary settlements can and do
vary in size across space—but more crucially settlement size
distributions can fluctuate over time via nucleation–dispersal
cycles (e.g. [3,47,48]). The main disadvantage of the targeted
sample solution suggested by Ahn & Hwang [45] is that its
strict selection criteria are likely to drastically reduce sample
sizes for most radiocarbon databases, and it is still not
immune to the problem illustrated in the tactical simulation
described in figure 5.
5. Conclusion
This paper has foregrounded three topics that we consider to
be under-discussed so far in archaeological analysis and also
rarely mentioned when archaeological data is used in cross-
disciplinary studies of human and environmental history.
In some instances, the discussion above has already tried
to point to ways in which such challenges might be better
diagnosed and mitigated while, in others, it has largely
only sounded an alarm without providing a solution. In
any case, we would strongly argue that all three forms of
modifiable reporting unit problem need to be given priority
attention if we are to reconstruct more reliable long-term
time series of human activity.
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