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SYSTEMATIC REVIEW

Glycemic Variability As a Prognostic Factor  
for Mortality in Patients With Critical Illness:  
A Systematic Review and Meta-Analysis
OBJECTIVES: To perform a systematic review and meta-analysis to evaluate the 
association of various measures of glycemic variability, including time-domain and 
complexity-domain, with short-term mortality in patients with critical illness.

DATA SOURCES: We searched Embase Classic +, MEDLINE, and the Cochrane 
Database of Systematic Reviews from inception to November 3, 2023.

STUDY SELECTION: We included English language studies that assessed met-
rics of glycemic variation or complexity and short-term mortality in patients admit-
ted to the ICU.

DATA EXTRACTION: Two authors performed independent data abstraction 
and risk-of-bias assessments. We used a random-effects model to pool binary 
and continuous data and summarized estimates of effect using odds ratios and 
mean difference. We used the Quality in Prognosis Studies tool to assess risk 
of bias and the Grading of Recommendations, Assessment, Development and 
Evaluations to assess certainty of pooled estimates.

DATA SYNTHESIS: We included 41 studies (n = 162,259). We demonstrate 
that increased sd, coefficient of variance, glycemic lability index, and decreased 
time in range are probably associated with increased mortality in critically ill 
patients (moderate certainty) and that increased mean absolute glucose, mean 
amplitude of glycemic excursion, and detrended fluctuation analysis may be asso-
ciated with increased mortality (low certainty).

CONCLUSIONS: We found a consistent association between increased meas-
ures of glycemic variability and higher short-term mortality in patient with critical 
illness. Further research should focus on standardized measurements of glycemic 
variation and complexity, along with their utility as therapeutic targets and prog-
nostic markers.

KEYWORDS: critical illness; glycemic variability; prognostication

Glucose control has long been an area of interest in the management 
of critically ill patients admitted to the ICU. The complex inter-
play between stress, inflammation, and the hormonal milieu often 

leads to dysregulation of glucose homeostasis, resulting in hyperglycemia 
(1–3). Conventionally, clinical decisions are made based on point-in-time 
estimates of absolute glucose values. However, quantifying patterns of var-
iability across time intervals offers novel and complementary information, 
which may enrich both understanding and management of glucose regula-
tion. Accumulating evidence has demonstrated that the degree of glycemic 
variability (GV), which refers to fluctuations in blood glucose (BG) levels 
over time, is associated with patient outcomes in the ICU (1–3). Emerging 
data suggests that high GV may be independently associated with increased 
mortality and morbidity in critically ill patients, even after adjusting for 
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mean glucose levels and the presence of diabetes  
(4, 5).

While the exact mechanisms linking GV to poor 
outcomes in the ICU remain incompletely under-
stood, proposed explanations include increased 
oxidative stress, endothelial dysfunction, and acti-
vation of pro-inflammatory pathways, which could 
exacerbate critical illness (6). It is also possible that 
GV simply reflects underlying illness severity and 
is a marker of poor prognosis (7). The pathophys-
iology and the impact of GV remain an active do-
main of research. Despite the potential importance 
of GV as a prognostic factor for outcomes in criti-
cally ill patients, there is considerable heterogeneity 
in the methods used to measure and define GV. This 
heterogeneity has made it challenging to draw con-
clusions from individual studies and highlights the 
need for a systematic review, as well as a standard-
ized approach to assessing GV.

The objective of this study was to perform  
a systematic review and meta-analysis summariz-
ing the prognostic association of various measures 
of GV and short-term mortality in critically ill 
patients.

METHODS

Protocol and Registration

We used a methodology consistent with pre-
vious systematic review and meta-analysis studies 
addressing prognostic factors (8–10). We conducted 
the review in accordance with the recommenda-
tions of the PROGnosis RESearch Strategy group, 
the CHecklist for critical Appraisal and data extrac-
tion for systematic Reviews of prediction Modelling 
Studies, and prognostic factor meta-analyses guide-
lines (11–16). We registered the study protocol with 
Open Science Framework (osf.io/w9sd4) in April 
2023.

Glycemic Variability Definition

We define measures of GV broadly as any metric that 
characterizes glucose variation from time-series data 
measured over an interval-in-time. Further, we sub-
divide GV into: 1) time-domain glycemic variation 
metrics, which include measures of sd, coefficient of 
variance (CV), or proportion of values within target 
range and 2) complexity-domain measurements re-
flecting glycemic complexity, which quantify the degree 
of information (e.g., entropy or information metrics) 
or multiscale internal correlations (e.g., detrended 
fluctuation analysis [DFA]) contained within the time 
series. Complexity metrics generally require a larger 
data set for reliable assessment; however, as all metrics 
are derived from a time-series over an interval of time, 
the total number of glucose measurements (relating 
to the frequency and duration of measurement) may 
alter values and the potential domains of GV analysis 
performed.

Search Strategy

We devised a comprehensive search strategy that 
encompassed Embase Classic + Embase, MEDLINE, 
and Cochrane Central Register of Controlled Trials 
databases (Supplemental Fig. 1, http://links.lww.com/
CCX/B288), which were searched from inception until 
November 3, 2023. We included English language 
studies with no constraints based on quality, date, or 
publication status. We also performed a supplemental 
search of Google Scholar and examined references of 
all included studies.

 
KEY POINTS

Question: What is the association between var-
ious metrics of glycemic variability and short-term 
mortality in patients with critical illness?

Findings: Increased sd, coefficient of variance, 
glycemic lability index, and decreased time in 
range are probably associated with mortality in 
critically ill patients. Increased mean absolute 
glucose and mean amplitude of glycemic excur-
sion may be associated with mortality critically ill 
patients. Increased detrended fluctuation anal-
ysis, which reflects decreased complexity, may 
be associated with mortality in critically ill patients. 
Additional metrics of glycemic complexity should 
be explored.

Meaning: We found a consistent association be-
tween all metrics of glycemic variability and short-
term mortality in patient with critical illness.

http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
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Study Selection

We included retrospective and prospective observational 
studies, as well as randomized controlled trials, which sat-
isfied the following criteria: 1) adult patients (≥ 18 yr); 2) 
greater than or equal to 80% of the study population was 
admitted to an ICU; 3) reported a measure of GV (Table 
1); and 4) evaluated an association with short-term mor-
tality. We defined short-term mortality as ICU, in-hospital, 
28-, 30-, or 90-day mortality. Where multiple time periods 
were available, the order of inclusion was in the order pro-
vided. We included studies if they reported adjusted odds 
ratio (aOR) or unadjusted odds ratio (uOR) assessing GV 
metrics associated with short-term mortality or reported 
data required to calculate mean difference or odds ratios. 
We attempted to contact the authors when data were miss-
ing. We excluded studies solely evaluating cardiac surgery 
patients as many postoperative cardiac surgery patients 

receive routine, uncomplicated postoperative care, and 
therefore, this population may have a different mortality 
relationship with GV. Review articles, case reports, and 
case series were also excluded.

Using Covidence software (Melbourne, VIC, 
Australia), two authors (B.N.H., J.G.) independently 
screened candidate citations in two stages. In the first 
stage, we evaluated the titles and abstracts of studies 
identified through the search, and any study deemed 
potentially eligible by either reviewer using liberal cri-
teria underwent full-text review in the second stage. 
Any disagreements during full text review were re-
solved through discussion.

Data Abstraction and Quality Assessment

We abstracted data from each included study inde-
pendently and in duplicate using a predesigned data 

TABLE 1.
Definitions and Their Relationships of Terms Associated With Glycemic Variability

Metric Definition

sd A statistical measure of the dispersion or variation in a set of values around a mean blood glucose level. A higher 
sd indicates greater glycemic variability

CV The ratio of the sd to the mean glucose level, expressed as a percentage. It standardizes the degree of variability 
relative to the mean, allowing for comparison across different mean glucose levels. A higher CV indicates 
increased glycemic variability

GLI A measure that quantifies the rate of change of blood glucose over time by summing the squares of the differ-
ence between successive blood glucose measurements, reflecting rapid fluctuations in glucose levels. A 
higher GLI value signifies more rapid and frequent fluctuations in glucose levels, indicating higher glycemic 
variability

MAGE A quantification of the major swings in glucose levels, both upward and downward by calculating the mean of 
the differences between consecutive peaks and nadirs (provided that the differences are greater than one sd 
from the mean glucose). A larger MAGE value indicates greater excursions or swings in glucose levels, thus 
higher glycemic variability

MAG A measure of glucose dynamics that sums all absolute changes between sequential glucose measures normal-
ized to the time interval of interest. While it is not strictly a measure of variation, it is a measure of fluctuation 
derived from time series data. A higher MAG is associated with higher glycemic variability

TIR The percentage of time that a patient’s blood glucose levels are within a target range. While not a direct 
measure of variability, it can describe overall glucose control and deviations from normal. Lower TIR can occur 
with both high- and low-glucose variability. High TIR is generally desirable and indicates glucose levels are 
well-controlled within the target range, but it does not specifically reflect glycemic variability

DFA A statistical method used to detect correlations in time series data. In glucose monitoring, it measures the 
self-similarity of glucose fluctuations over time and can be used to detect patterns. A higher DFA value indi-
cates more complex and less self-similar glucose fluctuations (i.e., higher glycemic variability)

JkApEn A measure of the complexity and irregularity of fluctuations in time-series data, which quantifies the 
unpredictability of glucose fluctuations. A higher JkApEn value indicates more irregularity and unpredictability 
in glucose levels, representing higher glycemic variability

CV = coefficient of variance, DFA = detrended fluctuation analysis, GLI = glycemic lability index, JkApEn = jack-knifed approximate 
entropy, MAG = mean absolute glucose, MAGE = mean amplitude of glycemic excursion, TIR = time in range.
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extraction form (Supplemental Table 1, http://links.
lww.com/CCX/B288). We collected study characteris-
tics including author, year, patients, and study charac-
teristics, glucose monitoring protocol details, and GV 
metrics identified in univariate and multivariate analy-
ses and their associated aOR with 95% CIs and adjust-
ment variables, where available (Supplemental Tables 
2–4, http://links.lww.com/CCX/B288). For studies 
that reported multiple measures of effect, we extracted 
all available data.

We evaluated risk of bias for the included stud-
ies independently and in duplicate using the Quality 
in Prognostic Studies tool (17). The tool was used to 
assess the risk of bias and its relevance to the research 
question in six domains, comprising study participa-
tion, study attrition, prognostic factor measurement, 
outcome measurement, adjustment for other prog-
nostic factors, and statistical analysis and reporting. 
We resolved disagreements through discussion and 
third-party adjudication (A.T.). Funnel plots were 
constructed to evaluate for publication bias in analyses 
with at least five included studies.

Data Synthesis

We extracted or computed aOR, uOR, and mean dif-
ference from the available data. Glycemic lability index 
(GLI) measures were converted to conventional units 
of mmol/L/hr/wk. Similarly, we converted mg/dL 
to mmol/L to facilitate meta-analysis. Meta-analysis 
was performed using inverse variance statistics and a  
random-effects model, using Review Manager soft-
ware (Version 5.4; Copenhagen, Denmark). We sep-
arately pooled adjusted (aOR) and unadjusted (uOR) 
analysis. We assessed for statistical heterogeneity (in-
consistency) using the I2 statistic, the chi-square test 
for homogeneity, and visual inspection of the forest 
plots. We performed sensitivity analyses excluding 
studies with periods of data collection greater than 72 
hours and those examining 90-day mortality.

We used the Grading of Recommendations 
Assessment, Development, and Evaluations (GRADE) 
methodology (18) to evaluate the certainty of pooled 
estimates, which were assigned as either high, mod-
erate, low, or very low. Consistent with GRADE guid-
ance for prognostic reviews, we considered pooled 
observational data as high certainty and downgraded if 
we identified problems in any of the GRADE domains 
including risk of bias, indirectness, inconsistency, and 

imprecision (18). Using the guideline development 
tool found at gradepro.org, we developed a GRADE 
evidence profile and used informative statements to 
communicate findings (a high certainty association is 
characterized as “is associated,” moderate certainty as 
“probably associated,” low certainty as “may be associ-
ated, and very low certainty as “uncertain association”) 
(19).

RESULTS

Search Results

We identified 3109 citations (Fig. 1) in the search 
and included 41 eligible studies representing 162,259 
patients in the final analysis (Supplemental Tables 
2–5, http://links.lww.com/CCX/B288). The included 
studies reported sd (n = 25), CV (n = 22), GLI (n = 
7), mean amplitude glycemic excursion (MAGE)  
(n = 5), mean absolute glucose (MAG) (n = 4), time 
in range (TIR) (n = 6), and DFA (n = 2) as metrics of 
GV (Table 2).

Risk of Bias and Quality Assessments

We judged the risk of bias in most included studies to be 
low in the domains of study attrition and outcome meas-
urement. Some studies were judged to be moderate risk 
of bias for prognostic factor measurements for study pro-
tocols where BG sampling frequency was less than four 
times per day. Many studies were judged to be a moderate 
risk of bias for study participants in the setting of selective 
subgroups (i.e., specialized ICU populations). Several 
studies were judged to be at moderate-to-high risk of bias 
in adjustment and statistical reporting because of the un-
adjusted or mean difference data that was extracted for 
the purposes of our study analysis (Supplemental Table 
6, http://links.lww.com/CCX/B288).

sd

Increased sd of BG values as a measure of GV is prob-
ably associated with increased mortality (moderate cer-
tainty) (Supplemental Table 7, http://links.lww.com/
CCX/B288). Pooled mean difference of sd (mmol/L) 
was 0.51 (95% CI, 0.40–0.62) higher in those who died 
(5, 20–37). Pooled aOR of mortality per 1mmol/L glu-
cose increase was 1.17 (95% CI, 1.05–1.30) and uOR 
was 1.03 (95% CI, 1.00–1.06) (20, 24, 32, 33, 38, 39). 
Pooled aOR comparing mortality in fourth vs. first 

http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
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quartile sd was 1.26 (95% CI, 0.94–1.69) and uOR was 
3.60 (95% CI, 2.97–4.38) (40–43) (Supplemental Fig. 
2, http://links.lww.com/CCX/B288).

Coefficient of Variance

Increased CV of BG values as a measure of GV is prob-
ably associated with increased mortality (moderate 

certainty) (Supplemental Table 7, http://links.lww.
com/CCX/B288). Pooled mean difference of CV was 
0.05 (95% CI, 0.04–0.07) higher in those who died 
(20–22, 28–36, 44, 45). Pooled aOR of mortality per 
10% increase CV was 1.34 (95% CI, 1.15–1.57) (20–22, 
28–36, 44, 45). Pooled aOR of mortality comparing 
CV above vs. below 30% was 1.79 (95% CI, 0.96–3.35) 
and uOR was 2.12 (95% CI, 1.77–2.53) (31, 40, 46, 47) 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowsheet summarizing evidence search and study 
selection. GV = glycemic variability.

http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
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(Supplemental Fig. 3, http://links.lww.com/CCX/
B288).

Glycemic Lability Index

Increased GLI as a measure of GV is probably asso-
ciated with increased mortality (moderate certainty) 
(Supplemental Table 7, http://links.lww.com/CCX/
B288). Pooled mean difference of GLI (mmol/L/hr/
wk) was 27.05 (95% CI, 20.67–33.42) higher in those 
who died (21, 25, 26, 35). The aOR of mortality per 
1 mmol/L/hr/wk increase was 2.99 (95% CI, 1.04–
8.60) (33). Pooled aOR comparing mortality in fourth 
vs. first quartile GLI was 5.89 (95% CI, 1.12–30.88) 
and uOR was 4.95 (95% CI, 3.09–7.93) (21, 26, 42) 
(Supplemental Fig. 4, http://links.lww.com/CCX/
B288).

Mean Amplitude of Glycemic Excursion

Increased MAGE of as a measure of GV may be as-
sociated with increased mortality (low certainty) 
(Supplemental Table 7, http://links.lww.com/CCX/
B288). Pooled mean difference of MAGE (mmol/L) was 
0.24 (95% CI, –0.23 to 0.70) higher in those who died 
(21, 25, 28, 37). The aOR of mortality per 1 mmol/L 
increase was 1.04 (95% CI, 1.01–1.08) (28). The aOR 
comparing mortality in fourth vs. first quartile MAGE 
was 1.61 (95% CI, 1.01–2.56) (46) (Supplemental Fig. 
5, http://links.lww.com/CCX/B288).

Mean Absolute Glucose

MAG is a unique measure of glucose dynamics that 
sums all absolute changes between sequential glucose 
measures normalized to the time interval of interest 
(3). While this is not strictly a measure of variation, 
it is a measure of fluctuation derived from time se-
ries data. Increased MAG as a measure of GV may be 
associated with increased mortality (low certainty) 
(Supplemental Table 7, http://links.lww.com/CCX/
B288). The mean difference of MAG (mmol/L/hr) was 
0.06 (95% CI, 0.05–0.07) higher in those who died 
(25). The aOR of mortality per 1 mmol/L/hr increase 
was 1.00 (95% CI, 1.00–1.00) (48). Pooled aOR com-
paring mortality in fourth vs. first quartile MAG was 
2.32 (95% CI, 1.21–4.47) (3, 49) (Supplemental Fig. 6, 
http://links.lww.com/CCX/B288).

Time in Range

The target range for all studies was either between 
3.9 and 10.0 mmol/L or a subset within this range. 
Decreased TIR of BG values as a measure of GV is 
probably associated with increased mortality (mod-
erate certainty) (Supplemental Table 7, http://links.
lww.com/CCX/B288). The mean difference of TIR 
was 5.84 (95% CI, –3.67 to 15.35) higher in those who 
survived (25). The aOR of mortality per 10% increase 
TIR was 0.87 (95% CI, 0.83–0.91) (48). Pooled aOR 
of mortality comparing TIR above vs. below 80% was 
0.59 (95% CI, 0.53–0.65) (3, 49) (Supplemental Fig. 7, 
http://links.lww.com/CCX/B288).

Glycemic Complexity

We identified three studies that reported on two 
distinct metrics of glycemic complexity: DFA (22, 
37) and jack-knifed approximate entropy (JkApEn) 
(39). Analysis of JkApEn suggested that higher en-
tropy was seen in nonsurvivors; however, no other 
studies have evaluated entropy of glucose varia-
bility. Two studies of glycemic DFA were included 
in the meta-analysis. Increased DFA of BG values, as 
measured with at least 48 hours of continuous glu-
cose monitoring (CGM) data (Medtronic MiniMed, 
Northridge, CA), may be associated with increased 
mortality based on meta-analysis of mean differ-
ence (22, 37) and odds ratio of mortality per 0.1 
increase in DFA (37) (low certainty) (Supplemental 
Table 7, http://links.lww.com/CCX/B288). Pooled 
mean difference of DFA was 0.10 (95% CI, 0.06–
0.13) higher in those who died, where higher DFA 
is associated with lower complexity (for DFA above 
1.0). The aOR of mortality per 0.1 increase in DFA 
was 2.53 (95% CI, 1.16–5.52) (Supplemental Fig. 8, 
http://links.lww.com/CCX/B288).

Funnel plots were used to evaluate for the pres-
ence of publication bias for analyses with at least 
five included studies (Supplemental Fig. 9, http://
links.lww.com/CCX/B288). Sensitivity analysis was 
conducted for all metrics where studies with periods 
of data collection greater than 72 hours or 90-day 
mortality were excluded (Supplemental Fig. 10, 
http://links.lww.com/CCX/B288). The magnitude 
and CI of the estimate was impacted, but not the 
direction of effect.

http://links.lww.com/CCX/B288
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http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
http://links.lww.com/CCX/B288
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DISCUSSION

GV studies have focused on glycemic variation met-
rics, which refer to the degree of dispersion from a set 
value or mean within a dataset of BG measurements 
(50). However, many variation metrics have been used 
including amplitude-based, such as sd, CV, GLI, and 
MAGE, and time-based metrics, including MAG and 
TIR (51). We believe this is the first systematic review 
and meta-analysis examining GV and the relationship 
to mortality in the generalized critical care population. 
The pragmatic approach incorporated a wide variety 
of protocols for BG point-of-care testing (POCT) sam-
pling thereby allowing for an expansive and inclusive 
analysis. Despite some degree of unavoidable hetero-
geneity, using GRADE methodology we demonstrate a 
potential for GV as an independent predictor of short-
term mortality in critically ill patients and evaluate the 
relative importance of various metrics of GV.

The presence of GV is likely due to the complex in-
terplay of hormonal regulation, counter-regulatory 
responses, and external factors (52). In the critical care 
environment, it signifies a disruption in the usual tight 
homeostatic control of BG levels and is likely associ-
ated with an exacerbated stress response, underlying 
infections, or instability of the patient’s condition (7, 
53). Given the consistent independent association of 
GV to mortality after adjusting for various severity of 
illness scores, further consideration should be given 
to the incorporation of GV into existing prognostica-
tion tools for critically ill patients. Adding this unique 
physiologic stress dimension could improve mor-
tality prediction score accuracy and utility in research 
or clinical settings. In fact, the addition of hypergly-
cemia, hypoglycemia, and glucose sd to the Simplified 
Acute Physiology Score II score has been shown to 
improve mortality estimates (54); however, investiga-
tion into the optimal GV metrics would be of interest. 
Furthermore, monitoring GV fluctuations could pro-
vide early clues about changes in a patient’s physio-
logic condition, both to anticipate recovery as well as 
potential deterioration, aiding in timely therapeutic 
adjustments. However, more research is needed to 
substantiate these potential roles, particularly to better 
understand the likely impact of enteral and parenteral 
feeding and exogenous insulin administration.

It has been suggested that excessive glucose fluctua-
tions may lead to increased oxidative stress, hormonal 

changes, endothelial dysfunction, and activation of 
pro-inflammatory pathways (1, 55–59), thereby driv-
ing an increased risk of complications and mortality. 
An important question, therefore, remains whether 
GV is simply a prognostic measure or whether it is a 
therapeutic target that clinicians should aim to control. 
While the current evidence supports the use of GV as a 
predictor of mortality (3, 7, 53), the therapeutic benefit 
of controlling GV is not clear. If efforts to control GV 
lead to better outcomes in critically ill patients, then 
interventions aimed at reducing GV could become an 
integral part of patient care.

While this study demonstrates a consistent associa-
tion between GV and mortality through multiple met-
rics, there are some limitations. First, it is important to 
note metric-specific limitations. For example, sd does 
not reflect fluctuations in successive values and two 
patient populations could have significantly different 
patterns of variation but the same mean and sd. CV is 
inherently influenced by the mean glucose level, which 
may overemphasize or underemphasize GV with 
lower or higher mean glucose levels, respectively (60). 
MAGE only recognizes fluctuations greater than 1 sd 
and is therefore susceptible to the effects of outliers 
and may lack sensitivity for detecting smaller changes 
in glucose (61). Furthermore, while TIR is regarded as 
a marker of GV, there are limitations to this metric. For 
example, a low TIR (i.e., increased variability) could 
be represented by stable hyperglycemia where other 
metrics of variability suggest low GV. Such limitations 
necessitate careful interpretation of GV metrics and 
underscore the need for further refinement and stand-
ardization. Second, the heterogeneity in the protocols 
for glucose measurement period and frequency across 
studies may limit the accuracy of the effect size for a 
given GV metric. This heterogeneity may also explain 
minor inconsistencies for the magnitude of effect be-
tween various statistics for a given metrics. However, 
the largely uniform direction of effect is reassuring, 
and these limitations in statistical heterogeneity were 
accounted for in the GRADE analysis. Standardization 
of protocols for POCT, duration of sampling, and 
method of sampling might benefit future studies. 
Nevertheless, the findings indicate a consistent associ-
ation between increased glycemic variation and higher 
mortality rates in critically ill patients.

CGM is an emerging technology that could offer 
high-resolution glucose data and be collected in 
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hospital through a less burdensome method for 
both patients and healthcare providers (62–64). 
Furthermore, it has been demonstrated to be reliable 
in the critically ill populations, including for those on 
vasopressors and with subcutaneous edema (65, 66). 
Although technically feasible to incorporate CGM 
into ICU management, to date, it remains rarely used. 
CGM systems provide high-resolution glucose data at 
a standardized sampling rate, allowing for enhanced 
variability analysis including complexity analysis of 
glucose time series data (63). Complexity refers to 
the degree of information or multiscale correlations 
within a time series (67). We found that decreased 
complexity, represented by increased DFA, was as-
sociated with mortality in critical illness. This is con-
gruent with all other known analyses of physiologic 
time series (e.g., heart rate variability, respiratory rate 
variability, etc.) consistent with Goldberger’s decom-
plexification theory of critical illness (68). However, 
in contrast, one study measured JkApEn from POCT 
time series data, which suggested that higher entropy 
may be associated with nonsurvivors (39). However, 
shorter time-series analyses of GV may be more re-
liably assessed with sample entropy (69). Still, fur-
ther evaluation of glycemic complexity domains is 
required to understand its association with critical 
illness. To meet the sampling requirements for many 
complexity measures, CGM technology has the poten-
tial to advance our understanding of this domain of 
GV and the impacts on, or associations with, patient 
outcomes. Additionally, it offers potential avenues for 
real-time monitoring to allow for early intervention or 
feedback for tailored interventions aimed at minimiz-
ing GV, thus potentially improving patient care (70).

In conclusion, the current evidence suggests that 
GV is likely associated with mortality in critically ill 
patients across a range of critical care setting based on 
moderate to low certainty evidence and underscores 
the need for further prospective studies. Future re-
search should aim to establish optimal and standard-
ized methods for measuring GV in clinical practice, 
which may include the use of CGM to further explore 
GV including complexity measures. Additionally, a 
better understanding of glucose complexity across 
healthy and critically ill participants, both with and 
without diabetes would be of interest. Further stud-
ies to investigate the therapeutic impact of minimiz-
ing GV compared with the current standard of care for 

glucose control for patients with critical illness may be 
of future interest.
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