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A B S T R A C T

Sepsis is a major cause of death in intensive care units whose development is supported by an imbalance of
oxidative stress and antioxidant. Superoxide dismutase (SOD) is a primer endogen antioxidant that prevents reactive
oxygen species (ROS). Extensive studies on animals and humans have examined Cucumis melo L.C, a cantaloupe
rich in SOD, and its combination with gliadin. The studies aimed to determine the effect of enteral administration
of Cucumis melo L.C. gliadin (CME-gliadin) 28 days before inducing sepsis in rats. This experimental study aimed
to compare four groups of male Wistar rats, including negative and positive control rats and those supplemented
with SOD CME-gliadin 1 IU/day and SOD CME-gliadin 5 IU/day. All rats were given the same standard, except the
supplementation for 28 days. Sepsis was induced by intraperitoneal injection of LPS 10 mg/kg. Enteral admin-
istration of SOD – gliadin extract of CME-gliadin for 28 days was used as antioxidant prophylaxis against oxidative
stress due to sepsis. The results showed that enteral administration of CME-gliadin of 1 IU/day and 5 IU/day
significantly increased SOD levels based on examination after 14 and 28 days. Also, it significantly decreased
MDA (p < 0.001), TNF-α (p < 0.001), and lactate levels in rats induced by sepsis. However, the increase in lactate
levels was above >1.64 mmol/l, indicating a high mortality rate. There was no significant difference in SOD,
MDA, TNF-α, and Lactate levels between SOD 1 IU and SOD 5 IU. This descriptive data show that SOD 5 IU has a
better result in MDA, TNF-α, and Lactate levels than SOD 1 IU.
1. Introduction

Sepsis is an excessive stimulus response from an organism where
classic pathways are preoccupiedwith the Lipopolysaccharide (LPS) from
Gram-negative bacteria. Some bacterial products, such as peptidoglycan
and lipoteichoic acid from Staphylococcus aureus and other microorgan-
isms trigger the systemic inflammatory response. The intensity of this
inflammatory response is related to the interaction of immune cells
(Rosario and Azevedo, 2008; Cecconi et al., 2018). During this response,
some inflammatory mediators such as cytokine and chemokine increase
circulation. The production of cytokines activates leukocytes and in-
creases free radicals, such as reactive oxygen species (ROS) and nitrogen
species (RNS) (Rocha, R. Herance et al., 2012). Furthermore, toll-like
receptors (TLRs) initiate the activation of nuclear factor kappa B
(NF-κB) and stimulate pro-inflammatory cytokines such as tumor
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necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin 6
(IL-6). This triggers the activation of the complement pathway, stimu-
lating pro coagulation. Cytokine stimulates immune, endothelial, and
epithelial cells to increase ROS, such as superoxide (O2), nitric oxide
(NO), and peroxynitrite (ONOO�) (Kaymak et al., 2012).

Superoxide dismutase (SOD) is an endogenous antioxidant found in
all organisms using oxygen as a life source. It catalyzes the conversion of
superoxide into H2O, a reaction considered the primary antioxidant de-
fense that prevents the occurrence of ROS. Another important enzyme is
Glutathione peroxidase (GPx), which uses GSH as a co-factor inside cells.
It contains selenium, essential in the removal of H2O2. The enzyme GPx
converts hydrogen peroxide into water, the same role of catalase (CAT)
domiciled in the perixome. Catalase becomes crucial when the hydrogen
peroxide concentration increases because their reaction is faster than
glutathione peroxidase (Rosario and Azevedo, 2008). Additionally,
ust 2022
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superoxide readily reacts with NO to form peroxynitrite (ONOO�), a
strong oxidizing agent that stimulates DNA fragmentation, membrane
damage, and lipid peroxidation (Abreu and Cabelli, 2010).

Kumar et al. (2018) found that SOD levels are reduced significantly in
sepsis than in control patients. A sepsis study in children also found that
superoxide dismutase was lower than controls (Molina et al., 2017).

Regulating antioxidants such as SOD, glutathione peroxidase, and
catalase balances the mitochondria. Therefore, an increase in endoge-
nous antioxidants prevents mitochondrial damage. Administering intra-
venous mimetic SOD also prevents hypotension and pro-inflammatory
cytokines and reduces mortality in rat models of sepsis. Moreover, up-
regulation of SOD by insulin induction protects mitochondria from
oxidative stress in acute renal failure performed in septic mice (Salvemini
et al., 2002; Macarthur et al., 2003; Borgstahl and Oberley-Deegan, 2018;
Nagar et al., 2018).

The recommended antioxidants are vitamins E and C and selenium,
zinc, and copper minerals. However, the administration route, frequency,
and duration have not been standardized (Manzanares et al., 2012;
McClave et al., 2016; Singer, M. et al., 2016; Carr, 2019; Li et al., 2019;
Weiss, Balamuth, et al., 2020; Weiss, Co-vice et al., 2020). This implies
room for studies on antioxidants to optimize enteral nutrition in septic
patients.

Oral antioxidant supplements are popular in western countries,
especially in animals and humans. One reason for the failure of these
supplements may be due to reduced bioavailability, or their effects are
not long-term. An example is SOD because its large molecular weight
cannot penetrate cell membranes. Since 2000, melon extracts rich in SOD
have been developed into dietary supplements. However, the pH and
proteolytic activity of the gastrointestinal tract make SOD inactive and
ineffective (Intes et al., 2012; Romao, 2015).

Cucumis melo Linnaeus Cucurbitaceae (Cucumis melo L.C.) is a melon
fruit that contains 7 times more SOD than regular melon. Glisodin® is
Cucumis melo L.C. extract rich in SOD coated by a wheat matrix polymer
layer gliadin. Studies have found that gliadin carries SOD orally and in-
creases adhesion enzymes into the gastrointestinal epithelium, making it
easily absorbed in the small intestine (Vouldoukis, Krauss, et al., 2004).
This combination of Cucumis melo L.C. gliadin has been widely studied in
animals and humans, such as diabetes, reperfusion injury, fibrosarcoma,
cognitive, atherosclerosis, and antiaging (Goldberg and Crysler, 2014;
Romao, 2015).

This study aimed to determine the effect of enteral administration of
Cucumis melo L.C. gliadin (CME-gliadin) to compare four groups of male
Wistar rats, including negative and positive control rats and those sup-
plemented with SOD CME-gliadin 1 IU/day and SOD CME-gliadin 5 IU/
day as an antioxidant and anti-inflammatory in LPS-induced sepsis model
rats.

2. Material and methods

2.1. SOD enteral

This study used Glisodin® as a SOD enzyme extracted from Cucumis
melo Linnaeus Cucurbitaceae (Cucumis melo L.C.), extract cell line 95LS444
USA Patent 5,747,043 combined with wheat gliadin (Triticum vulgare)
biopolymer to slow release of SOD. Glisodin® is a water-dispersible SOD
containing 1 IU/mg of final dry powder of active SOD. Each capsule of
Glisodin® contains 250 IU SOD extracted from Cucumis melo L.C. The 250
mg dry powder was dissolved in water, centrifuged into homogenous,
and given to the rats by force-feeding.

2.2. Assessments of antioxidant and anti-inflammatory parameters

ELISA was used to measure SOD, MDA, TNF-α, and Lactate blood
serum. SOD levels were measured in nmol/L using an ELISA SOD kit
(Bioassay Technology Laboratory, Shanghai, China). Similarly, MDA
levels were measured in nmol/L using ELISA thiobarbituric acid reactive
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substance (TBARS) kit (Bioassay Technology Laboratory, Shanghai,
China). TNF-α levels were measured in ng/L using an ELISA TNF-α kit
(Bioassay Technology Laboratory, Shanghai, China). Lactate levels were
measured in mmol/L using an ELISA kit (MyBioSource, USA). The sample
was mixed with lactate assay buffer and measured by calorimetric using
absorbent 570 nm and the fluorometric using intensity 535–587 nm.

2.3. Animal model and induction to sepsis

This study obtained and adapted 32 male white Wistar rats for one
week at the Testing Service Laboratory – Institute of Bioscience, Uni-
versitas Brawijaya Malang. All rats were given the same food and drink,
except those given Glisodin® supplementations and cycles every 12 h of
light and dark at 24 �C. The experimental protocol was performed in
accordance with the ARRIVE (Animal Research: Reporting in Vivo Ex-
periments) guidelines version 2.0. and already approved by the Health
Research Ethics Committee of Universitas Sumatera Utara according to
the Nuremberg Code (no: 554/KEP/USU/2020). Subsequently, sepsis
was induced to animals by injecting LPS Escherichia coli serotype 0111:B4
obtained from Sigma-Aldrich (Singapore) 10 mg/kg intraperitoneal.

2.4. Experimental protocol

This experimental study used the Randomized Control Trial to
compare the control group of rats with the group given Cucumis melo L.C
gliadin extract for 28 days in the septic rat model. The animal models
were maintained and induced with sepsis at the Testing Service Labo-
ratory – Institute of Biosciences, Universitas Brawijaya Malang. The
ELISA examination and analysis of the results were conducted at the
Testing Service Laboratory – Institute of Biosciences, Universitas Bra-
wijaya Malang.

The rats were weighed before the study, followed by random sam-
pling and putting them into cages of four groups, each with eight rats.
Group A rats were given food and drink as a control, while group B was
given food, drink, and LPS after 28 days. In contrast, group C rats were
given Glisodin® at a dose of 1 IU/day for 28 days, while group D was
given Glisodin® at a dose of 5 IU/day for 28 days.

Blood samples were periodically collected before treatment, day-7,
day-14, day-28, and after LPS injection. The samples were collected
from retroorbital venous plexus, except after injection of LPS, where the
animals were decapitated after anesthesia, and the blood was rapidly
collected by direct heart puncture. Plasma samples were separated from
blood cells by centrifugation at 3000 g for 10 min and stored frozen for
use in the ELISA analysis.

2.5. Statistical analysis

Data were expressed as mean � standard error of the mean (S.E.M.).
One-way analysis of variance (ANOVA) was used to analyze the differ-
ences between the groups, followed by Tukey’s multiple comparisons
using Graph Pad Prism 9.3.1 Software. A p < 0.05 was considered sta-
tistically significant for mean differences.

3. Results

3.1. Effect of CME-gliadin on SOD level

A randomized controlled trial was conducted on experimental rats to
compare the control group with the group given Cucumis melo L.C gliadin
extract for 28 days. The rats were adult male Wistar rats, aged 3–4
months, with a bodyweight of 146–327 g. White Wistar rats were ob-
tained and adapted at the Testing Service Laboratory – Institute of Bio-
sciences, Universitas Brawijaya Malang.

Table 1 shows the results of examining SOD levels in each group.
There was no significant difference in SOD levels between groups before
treatment and SOD examination on day-7 (p ¼ 0.898 and p ¼ 0.626).



Table 1. Differences in SOD levels among groups at a different time of serum
sample collection in rats.

Variable Mean (nmol/L) SD (�) Minimum-Maximum P-value

SOD before treatment

Group A 4.38 1.941 0.10–5.89

Group B 3.90 2.182 0.06–6.23 0.898a

Group C 4.24 2.360 0.25–8.13

Group D 4.83 0.568 4.02–5.95

SOD day-7

Group A 4.59 0.735 3.14–5.16

Group B 3.98 1.99 1.23–6.45 0.626a

Group C 4.93 1.597 3.25–8.23

Group D 5.12 0.780 4.02–6.18

SOD day-14

Group A 4.37 0.624 3.44–5.33

Group B 4.27 1.717 2.12–6.19 <0.001a

Group C 9.57 2.626 5.21–13.92

Group D 13.42 13.428 10.68–17.98

SOD day-28

Group A 4.07 0.934 2.48–5.23

Group B 4.24 1.621 2.47–6.91 <0.001b

Group C 10.75 2.539 6.34–14.12

Group D 15.59 1.922 12.85–18.92

SOD after LPS

Group A 4.51 0.929 2.53–5.43

Group B 5.12 0.671 4.45–6.34 <0.001b

Group C 12.73 3.877 7.12–19.48

Group D 16.52 1.629 14.21–19.21

Group A normal control rats with a normal diet, Group B negative control rats
with a normal diet with LPS induced, Group C supplemented SOD 1 IU/day diet
with LPS induced, Group D supplemented SOD 5 IU/day with LPS induced.

a Kruskal-Wallis test ANOVA test with significance p < 0,5.
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However, significant differences were found on days 14, 28, and after
LPS. The levels of SOD from the highest to the lowest were groups D, C, B,
and A. Figure 1 shows changes in SOD levels from before treatment to
after LPS. SOD levels in groups C and D increased on days 14, 28, and
after LPS.

There was a significant difference between overall SOD, with a p-
value < 0.0001 using one-way ANOVA. Statistic and post-hoc tests
showed no significant difference between SOD 1 IU and 5 IU, with a p-
value of 0.2134.
Figure 1. Differences in SOD levels among groups at different times of serum
sample collection in rats. Group A normal control rats with a normal diet, Group
B negative control rats with a normal diet with LPS induced, Group C supple-
mented SOD 1 IU/day diet with LPS induced, Group D supplemented SOD 5 IU/
day with LPS induced.

3

3.2. Effect of CME-gliadin on MDA level

Analysis of differences in MDA after LPS levels between groups was
conducted using the Kruskal Wallis test. The analysis results in Table 2
show a significant difference with a p ¼ 0.001 in the MDA levels in each
group. Group D had the lowest MDA levels compared to groups C and B.
MDA levels in group D were almost the same as group A, which showed
levels of 2.77. Group B, C, and D showed 5.64, 2.86, and 2.63 levels,
respectively.

There was a significant difference between overall MDA with all
groups with a p-value < 0.0001 using one-way ANOVA. Statistic and
post-hoc tests showed no significant difference between SOD 1 IU and 5
IU, with a p-value of 0.9956.

In this study, we found that MDA in rats that treated by SOD either 1
IU and 5 IU had a lower MDA, as shown in Figure 2, even there’s no
difference in different dose based on statistics measurement, we could
still see that in Group D (5 IU) the mean of MDA are lower than in Group
C (1 IU).
3.3. Effect of CME-gliadin on TNF-α level

Table 3 shows the analysis results of differences in TNF-α after LPS
levels using the ANOVA test analysis. The results show significant dif-
ferences in TNF-α levels in each group. Group D had the lowest TNF-α
levels compared to group A.

There was a significant difference between overall TNF-α with all
groups, with a p-value < 0.0067 using one-way ANOVA. Statistic and
post-hoc tests showed no significant difference between SOD 1 IU and 5
IU, with a p-value of 0.9938.

In this study, the result of TNF-α we found caused by inflammatory
response and oxidative stress from production of cytokine pro-
inflammation. SOD that was given shows us anti-inflammatory effect,
even there’s no difference in different dose, 1 IU and 5 IU. We could still
see in Figure 3 that in Group D (5 IU) the mean of TNF- α are lower than
in Group C (1 IU).
3.4. Effect of CME-gliadin on lactate level

There was a significant difference in lactate levels after LPS mea-
surement (p < 0.001). Group A had the lowest lactate levels among the
groups that received the intervention, with a mean of 1.18, as shown in
Table 4.

There was a significant difference between overall Lactate with all
groups, with a p-value < 0.0033 using one-way ANOVA. Statistic and
post-hoc tests showed no significant difference between SOD 1 IU and 5
IU, with a p-value of 0.9631.

In this study, the lactate serum level remains high in rats with sup-
plemented SOD either 1 IU and 5 IU, as shown in Figure 4, this could
happen because the rats didn’t receive any sepsis treatment and only
given SOD as the treatment. Lactate serum level would be decreased if
the rats received the main treatment for the main problem such as
Table 2. Effects of SOD CME-gliadin supplement on MDA serum levels in rats.

Variable Mean (nmol/mL) Minimum-Maximum P-value

MDA after LPS

Group A 3.16 0.03–4.00

Group B 19.83 13.84–33.34 0.001a

Group C 3.92 3.59–4.24

Group D 3.24 0.04–4.40

Group A normal control rats with a normal diet, Group B negative control rats
with a normal diet with LPS induced, Group C supplemented SOD 1 IU/day diet
with LPS induced, Group D supplemented SOD 5 IU/day with LPS induced.

a Kruskal-Wallis test with significance p < 0,5.



Figure 2. Effects of SOD CME-gliadin supplement on MDA serum levels in rats.
Group A normal control rats with a normal diet, Group B negative control rats
with a normal diet with LPS induced, Group C supplemented SOD 1 IU/day diet
with LPS induced, Group D supplemented SOD 5 IU/day with LPS induced.

Table 3. Effects of SOD CME-gliadin supplement on TNF-α serum levels in rats.

Variable Mean (ng/L) SD (�) Minimum-Maximum P-value

TNF-α after LPS

Group A 2.77 0.454 1.97–3.44

Group B 5.64 1.835 2.45–7.66 <0.001b

Group C 2.86 0.401 2.20–3.35

Group D 2.63 0.694 1.72–4.00

Group A normal control rats with a normal diet, Group B negative control rats
with a normal diet with LPS induced, Group C supplemented SOD 1 IU/day diet
with LPS induced, Group D supplemented SOD 5 IU/day with LPS induced.

b Anova test with significance p < 0,5.

Figure 3. Effects of SOD CME-gliadin supplement on TNF-α serum levels in rats.
Group A normal control rats with a normal diet, Group B negative control rats
with a normal diet with LPS induced, Group C supplemented SOD 1 IU/day diet
with LPS induced, Group D supplemented SOD 5 IU/day with LPS induced.

Table 4. Effects of SOD CME-gliadin supplement on Lactate serum levels in rats.

Variable Mean (mmol/L) SD (�) Minimum-Maximum P

Lactate after LPS

Group A 1.18 0.299 0.90–1.70

Group B 3.88 0.598 3.10–4.70 <0.001a

Group C 3.47 0.256 3.10–3.80

Group D 3.15 0.454 2.30–3.60

Group A normal control rats with a normal diet, Group B negative control rats
with a normal diet with LPS induced, Group C supplemented SOD 1 IU/day diet
with LPS induced, Group D supplemented SOD 5 IU/day with LPS induced.

a Kruskal-Wallis test with significancy p < 0,5.

Figure 4. Effects of SOD CME-gliadin supplement on Lactate serum levels in
rats. Group A normal control rats with a normal diet, Group B negative control
rats with a normal diet with LPS induced, Group C supplemented SOD 1 IU/day
diet with LPS induced, Group D supplemented SOD 5 IU/day with LPS induced.
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resuscitation, medication of sepsis, etc. This study only give SOD to know
the effect of SOD as an adjunctive therapy for sepsis.

3.5. Comparison effect of CME-gliadin on SOD 1 IU and SOD 5 IU

The one-way ANOVA test results necessitated determining the dif-
ference between SOD 1 IU and 5 IU using a post-hoc test. Tukey’s mul-
tiple comparisons showed no significant difference in SOD, with a p-
value of 0.2134, MDA with a p-value of 0.9956, TNF-α with a p-value of
0.9938, and Lactate with a p-value of 0.9631.

The descriptive result showed that SODwas higher in group 5 IU than
in 1 IU. There was a lower MDA, TNF-α, and Lactate in group 5 IU than 1
IU, with no significant difference.

4. Discussion

Sepsis pathogenesis is a complex mechanism involving interaction
between microbial and host responses. Dysregulations from immune host
response in sepsis occur from uncontrolled release of mediator, causing
organ failure (Rocha, R Herance et al., 2012). The immune response is
activated by interacting with microbial antigens called pathogen-asso-
ciated molecular patterns (PAMPs). The activation is caused by Toll-like
receptors (TLRs) and nuclear factor kappa B (NF-κB), transcription of
pro-inflammatory cytokines IL-1α, IL-1β, TNF-α, IG-CSF, GM-CSF,
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adhesion molecules ICAM-I, VCAM-1, coagulation factors, prooxidant
enzymes iNOS, COX-2, LOX, antioxidants SOD, GPx, and cel T. Further-
more, several products deliver positive feedback to NF-κB, enhancing
inflammatory response. Signal transfer from ROS and RNS activates
leucocytes, resulting in superoxide called ROS. The superoxide interacts
with NO to form peroxynitrite (ONOO�), a potent oxydator that frag-
ments the DNA, damages cell membranes and causes lipid peroxidation
(Murphy, 2009; Abreu and Cabelli, 2010; Bhan et al., 2016; Jones et al.,
2016; Acu~na-Castroviejo et al., 2017).

Superoxide is produced from the electron transport chain in mito-
chondria and irreversibly inhibits electron transport and ATP synthesis
with its peroxynitrite form. The main antioxidant that regulates super-
oxide to prevent cell damage is superoxide dismutase and glutathione
cycle (Duran-Bedolla et al., 2014; Acu~na-Castroviejo et al., 2017; Nagar
et al., 2018).

This study aimed to determine the benefits of giving Cucumis melo L.C
Gliadin to SOD levels as antioxidant prophylaxis in adult Wistar rats as
sepsis models. The samples tested comprised 32 mice divided into group
A as a control, B as rats given LPS injection on day 28 as a sepsis model,
and C and D with a prophylactic intervention with Glisodin® with a dose
of 1 IU/day and 5 IU/day.

The results showed that SOD levels increased significantly on days 14
and 28. The time required for an increase in SOD levels was in line with
Vouldoukis et al. (Vouldoukis, Krauss, et al., 2004), which administered
SOD-gliadin extract for 28 days. SOD levels increased on day 14 and
reached a maximum effect after 28 days. Administration of SOD through
plant extracts containing antioxidants is ineffective due to the denatur-
ation of antioxidants, especially when given orally. This could be over-
come by wrapping the SOD using lipids and proteins. Also, wheat gliadin
contained in Glisodin® s useful as a drug modality to maintain the
bioavailability of SOD, even when taken orally (Carillon et al., 2013).

Gliadin protects SOD from gradation in the stomach due to its bio-
adhesion properties. It increases the stickiness of SOD to the small in-
testinal epithelium, prolonging the association of SOD with the gastro-
intestinal tract (Intes et al., 2012). Furthermore, gliadin biopolymers trap
and delay the release of the active ingredient during digestion. This is due
to its bioadhesive properties, which enhance the delivery of the active
ingredient in the intestinal mucosa (Carillon et al., 2013).

Sepsis induction causes ROS damage when the oxidant produced
exceeds the capacity of endogenous SOD. Oral supplementation and
direct ROS detoxification also increase endogenous antioxidant defenses.
Previous studies showed that Cucumis melo L.C. gliadin extract is an
antioxidant nutrient-rich extract. It has high SOD of 100 IU/NBT per mg
dry extract on average, catalase (10 IU/mg), natural antioxidants, and
glutathione peroxidase. Antioxidants reduce oxidative stress, while het-
erologous SODs or antigens may have immunoregulatory properties
(Vouldoukis, Krauss, et al., 2004).

The crude Cucumis melo L.C. gliadin extract with SOD activity
inhibited the production of superoxide anion in a dose-dependent
manner by IgG1IC-stimulated macrophages. The maximal inhibitory ef-
fect was achieved at 100 ng/ml Cucumis melo L.C. gliadin equivalent to 10
IU/NBT SOD activity. However, there was a significant difference in the
inhibitory effect with heat-inactivated Cucumis melo L.C gliadin because
HI-Cucumis melo L.C gliadin lacks SOD activity. This indicated that SOD
activity was essential for reducing oxidative stress, though other anti-
oxidant products reduced superoxide anion production by IgG1IC-treated
macrophages (Vouldoukis, Lacan, et al., 2004).

Tumor Necrosis Factor-Alpha (TNF-α) is a pro-inflammatory cytokine
expressed by septic mouse model tissue. This study showed that TNF-α
levels were significantly different in each group. Specifically, groups A, B,
C, and D had 2.77 ng/L, 5.64 ng/L, 2.86 ng/L, and 2.63 ng/L, respec-
tively. A p-value of<0.001 showed a significant difference in TNF-α after
LPS levels between groups.

Previous studies found that oxidative metabolism is timely related to
macrophages' pro and anti-inflammatory capacity. The studies evaluated
the effects of various extracts of Cucumis melo L.C. gliadin-induced IgG1IC
5

on TNF-α and IL-10 production by macrophages. Stimulation of IFN-
gamma-activated macrophages by IgG1IC induces the simultaneous
production of TNF-α and IL-10. The observed inverse correlation between
TNF-α and IL-10 concentrations indicates a physiological balance be-
tween the production processes of the two cytokines. After supplement-
ing Cucumis melo L.C. gliadin extract, IgG1IC-induced TNF-α production
in IFN-gamma-activated macrophages was significantly reduced (P <

0.01), while IL-10 production was significantly increased (P < 0.01).
Therefore, the effect of SOD on Cucumis melo extract may decrease pro-
inflammatory and increase anti-inflammatory cytokine levels (Vouldou-
kis, Lacan, et al., 2004).

LPS injection causes an inflammatory response and oxidative stress by
producing pro-inflammatory cytokines such as TNF-α and IL-6. Admin-
istering SOD inhibits the inflammatory process and oxidative stress in
acute inflammation caused by LPS (Porfire, 2014). Also, Glisodin®

administration significantly reduces TNF-α levels in endometriosis rats
(Trisetiyono et al., 2019).

Lipid peroxidase occurs because oxidants such as free radicals or non-
radicals attack lipids containing double-bonded carbon, especially poly-
unsaturated fatty acids (PUFAs). The reaction is caused by malondial-
dehyde (MDA), a biomarker for poor prognosis in sepsis (Ansarin et al.,
2015; Lorente et al., 2015). This study found a significant relationship
where MDA levels were lower in the group given Cucumis melo L.C.
gliadin extract. Group A mice not induced with LPS sepsis had relatively
comparable MDA levels than group D induced by sepsis and treated with
Cucumis melo L.C. gliadin extract. Moreover, there were significant dif-
ferences in MDA levels in each group. These results explain the benefits
of SOD on lipoperoxidation resulting in MDA. Similar results were found
by Trisetiyono et al. (2019) after inducing rats with endometriosis and
Cucumis melo L.C. gliadin extract.

Administering a dose of 5 IU significantly reduced MDA and TNF-α
levels. Another study in mice given CME-gliadin exposed to second-hand
smoke for 28 days also showed lower serum MDA levels. The mice were
exposed to cigarette smoke and given doses of SOD-gliadin 2.25 IU, 4.5
IU, and 9 IU, respectively. This study found that administering 9 IU of
SOD insignificantly reduced MDA levels. In contrast, a dose of 2.25 IU
significantly reduced MDA levels compared to the negative control group
without SOD administration. Therefore, administering CME extract in-
creases antioxidant capacity and reduces oxidative stress, characterized
by a decrease in MDA levels (Suryadinata et al., 2017).

The results showed a significant difference in lactate levels after LPS
measurement, where the rats were induced with sepsis. This implies a
relationship between LPS administration to lactate levels in sepsis model
rats. Lactate is a biomarker of hypoperfusion that helps in resuscitating
septic patients. Recent studies have considered assessing whether base-
line lactate is a risk stratification biomarker or an additional manifesta-
tion of organ dysfunction (Tredway et al., 2011). Similar results were
found by Zhai et al. after inducing rats with sepsis by the CLP method.
The study also investigated and established a lactate cut-off value of
>1.64 mmol/L predicting sepsis in rats. According to Zhai et al. (2018),
rats with lactate values >1.64 had a 100% mortality rate. The results
support this study, which found that all rats given LPS had lactate levels
>1.64, meaning they had sepsis. Lactate is a normal product in glycolysis,
which increases in sepsis, while pyruvate dehydrogenase decrease when
lactating levels, except in tissue hypoxia (Tapia et al., 2015). In hypoxic
situations, cells produce ATP through glycolysis using pyruvate to lactate
rather than acetyl-CoA. This occurs even under aerobic glycolysis or the
Warburg effect (Pearce and Pearce, 2013). The result is increased pro-
duction and a significant decrease in lactate clearance in sepsis (Her-
nandez et al., 2019). However, this study did not perform resuscitation or
medication on sepsis rats.

Lactate as a diagnostic marker and as a marker of disease progression
has a strong association with disease severity and patient outcome. Blood
lactate is a marker of abnormal microcirculation, reflective of tissue
hypoperfusion, and cellular hypoxia. An increased lactate level is a sign
of cellular dysfunction in sepsis, such as insufficient tissue oxygen
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delivery, impaired aerobic respiration, and accelerated aerobic glycol-
ysis. In septic animals, persistent increased lactate shows a severe
infection and inflammation, worse hemodynamic abnormality, and more
serious organ dysfunction. Persistent elevation of serum-lactate would
need adequate volume substitution and need for vasopressor therapy to
maintain a mean arterial pressure >65 mmHg (Zhai et al., 2018; Jarczak
et al., 2021). Based on that we know that lactate would still be elevated if
the rats didn’t receive any resuscitation, hemodynamic management, and
medication treatment for sepsis.

Glisodin® extract has been administered to animals and humans in
various studies with no adverse side effects. Studies have been conducted
on cancer, cardiovascular, degenerative, and infectious diseases (Webb
et al., 2008; Nakajima et al., 2009; Carillon et al., 2013; Porfire, 2014;
Romao, 2015; Subandrate et al., 2015; Ahasan, 2019). These diseases are
related to ROS production, a condition improved by manipulating anti-
oxidant levels.

Oxidative stress is triggered by hyperbaric oxygen (HBO) conditions.
HBO therapy treats various diseases with possible side effects, especially
DNA damage. The results showed a significant reduction in DNA strand
breaks in the SOD-gliadin-treated group compared to the placebo group.
Additionally, treated patients showed decreased plasma marker con-
centrations for oxidative stress (Muth, 2004). The anti-inflammatory
effect of Glisodin® prevents the development of many chronic
inflammation-mediated diseases. According to Okada et al. adminis-
tering the gliadin-SOD complex could prevent the development of cancer
(Romao, 2015).

Cloarec et al. recruited 76 patients considered at risk for cardiovas-
cular disease but free of clinical signs. In the study, 17 subjects were
given Glisodin® 500 IU for two years. The result showed that supple-
mentation causes a 34% decrease in malondialdehyde (MDA) levels,
atherosclerosis, and cardiovascular disease pathogenesis. Moreover, the
effects of Glisodin® were seen on stress-induced lipid peroxidation and
impaired spatial memory in mice. Glisodin® protects against lipid per-
oxidation in nerve cells and prevents the decline in rat spatial memory.
Furthermore, it has a neuroprotector effect by secreting nerve growth
factor (NGF) and insulin-like growth factor (IGF-1). Intake of Glisodin®

containing oral bioactive SOD may significantly improve quality of life.
Most studies on SOD-gliadin formulations show that supplementation
provides additional effects than curative properties (Romao, 2015).

This study also found a significant difference in TNF-α and MDA be-
tween the test groups. However, the lactate and mortality values were
still high, and the rats were declared septic, implying the need for stan-
dard sepsis. Administering SOD-gliadin to increase endogenous SOD
could reduce the pro-inflammatory effect on sepsis. Therefore, further
studies should use similar methods to prove the antioxidant effect of
SOD-gliadin and standard therapy on sepsis.

No study has examined the difference in the effect of SOD 1 IU and
SOD 5 IU doses of SOD. This study found no significant difference be-
tween SOD 1 IU and SOD 5 IU. Only SOD has a significant result with a
good effect in septic rats, but the difference in doses of 1 IU and 5 IU is
insignificant.

5. Conclusion

Enteral administration of SOD – gliadin extract of Cucumis melo L.C.
gliadin for 28 days is useful as antioxidant prophylaxis against oxidative
stress due to sepsis. Administering Glisodin® at 1 IU/day and 5 IU/day
significantly increased SOD levels based on examination on days 14 and
28. Furthermore, enteral administration of SOD – gliadin extract of
Cucumis melo L.C. gliadin decreased MDA levels significantly in sepsis-
induced mice, with p < 0.001. Administering SOD – gliadin extract of
Cucumis melo L.C. gliadin significantly reduced TNF-α levels in sepsis-
induced rats, with p < 0.001.

Enteral administration of SOD – gliadin extract of Cucumis melo L.C.
gliadin significantly reduced lactate levels in sepsis-induced rats. How-
ever, the increase was still above >1.64 mmol/l, implying a high
6

mortality rate. There was no difference between SOD 1 IU and 5 IU,
though descriptive data showed that SOD 5 IU has a better result in MDA,
TNF-α, and Lactate levels than SOD 1 IU. Further studies should be
conducted with a longer period or larger dose with shorter SOD – gliadin
intake time.
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