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Abstract
Background  Evidence for the relationship between individual and combined volatile organic compounds (VOCs) 
and cardiovascular disease (CVD) is limited. Besides, the mediating role of biological aging (BA) has not been studied. 
Therefore, this study aimed to examine the association between VOCs and CVD risk and to explore the mediating 
effects of BA.

Methods  Logistic regression models were used to investigate the relationships of metabolites of volatile organic 
compounds (mVOCs) and BA with CVD. In addition, weighted quantile sum (WQS) regression, adaptive elastic 
networks, and Environmental Risk Score (AENET-ERS) were utilized to assess overall associations of mixed VOCs 
co-exposure with CVD. Mediation analyses were used to identify potential mediating effects of BA.

Results  In the single-pollutant model, CYMA was shown to be associated with an increased risk of CVD. Additionally, 
we identified significantly positive associations between the WQS index and CVD (odds ratio (OR) = 1.292, 95% 
confidence interval (CI): 1.006, 1.660), and DHBMA had the greatest contribution for CVD (0.246). Furthermore, the 
AENET-ERS results showed that 8 mVOCs were significantly associated with CVD, and ERS was related to an elevated 
risk of CVD (OR = 1.538, 95%CI: 1.255, 1.884). Three BA indicators mediated the association of the mVOCs mixture with 
CVD, with mediating effect proportions of 11.32%, 34.34%, and 7.92%, respectively.

Conclusion  The risk of CVD was found to increase with both individual and combined exposure to VOCs. BA 
mediates the positive effects of VOCs on CVD, suggesting that this pathway may be one of the mechanisms of CVD.

Highlights
	• Individual and mixed exposure to VOCs were associated with elevated CVD risk.
	• DHBMA dominates mixtures of mVOCs for increased CVD risk.
	• BA mediates the effect of VOCs mixture exposure on CVD.

Keywords  Volatile organic compounds, Mixed exposure, Cardiovascular disease, Environmental risk score, Biological 
aging
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Introduction
Cardiovascular disease (CVD) is the leading cause of 
death and disability-related disease worldwide and poses 
a threat to health [1, 2]. Data from the Global Burden 
of Disease Study 2019 shows that 523  million people 
worldwide have CVD, and the number of CVD deaths 
has steadily increased, reaching 18.6  million as of 2019 
[3]. It places an increased burden of disease on individu-
als and a heavy financial burden on families and society. 
Therefore, there is an urgent need to identify more risk 
factors for CVD so that targeted preventive measures can 
be taken to reduce the risk of the disease. An increas-
ing amount of research suggests that there exists a close 
association between environmental pollutants and the 
incidence and death rates of CVD [4–6]. Volatile organic 
compounds (VOCs) are known to be precursors of PM2.5 
and ozone, and they have a significant impact on regional 
environmental pollution [7]. As universal and complex 
environmental organic pollutants, VOCs include alkanes, 
olefins, aldehydes, benzenes congeners, and other organic 
substances, mainly originating from industrial emissions, 
vehicle exhaust, and fuel combustion [8]. A perspective 
review, summarizing the health effects of past and cur-
rent exposure to VOC, has shown that human exposure 
to VOCs is susceptible to many degenerative diseases 
such as allergies, obesity, and diabetes [9].

Previous studies have shown that exposure to single 
VOCs may be closely related to endothelial injury and 
several kinds of CVD [10]. Toxicology studies in mice 
demonstrated that acrolein exposure induces vasodila-
tion, dyslipidemia, and platelet activation and thus pro-
motes thrombosis in the organism [11–13]. In vitro and 
in vivo experiments have shown that acrolein in cigarette 
smoke may induce endothelial superoxide anion produc-
tion through the activation of nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase, which has been 
shown to be closely related to endothelial dysfunction 
[14]. According to a cross-sectional study, exposure to 
acrolein and 1,3-butadiene was associated with increased 
systolic blood pressure and decreased reactive congestion 
index (a measure of endothelial function) [15]. However, 
as the study population was drawn from a high CVD risk 
group receiving primary and secondary CVD preven-
tion, selection bias had to be taken into account, which 
may lead to limited extrapolation of the results. More-
over, most of the previous studies focused on the effect 
of single VOC on CVD, and in reality, people are not only 
exposed to one VOC but often to multiple VOCs. One 
such study, which recruited 603 participants, showed 
that cumulative VOC risk score showed a strong negative 
association with CD45dim/CD146+/CD34 + cells, sug-
gesting that total VOC exposure has a cumulative effect 
on pro-angiogenic cells [16], thereby impairing endo-
thelial repair and angiogenesis. Studies exploring the 

effects of VOC as a mixture on CVD are still scarce to 
our knowledge. Therefore, the single and mixed effects of 
VOCs exposure and CVD need to be further explored in 
large-scale epidemiological investigations.

Unlike actual age, biological age (BA) incorporates risk 
factors for future disease and early death. Evidence sug-
gests that a variety of environmental pollutants are asso-
ciated with biological senescence, such as PM2.5 [17], 
perfluoroalkyls [18], and others. It is noteworthy that 
the results of a previous study showed a significant cor-
relation between individual VOCs and BA [19]. Nonethe-
less, research evidence on the association of mixed VOC 
exposure with CVD and whether BA played a mediating 
effect is limited.

In summary, the purpose of our study was to explore 
the effects of individual and mixed exposure to VOCs on 
CVD, and investigate the mediating effect of BA in CVD 
risk modification due to VOCs exposure through com-
bined utilization of traditional logistic regression, and 
advanced multi-pollutant assessment methods includ-
ing weighted quantile sum (WQS) regression, adaptive 
elastic networks (AENET) and Environmental Risk Score 
(ERS).

Materials and methods
Study population
The participants of this study were derived from the 
National Health and Nutrition Examination Survey 
(NHANES), which is a population-based survey combin-
ing interviews and physical examinations to determine 
the health and nutrition of adults and children in Amer-
ica. The 2011–2018 NHANES database involved 39,156 
participants, and urinary metabolites of volatile organic 
compounds (mVOCs) data were available for 9,176. Of 
these, we excluded the participants whose data on CVD 
and covariates were missing, and who were pregnant 
(n = 4,584). Finally, 4,592 participants (age range 20–80 
years) were enrolled in the main analysis. In addition, 
we removed missing values for the variables required in 
the mediator variable calculation in subsequent media-
tion analyses. The detailed population screening process 
is presented in Figure S1. The National Health Statistics 
Research Ethics Review Board approved the protocol of 
NHANES, and all participants signed informed consent 
forms.

Measurement of urinary mVOCs
We used urinary mVOCs concentrations to assess VOC 
exposure levels. Urine samples were collected from a 
sub-sample of participants, and stored in frozen (-20℃) 
conditions until transported to the National Centre 
for Environmental Health for testing. MVOCs in urine 
were determined by ultra-performance liquid chroma-
tography and electrospray tandem mass spectrometry 
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quantification procedure [20], for mVOCs with analysis 
results below the lower limit of detection (LLOD) were 
expressed as LLOD/√2. Sixteen mVOCs with > 50% detec-
tion rates were included as continuous variables, includ-
ing 2-methylhippuric acid (2MHA), 3-methylhippuric 
acid and 4-methylhippuric acid (34MHA), acrylamide 
mercapturic acid/N-acetyl-S-(2-carbamoylethyl)-L-
cysteine (AAMA), N-acetyl-S-(N-methylcarbamoyl)-L-
cysteine (AMCC), 2-aminothiazoline-4-carboxylic acid 
(ATCA), benzyl mercapturic acid/N-acetyl-S-(benzyl)-
L-cysteine (BMA), n-propyl mercapturic acid/N-ace-
tyl-S-(n-propyl)-L-cysteine (BPMA), 2-carboxyethyl 
mercapturic acid/N-acetyl-S-(2-carboxyethyl)-L-cysteine 
(CEMA), 2-cyanoethyl mercapturic acid/N-acetyl-S-
(2-cyanoethyl)-L-cysteine (CYMA), 3,4-dihydroxybutyl 
mercapturic acid/N-acetyl-S-(3,4-dihydroxybutyl)-L-
cysteine (DHBMA), 2-hydroxypropyl mercapturic 
acid/N-acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA), 
3-hydroxypropyl mercapturic acid/N-acetyl-S-
(3-hydroxypropyl)-L-cysteine (3HPMA), mandelic acid 
(MA), monohydroxybutenyl mercapturic acid/N-ace-
tyl-S-(4-hydroxy-2-butenyl)-L-cysteine (MHBMA3), 
phenylglyoxylic acid (PGA), and 3-hydroxypropyl-
1-methyl mercapturic acid/N-acetyl-S-(3-hydroxypropyl-
1-methyl)-L-cysteine (HPMMA).

Assessment of CVD
The definition of CVD was determined using self-
reported standardized medical status questionnaires in 
individual interviews. When interviewees were asked 
“Has a doctor or other health professional ever told you 
that you have congestive heart failure/coronary heart dis-
ease/angina/heart attack/stroke?” if one of the answers is 
yes, then he or she was enrolled in the CVD group.

Measurement of mediators
BA biomarkers incorporated Klemera-Doubal Method 
(KDM), KDMAccel, Phenotypic Age (PA), and PAAc-
cel. KDM was calculated using the Klemera and Doubal 
method based on 8 biomarkers [21], and PA was calcu-
lated based on a previous formula that used actual age 
and 9 biomarkers [22]. Based on previous studies, we 
used the BioAge R package (Table S2) to calculate KDM 
and PA (Table S2) [23]. KDMAccel and PAAccel were 
calculated as KDM and PA minus actual age, respectively 
[22].

Covariates
Important covariates were chosen a priori and included 
age, gender, race, education, poverty income ratio (PIR), 
body mass index (BMI), drinking, smoking status, activ-
ity, and urine creatinine (UCr). All covariate data were 
obtained from the NHANES database. Specifically, 
PIR was defined as a family income ratio to the poverty 

threshold. BMI is calculated as weight (kg) divided by 
height squared (m2). Race was divided into Mexican 
American, other Hispanic, non-Hispanic White, non-
Hispanic Black, and other race. Education level was 
defined as less than high school, high school or equiva-
lent, and college or above. Drinker was deemed to have 
at least 12 alcoholic drinks every year. There were three 
types of smoking status: never smokers (less than 100 
cigarettes in a lifetime and currently a nonsmoker), cur-
rent smokers (more than 100 cigarettes in a lifetime and 
currently are smokers), and past smokers (more than 
100 cigarettes throughout their lifetimes and currently 
are non-smokers). The determination of the activity was 
based on whether the individual engaged in any work 
involving vigorous-intensity physical activity. UCr was 
determined as a marker of urine dilution and measured 
by the Jaffe rate reaction of the Beckman Synchronous 
Analyzer.

Statistical analysis
Continuous variables were presented as mean ± standard 
deviation and categorical variables as frequency (per-
centages). Student-t tests and chi-square tests were used 
to compare the differences in baseline characteristics 
according to whether or not CVD. Correlations between 
mVOC were assessed using spearman correlation analy-
sis. Because the distributions of mVOCs were deflective, 
we analyzed the relationship between individual mVOCs 
and CVD by logistic regression using natural log-trans-
formed data. Generalized linear models were used to 
analyze the association of individually transformed 
VOCs with KDM, KDMAccel, PA, and PAAccel. Model 
1 was not adjusted for any confounders; and Model 
2 adjusted for age, gender, race, education, PIR, BMI, 
drinking, smoking status, activity, and UCr. To prevent 
overcorrection, age was excluded from adjustment in the 
KDM, KDMAccel, PA, and PAAccel analyses. To account 
for multiple tests, the Benjamini-Hochberg procedure 
was applied to control the false-discovery rate (FDR) and 
reported the corrected P values as q values. Furthermore, 
restricted cubic splines (RCS), with 3 knots at the 25th, 
50th, and 75th percentiles, were exhibited to explore the 
non-linear relationship of mVOCs with CVD. As previ-
ous literature has reported that the association between 
VOCs exposure and CVD may be influenced by gender 
and smoking status [24], subgroup analyses according 
to gender and smoking status were conducted to obtain 
specific associations between subgroups. Considering the 
complex multistage probability sampling design, appro-
priate weights were chosen in the analysis.

WQS regression was performed to estimate the effect 
of mixtures of mVOCs on the risk of CVD [25]. The data 
were used as a test set and validation set in the ratio of 
4:6 to improve the statistical efficacy. There are 1000 
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bootstrap steps in the multiple regression model. The 
elastic network is a regularization method based on 
Ridge regression and Least absolute shrinkage and selec-
tion operator regression, with appropriate cross-valida-
tion to make the model more robust, combining both 
advantages in terms of variable selection [26]. AENET are 
adaptive versions of elastic networks with higher statisti-
cal performance and better variable selection to reduce 
the coefficients of less important predictors to zero 
[27]. Based on 5-fold cross-validation to select the most 
appropriate tuning parameters, we used AENET to filter 
the CVD-related mVOCs from 16 predictors and obtain 
the corresponding β values. ERS was calculated using 
beta coefficients adopted from AENET for not only main 
effects but also squared terms of metal concentrations as 
well as all the combinations of pairwise linear interac-
tions [28]. Afterward, the logistic regression model was 
performed to investigate the relationships of ERS with 

CVD, and quartiles stratified analysis of ERS was added 
after adjusting for all possible covariates.

Mediator analyses were used to examine the role of 
mediators in the mechanisms of CVD risk modification 
due to mixed exposures to VOCs. All analyses were per-
formed using the SPSS (Version 21.0; SPSS Inc., Chicago 
IL, USA), and R studio (R Version 4.2.1). Results of P or 
q < 0.05 were considered statistically significant.

Results
Characteristics of study participants
The general characteristics of the 4,592 subjects are 
shown in Table 1, with the weighted prevalence of CVD 
in the analytic sample was 37.3%. Except for UCr and 
KDMAccel, all the characteristics were statistically sig-
nificant differences between the non-CVD and CVD 
groups (all P < 0.05). The participants of the CVD group 
were significantly older, had greater BMI, had lower PIR, 
had higher KDM, PA, and PAAccel, and the proportion 

Table 1  Characteristics of the study participants (weighted)
Characteristics Overall Non-CVD CVD P value
Age, years, mean ± SD 47.6 ± 16.8 46.1 ± 16.3 64.1 ± 13.4 < 0.001
Gender, % 0.002
  Male 49.8 49.1 58.1
  Female 50.2 50.9 41.9
Race, % 0.003
  Mexican American 7.6 7.9 3.4
  Other Hispanic 6.0 6.1 4.9
  Non-Hispanic White 67.4 66.8 74.5
  Non-Hispanic Black 11.1 11.0 12.0
  Others race 7.9 8.1 5.2
Education, % < 0.001
  Less than high school 12.6 12.0 20.2
  High school or equivalent 22.9 22.3 29.1
  College or above 64.5 65.7 50.7
PIR, % < 0.001
  ≤ 1.3 21.5 21.2 26.0
  1.3–3.5 35.7 34.8 46.1
  > 3.5 42.7 44.0 27.9
BMI, kg/m2, mean ± SD 29.4 ± 7.0 29.4 ± 7.0 30.3 ± 7.0 0.031
Drinker, % 72.9 73.5 66.3 0.013
Smoking status, % < 0.001
  Never 55.3 56.7 39.4
  Current 18.4 18.0 22.9
  Past 26.3 25.3 37.7
Activity, % 23.2 23.8 16.5 0.017
UCr, mg/dL, mean ± SD 114.2 ± 76.9 114.6 ± 77.7 109.0 ± 67.1 0.250
KDM, years, mean ± SD 37.5 ± 25.7 35.9 ± 25.1 54.1 ± 25.5 < 0.001
KDMAccel, mean ± SD -10.8 ± 20.4 -10.8 ± 20.0 -10.3 ± 24.2 0.808
PA, years, mean ± SD 47.1 ± 18.4 45.2 ± 17.6 66.8 ± 15.1 < 0.001
PAAccel, mean ± SD -1.2 ± 5.6 -1.5 ± 5.3 2.4 ± 7.7 < 0.001
Bolded data meant with a P < 0.05

Abbreviations: CVD, cardiovascular disease; SD, standard deviation; PIR, poverty-income ratio; BMI, body mass index; UCr, urine creatinine; KDM, Klemera–Doubal 
Method; PA, Phenotypic Age
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of males and lack of exercise was higher (all P < 0.05). 
Besides, among all participants, 49.8% were men, 67.4% 
were Non-Hispanic White, 64.5% qualifications were 
college or above, 72.9% were drinkers, 55.3% were never 
smoker, and 23.2% were engaged in the vigorous-inten-
sity physical activity.

In addition, the Spearman correlation coefficients 
between the urinary levels of 16 mVOCs are shown 
in Figure S2. All the analytes show positive correla-
tions between 0.112 and 0.877 (all P < 0.01). Table S1 
indicates the abbreviations, detection rates, LLODs, 
and distributions of 16 urinary mVOC concentrations 
in the total population. The median concentration of 
DHBMA (326.0  µg/L) was the highest, followed by 
3HPMA (254.0  µg/L), HPMMA (248.0  µg/L), and PGA 
(212.5 µg/L).

Single mVOCs and CVD risk
After adjusting for covariates and multiple corrections, 
the weighted logistic regression model analyzed the rela-
tionships between mVOCs and CVD, and the results are 
shown in Fig.  1. ATCA was negatively associated with 
CVD (odds ratio (OR) = 0.795, 95% confidence inter-
val (CI): 0.650, 0.973) in the adjusted model (P = 0.027). 

CEMA, CYMA, and 3HPMA were positively associ-
ated with CVD risk. Their ORs (95%CIs) were 1.275 
(1.031,1.577), 1.186 (1.073,1.309), and 1.240 (1.037,1.483), 
respectively. A significant association between CYMA 
and CVD was found despite FDR correction (q = 0.02).

Weighted RCS curves were further generated to 
explore the nonlinearity of mVOCs with CVD (Figure 
S3). We observed a linear association of CEMA, CYMA, 
2HPMA, 3HPMA, and PGA with CVD (P for nonlinear-
ity > 0.05), while a significant non-linear relationship was 
observed between 34MHA, AMCC, ATCA, DHBMA, 
MHBMA3, HPMMA and CVD (P for nonlinearity were 
0.0019, 0.0001, 0.0358, 0.0288, 0.0010, 0.0100).

We furthermore explored the possible relationships of 
ln (mVOCs) concentration with CVD according to sub-
groups (Figure S4). When subgroup analyzes were per-
formed according to gender stratification, CYMA was 
still found to be significantly associated with CVD (men: 
1.214(1.060,1.390), P = 0.006. women: 1.147(1.001,1.314), 
P = 0.048), in addition to sex-specific differential results 
for ATCA, CEMA, 2HPMA, and 3HPMA, but unfortu-
nately these association disappeared after FDR correc-
tion. Among current smokers, 34MHA, AMCC, CEMA, 
CYMA, 3HPMA, MA, MHBMA3, and HPMMA was 

Fig. 1  Adjusted odds ratios for associations between individual mVOCs and the risk of CVD. Model 1: unadjusted. Model 2: adjusted for age, gender, race, 
education, PIR, BMI, drinking status, smoking status, activity, and urine creatinine. Abbreviations: VOCs, volatile organic compounds; CVD, cardiovascular 
disease; Ln-, natural log-transformed; OR, odd ratio; CI, confidence interval; q value, false discovery rate (FDR) - corrected P value. *q < 0.05

 



Page 6 of 10Cao et al. BMC Public Health         (2024) 24:2928 

associated with an increased risk of CVD even after 
strict FDR correction (all q < 0.05). In addition, statisti-
cal interaction of smoking status groups was observed 
in the association of AMCC (P interaction = 0.022) and 
HPMMA (P interaction = 0.041) with CVD.

Multiple VOC co-exposure and CVD risk
As depicted in Fig.  2, WQS regression models were 
employed to examine the association of mVOCs mixtures 
with CVD. The CVD risk was also significantly elevated 
with increasing quartiles of the WQS index (OR: 1.29, 
95% CI: 1.01, 1.66), and the weight of the WQS index 
was dominated by DHBMA (0.246) and 3HPMA (0.244), 
followed by MA (0.140), CEMA (0.132) and 2HPMA 
(0.073). Further subgroup analyses using WQS to repre-
sent mixed exposures to VOCs showed almost no signifi-
cant differences (Table S3).

AENET was performed to screen for mVOCs that were 
more relevant to CVD risk. Results show that 8 (2MHA, 
ATCA, BPMA, CEMA, DHBMA, 2HPMA, 3HPMA, 

PGA) of 16 urinary concentrations of mVOCs were asso-
ciated with CVD. The β coefficients of CEMA, DHBMA, 
2HPMA, 3HPMA, and PGA were positive, while the 
other three mVOCs (2MHA, ATCA, and BPMA) were 
negative. Afterward, the remaining variables of inter-
est after screening were used to construct ERS to assess 
the impact of mixtures of mVOCs on CVD and to incor-
porate multivariate-adjusted logistic regression models 
(Table 2). The results showed that a per-1 unit increase in 
ERS was related to the elevated risk of CVD (OR = 1.538, 
95%CI: 1.255, 1.884). Higher ERS quartiles increased 
CVD risk compared to the Q1 group reference, with ORs 
and 95% CIs of 1.681 (1.032, 2.739), 2.565 (1.507, 4.365) 
for Q3 and Q4 respectively. Again, the results of the trend 
test remain consistent with the above (P-trend < 0.001).

Mediating role of BA
As shown in Table 2, three markers of BA were found to 
be significantly and positively associated with the risk of 
CVD (P < 0.05) with OR (95%CI) of 1.028 (1.018, 1.038), 

Table 2  Associations between mixed mVOCs levels (ERS), BA, OBS, and CVD
Continuous Q1 Q2 Q3 Q4 P-trend

ERS 1.538 (1.255, 1.884) Ref 1.074 (0.718, 1.607) 1.681 (1.032, 2.739) 2.565 (1.507, 4.365) < 0.001
KDM 1.028 (1.018, 1.038) Ref 2.251 (1.052, 4.817) 4.226 (2.346, 7.612) 9.177 (4.796, 17.558) < 0.001
KDMAccel 1.002 (0.991, 1.014) Ref 0.630 (0.331, 1.198) 0.610 (0.296, 1.260) 0.921 (0.433, 1.960) 0.836
PA 1.077 (1.058, 1.096) Ref 3.002 (0.925, 9.744) 11.040 (3.443, 9.744) 30.891 (1.044, 91.404) < 0.001
PAAccel 1.090 (1.058, 1.124) Ref 1.485 (0.744, 2.966) 2.613 (1.441, 4.739) 4.736 (2.523, 8.889) < 0.001
Bolded data meant with a P < 0.05

Abbreviations: ERS, Environmental Risk Scores; BA, biological aging; Q, quartile; Ref, reference; KDM, Klemera–Doubal Method; PA, Phenotypic Age; CVD, 
cardiovascular disease

The model was adjusted for age, gender, race, education, PIR, BMI, drinking, smoking status, activity, and urine creatine. Age was excluded from adjustment in the 
KDM and PA analyses

Fig. 2  The WQS regression estimated weights of each of the selected mVOCs that were more relevant to CVD risk. The model was adjusted for age, gen-
der, race, education, PIR, BMI, drinking, smoking status, activity, and urine creatinine. Abbreviations: mVOCs, metabolites of volatile organic compounds; 
WQS, Weighted Quantile Sum; CVD, cardiovascular disease; Ln-, natural log-transformed
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1.077 (1.058, 1.096), and 1.090 (1.058, 1.124), respec-
tively. And the generalized linear model results showed 
that the mixture of mVOCs (represented by ERS) was 
also significantly related to KDM, PA, and PAAccel in 
Table  3 (P < 0.05). And the trend test likewise obtained 
similar results (all the P-trend < 0.05). Figure  3 presents 
the mediating effect of BA on the association of the effect 
of mVOCs mixture with CVD. In the mediation analysis, 
the proportion of ERS on increased CVD risk mediated 
by KDM (indirect effect: 0.081) was 11.32%, PA (indirect 
effect: 0.248) was 34.34%, and PAAccel (indirect effect: 
0.572) was 7.92%.

Sensitivity analyses
When the WQS index was used to represent the level of 
mixed exposure to VOCs for the mediation analysis, as 
shown in Table S4, the results of the mediation showed 
that the four indicators of the BA exerted a partial medi-
ation effect, with mediation ratios of 15.87%, 1.89%, 
43.33%, and 18.39%, respectively.

Discussion
Our study used a variety of statistical strategies to evalu-
ate the effects of individual and mixed VOC exposure on 
CVD and to discover factors in mixtures that contrib-
uted significantly to outcomes. The main findings are 
described as below: (1) When assessing the effect of indi-
vidual VOCs on CVD, it was found that several mVOCs 
significantly increased the CVD risk. (2) Mixed exposure 
modeling showed that VOCs mixtures can significantly 
increase CVD risk, with DHBMA accounting for the 
main contribution. (3) BA played mediating roles in the 
relationship between co-exposure to VOCs and CVD 
correlation.

It was shown that CYMA was positively associated 
with CVD, with the corresponding parent compound 
was acrylonitrile. Notably, CEMA and 3HPMA positively 
affected CVD by the P < 0.05 criterion as well. Evalua-
tion of the mixed exposure effects of VOCs yielded simi-
lar conclusions that VOCs can increase the risk of CVD 
in humans and are more significant at high levels. The 
mixed effect was dominated by DHBMA, 3HPMA, MA, 
CEMA, and 2HPMA.

Table 3  Regression coefficients (95% CI) in BA associated with mixed mVOCs levels (ERS)
Continuous Q1 Q2 Q3 Q4 P-trend

KDM 3.028 (1.331, 4.724) Ref 0.910 (-2.793, 4.613) 0.868 (-3.153, 4.889) 6.234 (1.639, 10.829) 0.016
KDMAccel -0.133 (-1.436, 1.171) Ref 1.113 (-1.862, 4.089) -0.529 (-3.611, 2.553) -0.730 (-3.989, 2.529) 0.414
PA 3.885 (2.453, 5.316) Ref 0.142 (-2.774, 3.059) 1.891 (-1.054, 4.837) 8.263 (4.964, 11.563) < 0.001
PAAccel 0.664 (0.148, 1.179) Ref 0.354 (-0.671, 1.379) 0.409 (-0.492, 1.310) 1.241 (0.069, 2.412) 0.037
Bolded data meant with a P < 0.05

Abbreviations: CI, confidence interval; BA, biological aging; ERS, Environmental Risk Scores; Q, quartile; Ref, reference; KDM, Klemera–Doubal Method; PA, 
Phenotypic Age

The model was adjusted for age, gender, race, education, PIR, BMI, drinking, smoking status, activity, and urine creatine. Age was excluded from adjustment in the 
KDM and PA analyses

Fig. 3  Mediation analyses on the association between VOCs exposure and CVD risk. The model was adjusted for age, gender, race, education, PIR, BMI, 
drinking, smoking status, activity, and urine creatine. Age was excluded from adjustment in the KDM and PA analyses. Abbreviations: ERS, Environmental 
Risk Scores; KDM, Klemera–Doubal Method; PA, Phenotypic Age; TE, total effect; DE, direct effect; IE, indirect effect; CVD, cardiovascular disease
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Previous cross-sectional studies have shown that 
exposure to VOCs (ethylbenzene/styrene, benzene, 
xylene, and 1,3-butadiene) exacerbates the risk of CVD 
by depleting circulating angiogenic cells in a study with 
participants aged 25–70 years [16, 29]. Exposure to eth-
ylene oxide has been associated with angina pectoris, 
heart attack, and other CVDs in a large, representa-
tive American population, and may also induce CVD 
through inflammatory responses and abnormalities in 
fatty acid metabolism [30]. Experimental evidence dem-
onstrates that exposure to acrolein affects endothelial 
function [31, 32]. These are consistent with our findings 
on the relationship between VOCs and CVD. More-
over, in our study, an association of acrolein, 1,3-buta-
diene, and propylene oxide with CVD was found [33]. 
To our knowledge, although there is no direct evidence 
that acrylonitrile is associated with CVD risk, it has been 
shown in animal studies to induce oxidative stress by 
decreasing glutathione levels and superoxide dismutase 
activity [34]. Acrylonitrile was significantly associated 
with elevated 8-OHdG levels, providing evidence that 
acrylonitrile may increase the risk of CVD [35]. Conse-
quently, although there was no direct evidence that sev-
eral VOCs are associated with CVD, they are associated 
with oxidative stress and are capable of inducing vascular 
dysfunction, making it highly likely that they increase the 
risk of CVD [15, 36].

We found that senescence has a mediating role in 
increasing CVD risk from VOCs exposure. Evidence for 
this can be found in the previous literatures. One study 
reported that environmental exposures may lead to alter-
ations in gene regulation through altered DNA meth-
ylation and histone modifications and promote genetic 
changes associated with aging [37]. Exposure to a mix-
ture of airborne chemicals, such as VOCs and polycyclic 
aromatic hydrocarbons (PAHs), can significantly increase 
the acceleration of epigenetic aging biomarkers [38]. 
Dichlorobenzene (a volatile organic compound) is one 
of the main factors in the positive correlation between 
co-exposure to multiple chemical pollutants and accel-
eration of DNA mPhenoage [19]. Moreover, several stud-
ies have shown that exposure to VOCs can significantly 
increase oxidative stress biomarkers, both at the animal 
and population levels [31, 39, 40]. Animal studies have 
shown that chronic inhalation of VOCs at low concentra-
tions can cause significant effects on oxidative stress indi-
ces in mice [41]. According to previous studies, oxidative 
stress and inflammation are important mechanisms that 
contribute to aging and CVD [42].

The WQS regression method positively associated the 
mVOC mixing index and CVD. Among the VOCs asso-
ciated with CVD, DHBMA, 3HPMA, MA, CEMA, and 
2HPMA were the most significant contributors to the 
elevated risk of CVD. The result was generally consistent 

with AENET. A recent population-based study found that 
DHBMA and 3HPMA were associated with endothelial 
dysfunction in non-smokers by measuring the reactive 
congestion index [15]. And endothelial cell dysfunction 
is thought to be the initiating factor in several CVDs. 
Furthermore, the ERS calculated in this study similarly 
demonstrated that exposure to VOCs can elevate the risk 
of CVD, providing a new basis for determining the com-
bined hazard effect of VOCs.

Subgroup analyses revealed that smoking status influ-
enced the effect of VOCs on CVD. This association was 
even more pronounced among current smokers, which is 
easily explained by the fact that one of the main sources 
of VOCs is smoke from burning tobacco. The low detec-
tion of certain VOCs in non-smokers also contributes to 
this. Common sources of exposure to 1,3-butadiene are 
associated with products of incomplete fuel combustion 
and cigarette smoke, and a review suggests that both epi-
demiological and experimental evidence support a role 
for 1,3-butadiene in the development of atherosclerosis 
and an increased risk of coronary heart disease mortality 
[43]. The Louisville Healthy Heart Study also discovered 
that urinary 3HPMA’s ability to reduce the abundance of 
specific circulating angiogenic cell sub-populations was 
associated with an elevated risk of CVD [36].

Several strengths of this study deserve mention. To our 
knowledge, the present study is the first to explore the 
associations of the mVOC mixture index, which repre-
sents the co-exposure level of VOCs, with CVD. Con-
sidering that populations are often exposed to multiple 
VOCs simultaneously; it is more valuable to explore the 
public health implications of the combined exposure 
effects of multiple VOCs. Second, the construction of 
ERS using AENET takes into account the complex rela-
tionships between individual mVOCs of mixtures and 
further explores the relationship between mVOC mix-
tures and CVD, providing a potential causal relationship. 
ERS can also be used as a predictive model to assess risk 
prediction for specific health endpoints in future stud-
ies. Additionally, we identified mediators in the pathway 
of increased CVD risk due to exposure to VOCs, namely 
BA. Finally, our study sample size was relatively large, 
including 4,592 adults Americans. It makes the conclu-
sions can be generalized to other American adults.

Nevertheless, there are some limitations in the pres-
ent study. Firstly, the current research may be unable to 
prove a causal relationship due to the cross-sectional 
design. Secondly, misclassification of exposures can 
occur due to the several hours half-life of urine mVOCs 
and single point samples. Furthermore, the analysis was 
adjusted for a range of variables, but the results may be 
affected by residual confounding factors. In addition, the 
accuracy of using several urinary mVOCs to indicate rel-
ative VOC exposure needs further clarification as many 
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VOCs’ in vivo metabolic mechanisms are not sufficiently 
detailed. Overall, more prospective studies and relevant 
experimental studies should be conducted to substantiate 
the findings of this study.

Conclusions
The present study discovered that both individual and 
multiple VOC co-exposures can elevate the CVD risk in 
American adults. Urinary metabolites of 1,3-butadiene 
contributed the most to the positive effect of the mix-
ture on CVD. In addition, the association between VOCs 
exposure and CVD is partly mediated by BA. However, 
more longitudinal studies and animal experiments are 
required to verify our findings and clarify the underlying 
mechanism.
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