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Enrichment of the fetal fraction in 
non-invasive prenatal screening 
reduces maternal background 
interference
Bo Liang1, Hong Li2, Quanze He2, Haibo Li2, Lingyin Kong1, Liming Xuan1, Yingying Xia1, 
Jingjing Shen1, Yan Mao1, Yixue Li   1, Ting Wang2 & Yi-Lei Zhao   1

Measurement of cell-free fetal DNA (cffDNA) is an indispensable process for non-invasive prenatal 
screening (NIPS). According to recent studies, cffDNA in maternal plasma can be enriched for various 
lengths of fragments, and a sufficient amount of cffDNA can effectively eliminate background 
interference on the part of maternal DNA. Therefore, we developed a simple and effective separation 
method, improved NIPS (iNIPS), that enriches the fetal fraction and improves the accuracy of NIPS 
for fetal aneuploid detection. We adopted a novel strategy to achieve enrichment of 125–135 bp cell-
free DNA (cfDNA) by e-gel electrophoresis. To evaluate clinical performance, we compared NIPS and 
iNIPS results from 2153 retrospective clinical samples. Of the 22 samples with NIPS results of “no 
call”, 17 samples were reclassified as “unaffected” (9 cases of chr13, 5 cases of chr18, and 3 cases of 
chr21); 2 samples remained classified as “no call” (1 case of chr18 and 1 case of chr21); and 3 samples 
were identified as T21 by iNIPS. The average increase in abundance of cfDNA fragments of 125–135 bp 
was 2.5 times, and the average decrease in maternal background interference was 1.3 times. On this 
basis, the detection of fetal aneuploidy was highly improved with the fetal fraction as low as 2%; iNIPS 
achieved 100% sensitivity and 99.90% specificity in retrospective samples.

The discovery of cell-free fetal DNA (cffDNA) in maternal plasma has greatly promoted the development of 
non-invasive prenatal screening (NIPS) applications1, including chromosomal microdeletion detection, microdu-
plication detection2–5, aneuploidy detection6–9 and monogenic disease2,10–13. The concentration of cffDNA is criti-
cal for the accuracy of these tests2,12,13. Nevertheless, the concentration of cffDNA in maternal plasma is very low, 
accounting for only 2–20% of the total maternal plasma cell-free DNA (cfDNA)10,11,14, with individual differences. 
Furthermore, cffDNA is mixed with maternal-derived cfDNA that produces significant background interference. 
These limitations restrict the application of cffDNA. Current NGS methods for NIPS require that the proportion 
of cffDNA fragments in the total free plasma DNA fragments of pregnant women be greater than 4%13. However, 
in approximately 1–3% samples, the fetal fraction is less than 4%13. In these samples, the positive sample detection 
rate is lower than 62.10%15. Although deeper sequencing can improve the accuracy of low fetal fraction samples, 
such methods are more expensive2,13. Furthermore, placental mosaicism may cause inconsistencies in aneuploidy 
detection, leading to false positives by significantly altering the z-score of the involved chromosomes. Therefore, 
for more accurate detection results, it is necessary to eliminate the background interference of maternal-derived 
cfDNA by increasing the abundance of cffDNA.

Recent studies have shown that when lengths of cffDNA fragments are less than 300 bp, approximately 50% 
of the cffDNA fragments are located within the range of 100–300 bp, and approximately 20% of maternal cfDNA 
fragments are greater than 300 bp16–18. Therefore, cffDNA can be enriched by collecting maternal plasma cfDNA 
fragments with lengths of less than 300 bp. Two previous studies used gel electrophoresis-based size separation 
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to filter out the fragments larger than 300 bp to achieve fetal concentration enrichment19,20. Another study found 
that the size distribution of fetal and maternal cfDNA had several peaks, including 166 bp, 143 bp and 10 bp at the 
minimum interval. The significant difference between fetal and maternal cfDNA was that the main maternal peak 
was 166 bp and the main fetal peak was less than 150 bp12. Therefore, instead of removing large DNA fragments 
greater than 300 bp, we developed a novel strategy to improve the relative abundance of fetal-derived cfDNA by 
using e-gel electrophoresis to select fragments with a range less than 150 bp. The method is sufficient to produce 
large amounts of cffDNA to meet the requirements of routine NIPS. Our aim was to enrich the fraction of fetal 
DNA in the sequencing library and reduce false-negative and false-positive rates without increasing the cost of 
detection.

Results
Relationship between cfNDA fragment size and fetal fraction.  The significant difference between 
fetal DNA and maternal DNA in cfDNA is that the fetal DNA has a reduced peak at 166 bp and an enhanced peak 
at less than 150 bp2,12,21. To determine the optimal size range of iNIPS, we compared the samples of various fetal 
fractions and found that the trend of three peak areas (115–125, 125–135 and 135–145 bp) was proportional to 
the fetal fraction (Fig. 1). Accordingly, we selected three ranges of DNA fragment sizes to enrich fetal DNA. We 
used the plasma of 9 pregnant women with male foetuses to calculate fetal fraction by the iNIPS method and 
compared the fetal DNA fragments in three size ranges. When the sizes of DNA fragments were in the ranges of 
115–125, 125–135 and 135–145 bp, the median value of the fetal DNA fractions increased 2.23 times, 2.87 times 
and 1.74 times, respectively (Fig. 2A). Notably, fetal fraction was most abundant in the 125–135 bp fragment, 
indicating that cffDNA was mainly distributed between 125 and 135 bp. Therefore, in this study, we enriched 
DNA fragments with a size range of 125–135 bp.

Validation of different fetal DNA fractions.  In previous studies, approximately 1–3% of samples of the 
fetal fraction were found to be less than 4%, which was the most common cause of false-negative results13. For 
these samples, the detection rate for positive samples was less than 62.10%15. To determine the lower limit of fetal 
fraction of iNIPS, we verified the sensitivity and false-negative rate by analysing various T21 fetal DNA fractions, 
as shown in Fig. 2 (1%, 2%, 3%, 4%, 5% and 10%). The fetal DNA fraction in plasma cfDNA increased 2.23–3.50 
times with a median value of 3.27 times, and the maternal DNA fraction in plasma cfDNA decreased 1.02–1.26 
times with a median value of 1.10 times when using the iNIPS method (Fig. 2B,C). In this way, iNIPS accurately 
detected fetal aneuploidy in low fetal DNA fractions as low as 2%, with a sensitivity of 100% (Fig. 2D). In contrast, 
the routine NIPS method did not provide accurate results for detecting fetal DNA fractions less than 4%. This 
result implies that iNIPS could be a considerable supplementary method for NIPS in low fetal DNA fractions.

Figure 1.  The cfDNA fragments lengths distribution of various fetal fractions. (A) Representative examples 
from maternal plasma with various fetal DNA fractions. (B) Aggregate of all samples. The blue line represents 
the mean read ratio of all samples, and the red region represents ± 1 SD.
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Pre-clinical validation of iNIPS.  Fifty male fetal libraries and 2 pregnant women libraries with chromo-
somal abnormalities were constructed, and 125–135 bp fragments were selected using E-Gel EX 2% gel. The 
selected size fragments were sequenced, and the fetal DNA fractions were analysed (Supplemental Table 1). 
Analysis of 50 male fetal libraries revealed that fetal DNA fraction increased 1.6–3.7 times (p-value < 2E-13), 
with a median value of 2.5 times (Fig. 3A,B), and the maternal DNA fraction decreased 1.04–2.10 times 
(p-value < 2E-16), with a median value of 1.3 times (Fig. 3C). Since plasma DNA contains both maternal DNA 
and fetal DNA, abnormalities in maternal chromosomes could lead to false-positive tests for fetal chromosomal 
abnormalities. The results of 2 cases of pregnant women with aneuploidy showed that, by iNIPS, the maternal 
chromosome abnormality fraction was decreased 1.2 times and 1.6 times (Supplemental Table 2). Therefore, 
iNIPS significantly decreased the z-score abnormality and reduced the false-positive rate caused by maternal 
aneuploidy DNA (Supplemental Table 2). In other cases, some euploid pregnant women have microreplications 
or microdeletions on their chromosomes. These alterations may interfere with fetal aneuploidy detection when 
maternal microduplication or microdeletion is greater than the threshold for diagnosing the fetal DNA fraction 
(Supplemental Table 3). With the enrichment of the fetal DNA fraction and the influence of maternal DNA 
decreased, the threshold for diagnosing the fetal DNA fraction was increased, and the maternal background 
interference was reduced.

Clinical validation of iNIPS.  We retrospectively selected 2153 clinical cases for sensitivity and specificity 
evaluation of iNIPS, of which 2023 were normal cases (healthy infants) and 130 were fetal aneuploid cases verified 
by karyotyping. As shown in Fig. 3D, all cases were evaluated using NIPS and iNIPS; the trend of Z-score was 
proportional to the fetal fraction in the aneuploid samples (T21/T18/T13). As shown in Fig. 4, the NIPS results 
showed that 22 samples were classified as “no call” (9 cases of chr13, 6 cases of chr18, and 7 cases of chr21), and 
their fetal fractions are listed in Supplement Table 4. Using iNIPS to analyse these samples, 17 samples were 
reclassified as “unaffected” (9 cases of chr13, 5 cases of chr18, and 3 cases of chr21); 2 samples were still classified 
as “no call” (1 case of chr18 and 1 case of chr21); and 3 samples were identified as T21. One control identified 
by NIPS as “no call” (z-score = 2.7 and Fetal Fraction = 16%) was identified by iNIPS as T21, in which the fetal 
DNA fraction was calculated using the Y chromosome percentage (z-score = 4.2 and Fetal Fraction = 44%), and 

Figure 2.  Fold increases in the fetal DNA fractions with various fragment sizes by iNIPS. (A) Increased fetal 
fractions by iNIPS for different sizes of cfDNA fragments. (B) Comparison of the fetal DNA fraction of NIPS 
and iNIPS. (C) Fold-change in fetal DNA fraction of NIPS vs iNIPS. (D) Comparison of sensitivities of NIPS 
and iNIPS for detecting abnormalities in low fetal DNA fractions.
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the percentage of fetal T21 DNA was 5.6%, calculated using the high risk z-score22. According to the karyotype of 
amniotic fluid, we concluded that the false-negative sample was placental mosaicism (12.7% degree of mosaicism, 
5.6% divided by 44%). Moreover, of the 2153 retrospective clinical cases, 1004 samples were from male fetuses, 
and their fetal cfDNA fractions validated by the fraction of Y chromosome ranged from 5.83 to 79.31 (median: 
31.43) by iNIPS, compared with 3.33 to 55.49 (median: 14.58) by NIPS. Clinical results showed that iNIPS was 
more accurate than NIPS (Table 1). We used iNIPS to further validate “no call” samples classified by the routine 
NIPS method. In this retrospective study, the sensitivity and specificity of iNIPS for both euploidy and aneuploidy 
samples were 100% and 99.90%, respectively.

Discussion
The abundance of fetal DNA in maternal plasma is a crucial factor affecting the accuracy of maternal plasma 
DNA prenatal testing2,12,13. A study by Canick et al. suggested that the most common factor associated with 
false-negative results was a low fetal DNA fraction13. Because fetal DNA is generally shorter than maternal DNA 
in maternal plasma, many techniques have been developed to enrich the fetal DNA fraction by filtering out large 
DNA fragments13. These techniques include traditional gel electrophoresis16–18, combinations of PCR amplifi-
cation with varied lengths of amplicons19,20 and microchip separation23. In two previous studies, fetal DNA was 
enriched by filtering out fragments larger than 300 bp by gel electrophoresis-based size separation before quanti-
tative PCR19,20. Furthermore, adding beads to the sample to remove large DNA fragments during the construction 
of library was also an effective method to improve the reliability of low cfDNA samples24.

Instead of removing large DNA fragments, we developed a novel strategy to improve the relative abundance of 
fetal-derived cfDNA by selecting a certain range of fragments before NGS library construction. The size range of 
fragments had a major impact on the efficiency of enrichment of fetal DNA. PCR was used to amplify cfDNA, and 
e-gel electrophoresis was used to screen out the size of different cfDNA fragments. We found that the optimal size 
of DNA fragments was 125-135 bp, and these fragments were significantly enriched. We accurately detected chro-
mosomal aneuploidies and reduced the detection requirement for the fetal fraction from 4% to 2%. Therefore, 
iNIPS can be used to further verify the “no call” sample in NIPS detection without increasing the cost of detec-
tion. In this study, we used 2153 retrospective clinical cases to determine whether iNIPS could be used in a clini-
cal testing. We found that iNIPS had 100% sensitivity and 99.90% specificity for retrospective samples, reducing 
the “no call” samples from 22 to 2. Moreover, iNIPS improved the possibility of the detection of fetal chromosome 
abnormality in samples with confined placental mosaicism.

Figure 3.  The efficiency of the iNIPS method. (A) Fetal DNA fraction comparison of the two methods for non-
invasive genetic screening. (B) Fold increase in fetal DNA fraction using iNIPS. (C) The change in maternal 
DNA fraction. The blue line represents the NIPS maternal DNA fraction; red lines represents the iNIPS 
maternal DNA fraction that the fetal concentration enriched a mean value of 2.5 times. (D) NIPS Z-score VS 
iNIPS Z-score. The x-axis is the NIPS Z-score, and y-axis is the iNIPS Z-score. The circle size represents the 
ratio which was iNIPS Z-score divided by the NIPS Z-score.
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We developed the iNIPS method based on size selection of DNA fragments that increased the abundance of 
fetal DNA in maternal plasma and reduced the false-negative and/or false-positive rates. Nevertheless, size frac-
tionation of E-gel electrophoresis is a time-consuming and labour-intensive process, increasing the complexity 
and instability of the method. More large-scale studies should be carried out to verify the applicability of this 
method in clinical application. Furthermore, the NIPS method remains insufficient to detect prenatal chromo-
somal microdeletions and microduplications because of low fetal DNA fractions in maternal plasma. As sug-
gested by our study, increasing the amount of fetal DNA fraction in maternal plasma may improve the accuracy 
of iNIPS in detecting prenatal chromosomal microdeletions and microduplications.

Conclusion
In this study, we used differences in the size of maternal and fetal DNA fragments in plasma to establish the size 
selection library for NGS. Although e-gel electrophoresis requires more time and manpower than routine NIPS 
operations, a precise size fractionation method can effectively improve the fetal fraction for prenatal screening. 
Compared with the NIPS method, the iNIPS method detects fetal chromosome aneuploidy more accurately and 
reduces maternal background interference. More importantly, with this method, we can further verify the “no 
call” sample detected in routine NIPS without increasing the cost of detection. In the future, we believe that iNIPS 

Figure 4.  Z-score comparison by using NIPS and iNIPS. (A) NIPS Z-score. (B) iNIPS Z-score. The black 
dotted line means that z-score was 3.00. (C) The NIPS results showed that 22 samples were classified as “no call”. 
(D) Using iNIPS to analyse 22 “no call” samples. The red dot: one control that NIPS identified as “no call” was 
identified as T21 by iNIPS. The black dotted line means that the z-score was between 2.58 and 4.00.

Karyotyping (Quantity/
case)

NIPS iNIPS

Sensitivity* Specificity* Sensitivity* Specificity*
T13 (7) 100% (7/7) 99.95% (2022/2023) 100% (7/7) 100% (2023/2023)

T18 (23) 100% (23/23) 99.90% (2021/2023) 100% (23/23) 99.95% (2022/2023)

T21 (70) 98.57% (69/70) 99.95% (2022/2023) 100% (70/70) 99.95% (2022/2023)

Other aneuploidy (30) 100% (30/30) 100% (2023/2023) 100% (30/30) 100% (2023/2023)

All (2153) 99.23% (129/130) 99.80% (2019/2023) 100% (130/130) 99.90% (2021/2023)

Table 1.  Clinical results of the two methods. *The confidence interval is 99%.
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can expand the applications of NIPS in detecting microdeletions/microduplications and monogenetic diseases 
and that it may also play a role in areas other than prenatal screening, such as the prognosis of tumor therapy.

Methods
Ethics statement.  This study was approved by the Reproductive Medicine Ethics Committee of Suzhou 
Municipal Hospital (approval No. K901001), and all studies were performed in accordance with relevant guide-
lines and regulations. Informed consent was obtained from all participants.

Samples.  We collected whole blood from 59 pregnant women (ages 20–37 years) with male foetuses (gesta-
tional ages 12–26 weeks) and 2 pregnant women with maternal chromosome abnormality from the Centre for 
Reproduction and Genetics of Suzhou Municipal Hospital for the NIPS analysis. Another 2153 retrospective 
clinical cases (ages 20–45 years, gestational ages 12–28 weeks, covering the first through third trimesters) with 
known fetal karyotypes or follow-up records were also examined to verify the precise size fractionation method, 
which we called improved-NIPS (iNIPS).

cfDNA extraction and library construction.  We extracted plasma from 10 ml whole blood samples 
of pregnant women using a two-step centrifugation process: tubes of blood were centrifuged at 1,600 × g for 
10 min at 4 °C, and the plasma was then transferred to microcentrifuge tubes and centrifuged at 16,000 × g for 
10 min to remove residual cells and obtain cell-free plasma. The cell-free plasma was stored at −80 °C before 
DNA extraction. DNA fragments were extracted from 0.6 ml cell-free plasma using the Circulating Nucleic Acid 
Kit (Qiagen, Germany). An Ion Plus Fragment Library Kit (Life Technologies, USA) for the Ion Proton platform 
was used to construct the sequencing library for each plasma sample, and the libraries were quantified on a Qubit 
Fluorometer.

Library size selection.  We constructed a library containing 300–390 ng DNA for each sample. Libraries 
with barcodes were size-selected from within the range of 190–240 bp (insert DNA ranging from 100 to 150 bp) 
using E-Gel CloneWell Agarose Gels (Invitrogen, Carlsbad, CA, USA). A piece of E-Gels contains six effective 
wells, each well can run a mixed sample which contains five samples of the NIPS DNA sequencing library. So, a 
piece of E-Gels can run thirty samples. Per the manufacturer’s instructions: 100 ng DNA per well was loaded on 
E-Gel EX Gels, 2% (Invitrogen, Carlsbad, CA, USA), a pre-cast 2% agarose gel with 0.8% SYBR stain; the gel was 
run on E-Gel iBase Power System (Invitrogen, Carlsbad, CA, USA) for approximately 15 min; and DNA with tar-
get sizes was retrieved from the bottom wells on the gel. A 50 bp DNA ladder was used as the marker (Invitrogen). 
The selected library was then tested with an Agilent 2100 Bioanalyzer (Fig. 5) and quantified by real-time poly-
merase chain reaction (PCR) using KAPA Library Quantification Kits (for the Ion Torrent platform).

Sequencing and data analysis.  The selected libraries were pooled together with different barcodes and 
sequenced using an Ion Proton system (Life Technologies). All sequencing data were aligned to the human 
genome reference sequences (version: NCBI Build37/hg19) using TMAP software (version 4.6.11). Duplicate 
reads were removed using the Picard software. Unique reads whose mapping quality score (MAPQs) were greater 
than 10 and whose lengths were longer than 35 bp were used in subsequent analyses25.

In the NGS data analysis for each sample, all referenced chromosomes were divided into segments of the 
same size (20 kb) bins. The number of unique reads and GC content (rounded to 0.1%) in each 20-kb bin were 
determined. We then filtered bins without any reads or bins with ‘N’ in the sequences. The remaining bins were 
corrected and normalized based on their GC content by the LOESS regression6. Finally, the percentage of each 
chromosome was calculated by the total uniquely mapped reads on the target chromosomes divided by the total 
uniquely mapped reads on all autosomes7. To identify abnormal chromosomes for each sample, the z-score for 

Figure 5.  Selection of the library using E-gels and testing by Agilent 2100 Bioanalyzer. (A) Selection of the 
library between 190 and 240 bp (insert DNA was from 100 to 150 bp). (B) The selected library was tested using 
an Agilent 2100 Bioanalyzer.
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the target chromosome of interest (chr13/18/21) was evaluated with the U-tests method6. For classification of the 
target chromosome’s aneuploidy state, we used a z-score of more than 4.00 to classify the chromosome as affected 
and a z-score of less than 2.58 to classify a chromosome as unaffected. Samples that had a z-score between 2.58 
(confidence level = 99%) and 4.00 (confidence level = 99.99%) were classified as “no call”26.

Estimation of fetal DNA fraction.  The proportion of reads from chromosome Y (%chrY) was also calcu-
lated and was used to determine the fetal DNA fraction in maternal plasma samples collected from pregnancies 
with male foetuses. The formula we used to calculate fetal DNA fraction was reported by Chiu et al.22:

=
−
−

chrY chrY
chrY chrY

Fetal DNA fraction (FF) % %
% %

MF FF

AM FF

where %chrYMF is the Y chromosomeg a male fetus, %chrYFF is the background average Y chromosomal percent-
age of all the women with euploid female fetuses (containing 100% female DNA), and %chrYAM is the average Y 
chromosomal fraction among cfDNA in the plasma of three adult men (0.170%).

To determine fetal DNA fraction pregnancies with female fetuses, we applied SeqFF27, which was a 
robust method based on a multivariate model for estimating fetal DNA fraction in pregnant women plasma 
(Supplemental Fig. 1).

Validation of different fetal DNA fractions for iNIPS.  We collected a blood sample from a preg-
nant woman carrying a single male fetus with trisomy 21 whose karyotype was confirmed by high-throughput 
sequencing and chromosome karyotype analysis. The fetal DNA fraction in her plasma was 19.5%. To prepare a 
fetal DNA fraction gradient, we recruited 30 non-pregnant women, extracted cell-free plasma from their whole 
blood samples, and constructed sequencing libraries. We then established samples with six fetal DNA fractions 
(1%, 2%, 3%, 4%, 5% and 10%) by mixing the libraries from the pregnant woman and the 30 non-pregnant 
women. Thirty samples were prepared for each fraction, and all samples were analysed by NIPS and iNIPS sepa-
rately to determine the sensitivities of the two methods.

Data Availability
The data mentioned in the manuscript are available from the corresponding authors on reasonable request.
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