
Heliyon 9 (2023) e21381

Available online 21 October 2023
2405-8440/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Identification and validation of a novel signature based on T cell 
marker genes to predict prognosis, immunotherapy response and 
chemotherapy sensitivity in head and neck squamous carcinoma 
by integrated analysis of single-cell and bulk RNA-sequencing 

Chongchang Zhou a,1, Hongxia Deng a,1, Yi Fang a,b, Zhengyu Wei a,b, 
Yiming Shen a,b, Shijie Qiu a, Dong Ye a, Zhisen Shen a,*, Yi Shen a,c,** 

a Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China 
b Health Science Center, Ningbo University, Ningbo, Zhejiang, China 
c Department of Otorhinolaryngology Head and Neck Surgery, Ningbo NO. 2 Hospital, Ningbo, Zhejiang, China   

A R T I C L E  I N F O   

Keywords: 
Head and neck squamous carcinomas 
T cell 
Prognosis 
Immunotherapy 
Chemotherapy 

A B S T R A C T   

T cells are among the most potent anti-tumor cells that are found in humans. Our study sought to 
develop a reliable signature incorporating T cell marker genes (TMGs) for predicting the prog-
nosis and therapy responsiveness of head and neck squamous cell carcinoma (HNSCC) patients. 
We downloaded scRNA-seq data from the GSE181919 to identify TMGs. Subsequently, we devised 
a 12 TMG signature in the TCGA HNSCC cohort by using LASSO analysis. Patients with high-risk 
scores were shown to experience unfavorable progression-free survival, disease-specific survival, 
and overall survival, which was validated in the GSE65858 cohort. Additionally, the nomogram 
integrated risk score and clinical features are more suitable for clinical application. The enrich-
ment analyses of both pathways and functions showed that high- and low-risk patients had 
functionally related distinctions. Furthermore, analysis of the immunological landscape 
confirmed that the low-risk patients had a larger percentage of infiltrating immune cells as well as 
a higher incidence rate of immune-related events. In the meantime, a greater IPS score and 
expression of immune checkpoint genes suggested significantly favorable responsiveness to 
immunotherapy in low-risk patients. On the other hand, the high-risk patients had a greater 
degree of sensitivity to the chemotherapy agents, which included paclitaxel, gemcitabine, doce-
taxel, and cisplatin. Our finding revealed that this TMG signature independently functioned as a 
prognostic marker and guided individualized immunotherapy and chemotherapy selection for 
patients with HNSCC.   
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1. Introduction 

Head and neck cancer serves as the sixth most commonly encountered form of malignancy in the world [1], among which head and 
neck cancer squamous carcinoma (HNSCC) represents the main histological subtype for over 90 % of all head and neck cancers [2]. 
HNSCC arises from the mucosal epithelium of the upper respiratory and digestive tracts and it is associated with the prevalence of 
human papillomavirus infections, alcohol consumption, betel quid intakes, and tobacco use [3]. The global annual incidence of HNSCC 
comprises more than 870,000 cases, resulting in more than 440,000 deaths every year [4]. HNSCC patients are commonly diagnosed 
with advanced diseases and have a high probability of recurrence, leading to a correspondingly poor prognosis [5]. Notwithstanding 
the recent significant progress in comprehensive and multidisciplinary therapeutic approaches, includingsurgical resection, chemo-
therapy, radiotherapy, immunotherapy, and targeted therapy [6,7], aconsiderable improvement in 5-year survival has not occurred, 
and it is still lower than 50 % [8]. Diagnoses at an early stage and prognosis predictions are beneficial for advancing precision medicine 
and improving patient outcomes [9,10]. Nonetheless, conventional risk classification indicators based only on histological grades, 
distant metastasis, lymph node, and tumor size have a limited capacity in properly forecasting prognosis within individuals with 
HNSCC [11,12]. Consequently, developing novel and reliable prognostic signatures for patients with HNSCC is an urgent need. 

T cells are a heterogeneous subset of cells that are extremely essential and perform critical functions in the adaptive immune system 
[13]. After T cell receptors (TCR) recognize the specific antigens, naive T cells could be differentiated into distinct effector T cells for 
participation in a variety of immunologic functions. Some of the more prevalent and well-recognized subpopulations of T cells include 
CD8+ T Cells (cytotoxic T cells or killer T cells), CD4+ T cells (helper T cells), and regulatory T cells (Tregs), which perform 

Fig. 1. The schematic flow diagram for this investigation.  
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fundamental functions in the tumor microenvironment (TME) [14]. Cancer or stromal cells inside the TME release several immu-
nosuppressive molecules such as interleukin 6 (IL-6), IL-10, and prostaglandin E2 to achieve immune tolerance and immuno-
surveillance evasion by regulating T cell activations [15]. Inanimate T cells are called exhausted T cells characterized by the expression 
of inhibitory molecules, which inhibit normal T-cell activations, thereby inhibiting anti-tumor immune function and promoting the 
tumor’s growth [16]. Therefore, blocking the immune checkpoints inhibitors (ICIs) of T cells, including anti-cytotoxic T-lymphocy-
te-associated protein 4 (CTLA-4) and anti-programmed cell death protein 1/programmed cell death protein ligand 1 (PD-1/PD-L1), 
attracted substantial attention in cancer treatments, including HNSCC [17,18]. Additionally, multiple subtypes of T cells are linked to 
the prognosis of HNSCC [19–21]. Nevertheless, the exact processes of T cell marker genes (TMGs) in the TME and their involvement in 
patient prognosis and immunotherapy responsiveness in HNSCC are incompletely understood. 

Fig. 2. scRNA-seq analysis revealed different clusters and cell types of HNSCC single-cell. A: The sequencing depth (shown on the left), the 
gene count (shown in the center), and the proportion of the mitochondrial genome (right) are shown using violin plots. B: The link between 
sequencing depth and the proportion of the mitochondrial genome and the total number of intracellular sequences was established using a dot plot. 
C: The correlation variance of the expression of each gene across all single-cell samples is displayed using dot plots. The top 1500 highly variable 
genes were denoted as red dots. D: Principal component analysis (PCA). E: Dot plot and F: Heatmap show the feature genes in the PCs. G: tSNE plot 
shows the regrouping of HNSCC single cells into 19 separate clusters. H: The 10 leading marker genes for each cluster are presented via a heatmap. I: 
tSNE plot shows the regrouping of HNSCC single cells into 8 cell types. J: The top 10 marker genes for each cell type are presented using a heatmap. 

Fig. 3. Construction of T cell marker gene signatures correlated with overall survival in patients with HNSCC. A: Forest plot demonstrated 
different expressed T cell marker genes (TMGs) with considerable prognostic value in the TCGA-HNSC cohort. B: Profiles of the TMGs in the 
signature derived using the least absolute shrinkage and selection operator (LASSO). C: A visualization of the partial likelihood deviation vs. the log 
scale (lambda). The lambda value that results in the least amount of error is denoted by the vertical dotted line, which also denotes the highest 
possible value of lambda for which the deviation is within one standard error of the minimum. D: A heatmap was used to visually contrast the levels 
of the expression of the twelve TMGs that made up the signature in the HNSCC and normal samples. E: Interaction network of twelve TMGs. F: A 
landscape depicting the mutational characteristics of twelve TMGs found in individuals with HNSCC. G: CNV frequency of 12 TMGs. H: Chro-
mosomal location of the CNV alternation of 12 TMGs. The red dots indicate an increase in the CNV gains of a sample in contrast with CNV losses, 
whereas the blue dots denote an increase in CNV losses in contrast with CNV gains. The presence of the black dot indicates that both are equivalent. I 
and J: The tSNE method was used to classify distinct cell types, and the expression level of each of the twelve TMG signature genes was compared 
across all of these cell types. 

C. Zhou et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e21381

5

Single-cell RNA sequencing (scRNA-seq) is a promising approach for evaluating the transcriptomes at a single-cell level. scRNA-seq 
has the potential to uncover extensive intertumoral heterogeneity in contrast with the traditional method of determining the average 
gene expression in all cells [22]. Furthermore, the scRNA-seq analysis facilitates researchers in identifying crucial genes that are 
specific to certain cell types [23]. Moreover, several researchers have used scRNA-seq analysis to construct efficient prognostic models 
in the numerous cancers [24,25]. Herein, we firstly gathered the scRNA-seq data of HNSCC from the Gene Expression Omnibus (GEO) 
database to distinguish T cell subclusters and identify TMGs. We aimed to construct the TMG signature linked to the HNSCC prognosis 
using the least absolute shrinkage and selection operator (LASSO) analysis in the Cancer Genome Atlas (TCGA)-HNSCC cohort and 
validate in the GSE65858 dataset. We also examined the association of the TMG signature with TME, immune cell infiltration, 
responsiveness to immunotherapy, and susceptibility to chemotherapy. Our analysis indicates that this TMG signature might serve as 
an independent prognostic indicator and offer novel guidance for the customized selection of immunotherapy and chemotherapy in 
HNSCC. 

Fig. 4. Verification of the TMG signature’s predictive value. A: Risk score, survival time, and survival rate distribution in the TCGA cohort. B: 
The Kaplan–Meier estimate of survival time for the TCGA dataset based on the TMG signature. C: Survival rates over 1, 3, and 5 years for the TCGA 
dataset as judged by the ROC curve of the TMG signature. D: The risk score, survival time, and status distribution in the validation cohort. E: TMG 
signature-based Kaplan–Meier survival analysis in the validation set. F: The TMG signature’s ROC curve for 1-, 3-, and 5-year survival in the 
validation set. Univariate (G) and multivariate (H) Cox regression analysis of the TMG signature in the TCGA cohort. I: The principal component 
analysis of the TMG signature. 
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2. Results 

2.1. scRNA-seq analysis identified T cell mark genes of HNSCC 

Fig. 1 depicts all of the processes involved in processing and analyzing the data. Firstly, we executed the quality control and 
normalization (Fig. 2A, B, and C) operations of the scRNA-Seq from GSE181919, including 20 HNSCC samples. Secondly, via PCA 
(Fig. 2D, E, and F) and t-SNE dimensionality reductions, we identified 19 distinct clusters (Fig. 2G). Fig. 2H displays the ten leading 
marker genes for each cluster. Thirdly, the 19 clusters were annotated and re-grouped into 8 cell types (Fig. 2I) based on the “SingleR” 
package. Among the 19 clusters, clusters 0, 1, and 9 were identified as T cell subtypes. Finally, with the help of FindAllMarkers, we 
screened the differentially expressed marker genes across the 8 selected cell types. Fig. 2J depicts the ten leading marker genes for each 
cell subset. In total, 246 TMGs were identified for subsequent analyses. 

2.2. Development of the T cell marker genes signature 

As illustrated in Figs. 3A and 49 differentially expressed prognostic TMGs with differential expression were discovered via dif-
ferential and univariate Cox survival analyses and subsequently subjected to LASSO analysis to eliminate overfitting signatures (Fig. 3B 
and C). In the end, 12 TMGs were used to develop the signature. Each sample was assigned a risk score using the following formula: risk 
score = (− 0.301) × TNFRSF4 expression+(− 0.037) × TNFRSF18 expression+(− 0.381) × LAT expression+(0.052) × FAM177A1 
expression+(− 0.044) × LIMD2 expression+(0.032) × ADM expression+(− 0.064) × FXYD3 expression+(− 0.047) × CD79A 
expression+(− 0.039) × CSTA expression+(0.154) × TIMP1 expression+(0.087) × TXN expression+(0.114) × FTH1 expression. We 
separated the HNSCC samples of the TCGA and GSE65858 cohorts into low- and high-risk categories as per the median risk score. 
Moreover, we analyzed the landscape of 12 TMGs in HNSCC. The heatmap (Fig. 3D) showed the expression profiles of 12 TMGs. 
Notably, two of the TMGs were downregulated in tumor samples, including CSTA and TXN5, and the rest were all upregulated. As 
shown in Fig. 3E, the correlation of the 12 TMGs was investigated. The somatic mutation profile of the 12 TMGs was also summarized 
and showed extremely low mutation frequencies in the HNSCC (Fig. 3F). Fig. 3G and H shows the frequency of the CNV alterations of 
the 12 TMGs and their locations on the chromosome. For the 10 genes studied, CNVs were prevalent, with LOSS occurring more often 
than GAIN. The FTH1 and LIMD2 genes experienced the greatest CNV gains, whereas the TNFRSF4 and TNFRSF18 genes experienced 
the greatest CNV losses. The tSNE algorithm then determined that the expression of the 12 TMGs was differently expressed in the T cell 
cluster compared with the other cell clusters (Fig. 3I and J). 

Fig. 5. ROC curves for predicting survival for 1-year (A), 3-year (B), and 5-year (C) periods based on risk score and clinical parameters. D: A time- 
related assessment evaluating the concordance between the risk score and clinical features E: A decision curve analysis (DCA) was performed using 
the risk score and clinical features. F: The risk score, survival status, and disease-specific survival (DSS) time distributions. G: Analysis of DSS using a 
Kaplan–Meier plot on the basis of the TMG signature. H: ROC curve of 1-, 3- and 5-year DSS. Univariate (I) and multivariate (J) Cox regression 
analysis of the risk score for DSS. K: The risk score, survival status, and progression-free survival (PFS) distributions. L: TMG-based Kaplan–Meier 
curve of PFS. M: ROC curve of 1-, 3- and 5- for PFS. Univariate (N) and multivariate (O) Cox regression analysis of the risk score for PFS. 
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2.3. Verification of the TMG signature 

As illustrated in Fig. 4A, a greater risk score was linked to both lower survival times and increased death rates in the TCGA dataset. 
As per the findings of KM survival analysis, high-risk HNSCC patients exhibited a dismal OS relative to those in the low-risk category 
(Fig. 4B). We generated ROC curves for 1-, 3-, and 5-year OS to evaluate the effectiveness of the TMG signature, and their respective 
AUCs were 0.675, 0.705, and 0.643 (Fig. 4C). Our findings in the GSE65858 dataset were comparable with those in the TCGA dataset. 
As patients’ risk scores increased, their fatality rates increased as well (Fig. 4D). Survival data from the GSE65858 dataset showed that 
low-risk patients fared better than those belonging to the high-risk group, as demonstrated by the Kaplan–Meier analysis ((Fig. 4E, P =
0.007). The GSE65858 dataset’s AUCs for 1-, 3-, and 5-year OS were 0.614, 0.594, and 0.662, respectively (Fig. 4F). The risk score was 
proven to serve as a prognostic indicator in an independent manner for the OS of HNSCC patients, as shown by the findings of both 

Fig. 6. Analysis of the correlations between the TMG signature and clinical characteristics and subgroup survival analysis. A: Comparative 
analysis of the high- and low-risk patients’ clinical parameters is shown via a heatmap. B: The proportion of early and advanced T stage patients 
distributed across the two groups C: The difference in risk score between early and advanced T stage is demonstrated using box plots. The subgroup 
survival analysis based on age (D), gender (E), histologic grade (F), and clinical stage (G). 
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univariate (Fig. 4G) and multivariate (Fig. 4H) Cox regressions. The TMG signature was shown to differentiate between low- and high- 
risk patients using PCA (Fig. 4I). The time-dependent ROC for OS at 1 (Fig. 5A), 3 (Fig. 5B), and 5 (Fig. 5C) years showed that the risk 
score exhibited superior predictive performances in contrast with clinicopathological features. Furthermore, the concordance index 
(Fig. 5D) and DCA (Fig. 5E) concluded the same result. Then, we analyzed the prediction significance of the TME signature for DSS and 
PFS. Fig. 5F depicts each sample’s risk score and DSS status distributions. High-risk HNSCC patients exhibited worse DSS than those in 
the low-risk category (Fig. 5G). When comparing 1-, 3-, and 5-year DSS, the AUC values were 0.746, 0.705, and 0.620, respectively, as 
shown by a time-dependent ROC analysis (Fig. 5H). Univariate (Fig. 5I) and multivariate (Fig. 5J) analyses confirmed that the risk 
score independently served as a reliable predictor of poor DSS. Fig. 5K displays the risk score and PFS status distributions for all 
samples. PFS was remarkably lowered in high-risk patients relative to the case among those in the low-risk category (Fig. 5L). One-, 
three-, and five-year PFS-AUC values of the ROC curve were 0.669, 0.656, and 0.565, respectively (Fig. 5M). Univariate (Fig. 5N) and 
multivariate (Fig. 5O) Cox models both disclosed that risk score served as a predictive marker for PFS in an independent manner. 

2.4. Association of risk score with clinicopathological features 

We used heatmaps to additionally examine and visualize the link between the risk score and clinical factors (Fig. 6A). Fig. 6B 
demonstrated that high-risk patients had a higher incidence of advanced T-stage cases than the low-risk category. However, we 
discovered that the risk score was greater in patients at the later T stage relative to those at the earlier stage (Fig. 6C). Additionally, the 
subgroup’s survival analysis based on clinical parameters (age: Fig. 6D; gender: Fig. 6E; histologic grade: Fig. 6F; clinical stage: 
Fig. 6G) demonstrated that, in all subgroups, individuals at higher risk had a worse OS than those at lower risks. 

Fig. 7. Nomogram for predicting patients’ prognoses in HNSCC. A: A nomogram was developed by integrating the risk score with the clinical 
and pathological characteristics in the TCGA dataset. B: The calibration curves of the nomogram used to anticipate OS over 1, 3, and 5 years. C: ROC 
curves for one-, three-, and five-year survival based on the nomogram’s predictions. D: DCA plots were created for comparisons between the risk 
score and the clinical and pathological variables. 
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2.5. Nomogram formulation and verification 

The risk score and clinical data were employed to develop a nomogram for anticipating OS in the TCGA dataset, which could 
additionally enhance the clinical value of the risk signature (Fig. 7A). Good consistency between predicted and actual values was 
shown in the calibration curves for 1-, 3-, and 5-year OS, demonstrating that the nomogram anticipated the OS of HNSCC patients in an 
accurate manner (Fig. 7B). One-, three-, and five-year ROC curves had AUCs of 0.681, 0.706, and 0.687, respectively (Fig. 7C), which 
showed the better predictive power of the risk score compared to the clinical characteristics. For the prognosis prediction of HNSCC 
patients, the nomogram outperformed both dependent clinical parameters and risk score, as demonstrated by the DCA curve (Fig. 7D). 

2.6. Functional enrichment analysis 

We delved deeper to discover how high- and low-risk patients varied in terms of biological processes and signaling pathways. 
Therefore, we used 519 DEGs (Fig. 8A) across the two risk categories to conduct a GO and KEGG enrichment analysis. The DEGs were 
shown to have an enrichment of biological functions related to the immune system, as shown by the GO analysis (Fig. 8B and C). The 
KEGG analysis (Fig. 8D and E) indicated that the DEGs joined mainly in many immune-associated pathways, including primary im-
munodeficiency, T cell receptor signaling pathway, chemokine signaling pathway, Th17 cell differentiation, cell adhesion molecules, 
and cytokine–cytokine receptor interactions. Additionally, the GSEA (Fig. 8F) and GSVA (Fig. 8G) analysis showed the enrichment of 
stromal-associated pathways in high-risk samples, including focal adhesion, galactose metabolism, glycosaminoglycan bio-
synthesis–chondroitin sulfate, and ECM-receptor interactions, as well as the enrichment of many immune-associated pathways in the 
low-risk samples, including natural killer cell-mediated cytotoxicity, T cell and B cell receptor signaling pathways, Fc epsilon RI 
signaling pathways, and chemokine signaling pathways. 

2.7. Correlations between the TMG signature and tumor microenvironment 

The heatmap (Fig. 9A) indicated the relationship of the TMG signature with the TME and immune function. The vast majority of 
immune function scores were considerably elevated in the low-risk category in contrast with the high-risk category, as determined by 
ssGSEA (Fig. 9B). When comparing the TMEs of low- and high-risk categories using the ESTIMATE method, we discovered that the 
former had higher values with respect to immuneScore and ESTIMATE scores (Fig. 9C), representing larger amounts of immune 
cellular components in the TME. Scores for 22 different types of immune cells were computed using the CIBERSORT algorithm. Fig. 9D 
illustrates the distribution patterns of these immune cell scores between low- and high-risk samples. Fig. 9E shows that the low-risk 
category had a higher proportion of active memory CD4+ T cells, follicular helper T cells, regulatory T cells, and CD8+ T cells. 
Fig. 9F illustrated the association of immune cell infiltration with the expression of TMGs in the signature, as well as the risk score. The 

Fig. 8. Functional enrichment analysis between high- and low-risk patients. A: A volcano graphic depicting the differentially expressed genes 
(DEGs) between high- and low-risk categories. The color red indicates genes with increased expression, while blue indicates genes with decreased 
expression. The GO enrichment analysis based on DEGs, presented as a bubble chart (B) and chord plot (C). The KEGG pathway analysis based on 
DEGs presented as a bubble chart (D) and a chord plot (E). F: Gene set enrichment analysis (GSEA) between the two risk groups. G: Heatmap of gene 
set variant analysis (GSVA) between the two risk groups. 
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above findings demonstrated that low-risk patients exhibited an activated immune phenotype, which may partly help explain why 
those with a low-risk score for HNSCC tended to have a better prognosis. 

2.8. Immunotherapy and chemotherapy response prediction 

In terms of IPS, low-risk patients benefited more from PD1 blockade monotherapy (Fig. 10A), CTLA4 blockade monotherapy 
(Fig. 10B), and a combination of PD1 and CTLA4 blockade therapy (Fig. 10C) than high-risk patients. The low-risk patients had a 
greater likelihood of responding better to ICB treatments since their expressions of ICGs were remarkably enhanced (Fig. 10D). All of 
these findings corroborate that the TMG signature is useful for predicting whether or not immunotherapy would be effective in treating 
HNSCC. The sensitivity of four chemotherapy regimens for HNSCC was also assessed relative to the TMG signature by using the 
pRRophetic package. Increased sensitivity to a single medication is shown by a decrease in its IC50 value. As opposed to immuno-
therapy, high-risk patients with HNSCC may respond more sensitively to chemotherapy, including cisplatin (Fig. 10E), docetaxel 

Fig. 9. The landscape of tumor microenvironment (TME) between high- and low-risk patients. A: The heatmap illustrates the differences in 
the tumor microenvironment and immune-associated functions between the two groups. B: The ssGSEA score of immune-related functions was 
compared across the two risk categories. C: Scores of stromal activity, immune activity, and the ESTIMATE score were compared between the two 
groups using the ESTIMATE method. D: The percentages of immune cell infiltration shown as bar plots for both the high- and the low-risk categories 
E: The proportions of immune cell infiltration were contrasted using a violin plot for high- and low-risk patients. F: The heatmap presented the 
relationship between immune cell infiltration, the expression of TMGs, and risk scores in a visual manner. 
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(Fig. 10F), gemcitabine (Fig. 10G), and paclitaxel (Fig. 10H). 

2.9. Gene mutation analysis associated with the TMG signature 

As a first step, we separated patients into high- and low-risk score categories and displayed the genetic mutation distribution in each 
category. Somatic mutations were highly frequent in the high-risk patients relative to the low-risk category, as seen in the Waterfall 
plot (Fig. 11A) (96.37 vs. 88.26 %). Although no differential TMB between high- and low-risk samples was observed (Fig. 11B), the KM 
survival curve depicted a longer OS with low TMB levels compared with high TMB levels (Fig. 11C). As per the results of the survival 
study that combined both TMB and risk score, the low TMB and low-risk group had the best OS, while the high TMB and high-risk 
group had the worst outcomes (Fig. 11D). 

3. Discussion 

Given the insidious nature of the illness’s early manifestations, a large proportion of HNSCC patients was confirmed with middle 
and advanced disease stages at the first diagnosis [26]. Despite the improvement of surgical, radiotherapy, and chemotherapy tech-
niques, as well as the applications of personalized medicine, such as ICB and targeted medicines, the prognosis of HNSCC remains 
stubbornly poor [27]. Moreover, after undergoing therapy for HNSCC, the patient’s quality of life dramatically declines, especially 
after mutilating surgeries [28]. Hence, it is crucial to investigate the processes behind HNSCC advancements and to discover novel 

Fig. 10. Prediction of drug sensitivity and immunotherapy responsiveness. The IPS score of (A) PD1 blockade monotherapy; (B) and (C) 
combined PD1 and CTLA4 blockade therapy for high- and low-risk patients. D: Variations in immune checkpoint blockade gene expression between 
individuals at high and low risk. Variations in IC50 value of cisplatin (E), docetaxel (F), gemcitabine (G), and paclitaxel (H) across high- and low- 
risk patients. 
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biological markers that might anticipate prognosis and therapy responsiveness in individuals with HNSCC. 
The tumorigenesis and metastasis of HNSCC are remarkably influenced by the number and distribution of cells within the TME 

[29]. Among them, T cells are the most effective immune surveillance cells and assume indispensable functions in eliminating 
cancerous cells [30], and they could predict HNSCC patients’ prognoses [31,32]. Additionally, T cell-related gene signature could be 
used for predicting prognosis and immune response in several cancers [33–35]. In this work, we first applied the scRNA-seq data of 
HNSCC patients to filter out T cell clusters and obtained 246 T cell marker genes. We developed a prognostic signature for HNSCC 
patients as per 12 TMGs using a LASSO regression analysis, including TNFRSF4, TNFRSF18, LAT, FAM177A1, LIMD2, ADM, FXYD3, 
CD79A, CSTA, TIMP1, TXN, and FTH1. TNFRSF4 and TNFRSF18 belong to the TNF-receptor superfamily and have been shown to 
participate in CD4+ T cell responses and regulatory T cell-maintained dominant immunological self-tolerance, as well as in the pro-
liferation and differentiation of B cells mediated by T cells [36,37]. Emerging evidence indicated that TNFRSF4 is upregulated in 
several cancers and can serve as an unfavorable prognostic indicator [38–40]. LAT is crucial for the stimulation of the TCR signal 
transduction pathway and is linked to cancer chemotherapy and immunotherapy [41,42]. Liao et al. indicated that the overexpression 
of FAM177A1 inhibited the transcription of inflammatory genes [43]. LIMD2 may function as an oncogene in diverse cancers and is 
linked to dismal prognosis in esophageal cancer [44], clear cell renal cell carcinoma |(ccRCC) [45], ovarian cancer [46], and papillary 
thyroid carcinoma [47]. FXYD3 acts as a member of the FXYD protein family correlated with Na+/K + -ATPase enzymes and serves 
critical biological functions in the advancement of multiple cancers and immunosuppressive TME [48,49]. Shiba et al. indicated that 
esophageal squamous cell carcinomas with CSTA overexpression in tumors were more likely to have progressed to a more advanced 
stage of the disease [50]. Conversely, Wang et al. proved that the lowered expression levels of CSTA increases lymphatic metastases 
and correlates with grim survival outcomes in oral squamous cell carcinoma [51]. TIMP1 is a key element in the proteolytic degra-
dation of the extracellular matrix and is extremely responsive to a wide variety of cytokines and hormones [52]. It is also associated 
with chemoresistance in pancreatic ductal adenocarcinoma [53]. TXN is considered a potent protein disulfide reductase involved in 
the regulation of cellular redox reactions [54]. Increased TXN expression may promote colon cancer cell migration and invasion [55], 

Fig. 11. The relationship between tumor mutation burden (TMB) and the TMG signature. A: The 15 most frequently mutated genes in the 
TCGA dataset across the low-risk and high-risk categories, as shown by a waterfall plot. B: Variations in TMB across high- and low-risk patients. C: 
Comparison of the high-TMB and low-TMB patients’ survival curves. D: Survival curve combined TMB and risk score. 
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and it is linked to dismal prognoses in ccRCC [56]. FTH1 has a function in sustaining cellular iron homeostasis and participates in 
complicated pathways that may either enhance or prevent carcinogenesis [57]. However, no study reported the effect of ADM on T 
cells or its role in cancers. In the current work, we matched the expression patterns, somatic mutations, and CNVs of 12 TMGs and 
discovered that all of them exhibited differential expressions between tumor and normal samples. Although TMGs have a low mutation 
rate, most have had altered CNVs. This provides additional evidence that the aberrant expression of these TMGs may play an essential 
role in HNSCC. 

Based on the 12 TMG signatures, we constructed the risk model and divided HNSCC patients into 2 different subgroups predicated 
on the median risk value. The KM curve for the OS illustrated that patients’ prognoses could be differentiated by the risk model in the 
TCGA and GEO validation datasets. In line with the entire cohort, the risk model also can be applied to subgroup cohorts by clinical 
features. Importantly, univariate and multivariate analyses confirmed the risk score as a standalone prognostic indicator for poor 
outcomes in patients with HNSCC. Time-dependent ROC curves, time-related C-index curves, and decision curves were thereafter 
generated, and a detailed study indicated a more noticeable forecasting accuracy with respect to the risk score relative to other 
standard clinical factors such as age, clinical stage, histological grade, and sex. Furthermore, the prognostic efficacy for estimating the 
DSS and PFS of patients with HNSCC was also demonstrated by ROC curves, KM analysis, and Cox regression analysis. Taken together, 
the findings confirmed that the risk score was a reliable indicator for the risk classification and prognosis prediction of patients with 
HNSCC. Thus, for use in clinical settings, we combined the risk scores with clinical parameters to develop a nomogram. We found a 
strong consistency between the predicted and actual values using calibration curves, indicating that the nomogram could provide a 
precise survival rate prediction for HNSCC patients. 

We conducted a GO analysis on the DEGs to investigate the possible mechanisms of the TMGs risk model in HNSCC and discovered 
the enrichment of these DEGs in biological functions related to the immune system. More specifically, our KEGG, GSEA, and GSVA 
analyses confirmed that cell adhesion and the synthesis of extracellular matrix (ECM) structure-related pathways were more active in 
high-risk patients and that this was associated with the initiation of tumor-cell invasion and metastasis [58,59]. In contrast, many 
immune pathways were primarily enriched in the low-risk category, including the T cell receptor signaling pathway, B cell receptor 
signaling pathway, and natural killer cell-mediated cytotoxicity, and all of them play a significant role in the transmission of immune 
signals and immune responses and in killing tumor cells [60,61], indicating that low-risk patients have higher immunogenicity. 

As is well-known, immunotherapy offers new opportunities for cancer treatments in various tumor types, including HNSCC [17, 
62]. Recently, immunotherapy (including nivolumab [63] and pembrolizumab [64]) has become the first-line treatment method for 
patients with metastatic or recurring HNSCC and the prognosis has become improved to certain degrees as a result of these in-
terventions [65]. Although several HNSCC patients show only modest gains from immunotherapy, especially for patients with 
HPV-unrelated HNSCC [66,67], the overall response rate was less than 20 % [68]. In addition, immunotherapy may be rather pricey 
and introduces a small but real danger producing harmful side effects [69]. Therefore, personalized immunotherapy is strongly 
warranted and may significantly lower the incidence of adverse events. The patient’s immunological landscape is what defines their 
individual response to immunotherapy and, ultimately, their prognosis. In this investigation, the ESTIMATE analysis for TME illus-
trated that low-risk patients exhibited a considerably elevated immuneScore relative to those at high risk and showed larger amounts 
of immune cellular components in the low-risk category. As anticipated, the proportion of T cells, including CD4+ T cells, CD8+ T cells, 
follicular helper T cells, and regulatory T cells, was higher in the low-risk samples. Proliferated and activated T cells release many 
cytokines and chemokines to perform a determinant function in the elimination of virally infected cells and tumor cells [70,71], which 
might partly explain the better outcomes observed in low-risk patients. ICB therapy is the most dominant immunotherapy in the 
HNSCC and works by blocking the ICGs [72] and allowing guardian T cells to identify and eliminate tumor cells [73]. Increasing 
evidence confirms that high ICG expression is generally correlated with improved immunotherapy efficacy [74]. We showed ICGs were 
overexpressed in low-risk patients. Furthermore, the IPS score of the CTLA4 blockade monotherapy, PD1 blockade monotherapy, and 
combination treatments with CTLA4 and PD1 blockade increased in the low-risk patients, illustrating better responsiveness to ICBs 
among low-risk patients. Considering the remarkable status of chemotherapy in HNSCC [75,76], we intensively explored the 
discrepancy in drug sensitivities between low- and high-risk patients. Chemotherapy regimens, such as cisplatin, docetaxel, gemci-
tabine, and paclitaxel, were shown to be more effective in high-risk patients in contrast to immunotherapy, implying that high-risk 
patients can derive more positive outcomes from monotherapy or combinations of chemotherapy. Overall, these findings demon-
strate that our TMG signature may serve as a predictor for immunotherapy responsiveness and chemotherapy drug sensitivity. 
Additionally, they offer fresh insight into the individual medication choices of patients who are diagnosed with HNSCC. 

Notwithstanding the positive findings obtained, this research study did have several drawbacks that ought to be considered. First, 
the bioinformatics analysis of public datasets is the primary method used in this particular research project. Although a validation 
cohort from the GEO database was included, it still requires further external validation in other cohorts with large clinical samples. 
Second, 12 TMGs in the signature were identified via the single-cell RNA sequencing of HNSCC. Nonetheless, the involvement of the 12 
TMGs in the HNSCC and their link to T cells are still unknown and require more research. Third, there were no classic T cell markers 
contained in the TMG signature. Lastly, experimental verification is still lacking for both the immune features and the distinct possible 
mechanisms that differentiated individuals at high risk from those at lower risks. 

In summary, the findings of this research study showed that T cell marker genes might be used in the single-cell RNA sequencing of 
HNSCC to develop a robust and independent prognostic prediction signature. Furthermore, the systematic analysis demonstrated that 
the risk score derived from the TMG signature was intimately linked to the prognosis, TME, immune cell infiltration status, respon-
siveness to immunotherapy, and chemotherapeutic sensitivity in HNSCC patients. Therefore, the TMG signature can function as an 
independent risk stratification and prognosis marker and provide assistance in anticipating the effectiveness of immunotherapy and 
chemotherapy, which will facilitate individualized clinical decisions for HNSCC patients. 
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4. Materials and methods 

4.1. Downloading and processing data 

The scRNA-seq data of 20 HNSCC samples comprising 23088 cells were derived from GSE181919 (https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi?acc=GSE181919). TCGA (https://portal. gdc. cancer. gov/), containing data on 501 patients with HNSCC and 44 
normal controls, was searched for bulk RNA-Seq data on gene expression as well as the respective clinical characteristics, mutations, 
and copy number variations (CNV) of the TCGA-HNSCC cohort. Furthermore, from the GEO database (https://www.ncbi.nlm.nih.gov/ 
), we retrieved the GSE65858 cohort of 270 patients with HNSCC for applications as an external validation cohort. The clinical data of 
patients were shown in Table 1. 

4.2. scRNA-seq data processing and analysis to screen the T cell marker genes 

The scRNA-seq data of GSE181919 were processed with the R package “Seurat”. Data were subjected to quality control to exclude 
low-quality cells using the following criteria: each cell has 500–4000 genes; fewer than 5 % of the genes were found in the mito-
chondria. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) techniques were applied to 
accomplish dimensionality reduction and cluster identification on the top 1500 high-variability genes. The “SingleR” package was 
applied to the cluster annotation to recognize different cell types. Subsequently, the “FindAllMarkers” function (parameters: log FC as 
1 and min.pct as 0.25) was employed to identify significant marker genes for different cell types. Ultimately, TMGs were used for 
further analysis. 

4.3. T cell marker gene-based prognostic risk model development 

Differential expression and univariate Cox regression analyses, both using a P < 0.05 significance criterion, were applied to the 
TMGs discovered by scRNAseq. To identify the optimal prognostic TMGs for use in the signature’s construction in the TCGA-HNSCC 
cohort, a LASSO regression analysis with 10-fold cross-validation was performed 1000 times by the “glmnet” package. Each HNSCC 
patient’s risk score was determined by summing the expression levels of TMGs weighted by their coefficients from the LASSO analysis, 
and this was performed for both the TCGA and the GSE65858 datasets. Finally, The median risk score was established as the criterion to 
classify these HNSCC patients into high- and low-risk groups. 

Table 1 
Clinicopathological features of the head and neck squamous carcinoma patients included in this research study.  

Covariates Type TCGA cohort GSE65858 cohort 

Number Percent Number Percent 

Age  
≤60 246 49.10 % 130 48.15 %  
>60 255 50.90 % 140 51.85 % 

Gender  
Female 133 26.55 % 47 17.41 %  
Male 368 73.45 % 223 82.59 % 

Histologic grade  
G1-2 359 71.66 % – –  
G3-4 121 24.15 % – –  
Unknown 19 3.79 %   

T stage  
T1-2 177 35.33 % 115 42.59 %  
T3-4 309 61.68 % 155 57.41 %  
Unknown 15 2.99 %   

N stage  
N0 239 47.70 % 94 34.81 %  
N1-3 240 47.90 % 176 65.19 %  
Unknown 22 4.39 %   

Metastasis status  
Yes 25 4.99 % – –  
No 471 94.01 % – –  
Unknown 5 1.00 %   

Clinical stage  
Stage I-II 114 22.75 % 55 20.37 %  
Stage III-IV 373 74.45 % 215 79.63 %  
Unknown 14 2.79 %   

Survival status  
Dead 217 43.31 % 94 34.81 %  
Alive 284 56.69 % 176 65.19 %  
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4.4. Precision and reliability of the prognostic TMG signature 

To examine the differences in prognosis between high- and low-risk categories, a Kaplan–Meier (KM) survival assessment was 
conducted. The model’s capability to anticipate 1-, 3-, and 5-year survival was evaluated by using a receiver operating characteristic 
(ROC) analysis. Additionally, we conducted univariate and multivariate Cox analyses to evaluate the risk score’s independent pre-
dictive relevance after integrating it with clinical data. The risk model’s ability to differentiate across different categories was 
investigated via PCA. The risk score’s predictive capacity was contrasted with that of the clinical parameters using ROC curves, the C- 
index, and a decision curve analysis (DCA) curve. Progression-free survival (PFS) and disease-specific survival (DSS) were also 
evaluated as endpoints to determine the prognostic significance of the TME signature in HNSCC patients. The association between the 
risk score and clinical factors was assessed by using the chi-squared test and Wilcoxon rank-sum test. Moreover, to anticipate the 1-, 3-, 
and 5-year overall survival (OS) rate of HNSCC patients, we incorporated the risk score and clinical factors (stage, grade, sex, and age) 
to develop a nomogram. The predictive performance of the nomogram was calculated by utilizing the ROC, DCA, and calibration 
curves. 

4.5. Function and gene set enrichment analysis 

Low- and high-risk patients were compared using the “limma” program to identify the differentially expressed genes (DEGs) (|log2 
FC| > 1 and FDR q < 0.05). Enrichment analyses concerning Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway were carried out using DEG. Gene set enrichment analysis (GSEA) was undertaken with the aid of the GSEA software 
(version 4.1.0) and the reference c2.cp.kegg.v2022.1.Hs.symbols.gmt to make a comparison between high- and low-risk categories. 
Moreover, a Gene Set Variation Analysis (GSVA) was implemented with the “GSVA” package. 

4.6. Tumor microenvironment (TME) and immune cell infiltration analysis 

With the use of the ESTIMATE method, we computed the stromal, immune, and ESTIMATE scores of TME for each sample [77]. The 
immune and stromal scores were computed to characterize the proportion of immune cells and stromal cells that infiltrated the tumor. 
Non-tumor composites were reflected using ESTIMATE scores. The “GSVA” package was employed to compute a single-sample GSEA 
(ssGSEA) score for 13 distinct immune-associated functions. The CIBERSORT technique was applied to quantify the infiltration degree 
of several immune cells in the HNSCC samples [78]. 

4.7. Immunotherapy response and medication sensitivity prediction 

The immunophenoscore (IPS) of the Cancer Immunome Database (TCIA) was employed to estimate the responsiveness to immune 
checkpoint blockade (ICB) (anti-CTLA-4 and anti-PD-1 immunotherapy) [79,80]. Additionally, the association of the risk score with 
immune checkpoint genes (ICGs), including IDO1, PD1, PDL1, CTLA4, LAG3, HAVCR2, CD8A, GZMA, GZMB, PRF1, IFNG, TBX2, and 
TNF, was explored. The “pRRophetic” R program was implemented to calculate the half-maximal inhibitory concentration (IC50) of 
four chemotherapeutic regimens that are often used for treating HNSCC (paclitaxel, gemcitabine, docetaxel, and cisplatin). 

4.8. Analysis of the tumor mutation burden (TMB) 

We employed the “maftools” R package to evaluate the somatic mutations derived from the TCGA-HNSC cohort to investigate the 
possible link between the risk score and TMB. The waterfall plot of the mutational landscape in both high- and low-risk categories was 
generated using the “GenVisR” package. The association of TMB with patient survival was evaluated by KM survival analyses. 

4.9. Statistical analysis 

The analyses and visualization of all statistical data were performed using the R Software (version 4.0.1). P < 0.05 indicated a 
significance level. 
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