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Received: 3 August 2021

Accepted: 19 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; zan.toplak@ffa.uni-lj.si (Ž.T.);
lucija.peterlinmasic@ffa.uni-lj.si (L.P.M.)

2 Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia; franci.merzel@ki.si
3 AG Oncophysiology, Max-Planck Institute for Experimental Medicine, 37075 Göttingen, Germany;

pardo@em.mpg.de
* Correspondence: tihomir.tomasic@ffa.uni-lj.si; Tel.: +386-14769-556

Abstract: The KV10.1 voltage-gated potassium channel is highly expressed in 70% of tumors, and
thus represents a promising target for anticancer drug discovery. However, only a few ligands
are known to inhibit KV10.1, and almost all also inhibit the very similar cardiac hERG channel,
which can lead to undesirable side-effects. In the absence of the structure of the KV10.1–inhibitor
complex, there remains the need for new strategies to identify selective KV10.1 inhibitors and to
understand the binding modes of the known KV10.1 inhibitors. To investigate these binding modes
in the central cavity of KV10.1, a unique approach was used that allows derivation and analysis of
ligand–protein interactions from molecular dynamics trajectories through pharmacophore modeling.
The final molecular dynamics-derived structure-based pharmacophore model for the simulated
KV10.1–ligand complexes describes the necessary pharmacophore features for KV10.1 inhibition
and is highly similar to the previously reported ligand-based hERG pharmacophore model used to
explain the nonselectivity of KV10.1 pore blockers. Moreover, analysis of the molecular dynamics
trajectories revealed disruption of the π–π network of aromatic residues F359, Y464, and F468 of
KV10.1, which has been reported to be important for binding of various ligands for both KV10.1 and
hERG channels. These data indicate that targeting the KV10.1 channel pore is also likely to result
in undesired hERG inhibition, and other potential binding sites should be explored to develop true
KV10.1-selective inhibitors as new anticancer agents.
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1. Introduction

KV10.1 (Eag1) is a voltage-gated potassium channel of the ‘ether-à-go-go’ channel
family. Within this family, the hERG channel (eag-related gene, KV11.1) is known to be
responsible for increased risk of malignant cardiac arrhythmia, which can lead to sudden
cardiac death [1–3]. In contrast, KV10.1 is almost not detectable outside the human central
nervous system, except in many different tumors, where its expression is dysregulated. The
mechanisms by which KV10.1 is involved in cancer progression are not yet fully understood,
although effects such as increased cancer-cell proliferation, migration, angiogenesis, and
resistance to hypoxia have been shown [4,5]. The high expression of KV10.1 in 70% of
various tumors and cancers make this channel a potential cancer marker and target for
anticancer drugs [6].

KV10.1 is a homotetramer of four identical subunits, each of which consists of the
intracellular N-terminal Per-Arnt-Sim (PAS) domain, and the C-terminal cyclic nucleotide-
binding domain and transmembrane portion, which has six α-helical segments (S1–S6).
Segments S1 to S4 form the voltage-sensor domain, which is responsible for translating the
change in membrane potential into the mechanical action of the pore domain (segments S5,
S6) that opens and closes the channel pathway for potassium ions [7]. The cryo-electron
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microscopy (cryo-EM) structures of KV10.1 and hERG have recently been determined in
different conformations. The three-dimensional KV10.1 structure (PDB: 5K7L [7]) is in the
closed state, whereas hERG (PDB: 5VA1 [8]) was defined in the open state. In the open
conformation of both of these channels, potassium ions flow through the central cavity and
then through the so-called selectivity filter. The selectivity filter forms a narrow pathway
that is lined by the carbonyl oxygens of amino acid backbones, and this allows the selective
flow of potassium ions, while it is too narrow for the passage of ligands [7]. Therefore,
known ligands that bind below the selectivity filter either block the ion flow or modulate
the stability of the selectivity filter.

Mutagenesis studies have highlighted the importance of the two aromatic residues
Y464 (Y652 in hERG) and F468 (F656 in hERG) in each KV10.1 subunit in terms of the
binding of various inhibitors. Aromatic residues are important for the formation of π–π
stacking interactions between inhibitors and the channel, and for the cation–π interactions
with the positively charged groups (usually substituted amines) in many KV10.1 and hERG
inhibitors. The cryo-EM structure of hERG revealed four cylindrically shaped hydrophobic
side pockets that extend from the central cavity toward the bottom of the selectivity filter,
with a length of ca. 11 Å and a diameter of 8 Å [8]. The entrances of these pockets in
the cryo-EM structure of KV10.1 are not accessible due to the closure of the pore domain.
On the basis of the high similarity to hERG (sequence similarity and identity of the pore
domains: 63%, 51%, respectively [9,10]), it is reasonable to assume that the pockets are
reachable in the open KV10.1 conformation. A pocket of this size can easily accommodate
the substituted aromatic ring of different ligands. Many in silico studies of inhibitors
binding to KV10.1 and hERG were performed before the cryo-EM structures of the channels
were known, which were therefore based on homology models that were created using
more distantly related potassium channels [11–13]. However, the hydrophobic side pockets
were absent in the homology model structures of KV10.1 and hERG because none of the
channels used as templates had these pockets in their structure. Furthermore, the cryo-EM
structures of KV10.1 and hERG channels show a negative electrostatic potential in the
region directly below the selectivity filter, with many potential hydrogen-bond acceptors
that can form the binding site for positively charged moieties [7,8].

Hydrophobic and positively charged groups are the most important pharmacophore
features of all known three-dimensional (3D) pharmacophore models of the hERG channel
that have been constructed, although no such models have been generated for KV10.1
inhibitors [14–16]. The reason for this is the great interest in blocking the cardiac hERG
channels in drug development, as hERG inhibition is an undesirable side-effect that results
in safety concerns. In addition, the number of known KV10.1 inhibitors is very small, but
a better understanding of KV10.1 inhibition and binding of known ligands might lead
to improved design strategies and the development of new anticancer drugs that act as
KV10.1 inhibitors [17].

In the present study, we combined the use of homology modeling, molecular docking,
molecular dynamics (MD) simulations, and pharmacophore modeling, which have not been
used together before, to study the binding of voltage-gated potassium channel modulators.
The study of the binding of nonselective KV10.1 inhibitors into the channel pore will help us
to reveal the common structural features that are involved in KV10.1 and hERG inhibition,
and to develop improved strategies for the design of selective KV10.1 inhibitors. We used
the open hERG structure to model KV10.1 in the open pore domain state that is required
for inhibitor binding. Next, we combined docking and MD simulations to determine the
binding of ligands to the KV10.1 homology model, followed by the generation of structure-
based pharmacophore models based on the movement of ligands across the MD trajectory.
The dynamic pharmacophore models generated were examined to study the interactions of
the ligands in the binding site below the selectivity filter. The MD pharmacophore models
for different ligands were then merged to build a general structure-based pharmacophore
model for KV10.1 inhibitors. The model was then validated by screening other known
KV10.1 channel inhibitors. Furthermore, the final pharmacophore model was compared
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with models that were previously generated for hERG channel inhibitors [15,18]. Our
new methodology thus incorporates multiple molecular modeling techniques, and it has
allowed us for the first time to create a structure-based pharmacophore model for KV10.1
inhibitors that can be used to rationalize the structure–activity relationships observed, to
identify novel KV10.1 inhibitors by virtual screening, and to design novel ligands that have
anticancer activities through their inhibition of KV10.1.

2. Materials and Methods
2.1. Software

For homology modeling, the T-coffee web server [19] was used for the initial sequence
alignment, and MODELLER 9.21 [20] for the model construction. VERIFY 3D [21], ER-
RAT [22], PROVE [23], and PROCHECK [24] were used for model validation. The initial
docking experiments were performed using Glide in the Schrödinger Drug Discovery Suite
(v2018-1) [25]. MD simulation systems were prepared using the Membrane builder [26]
input generator module of the CHARMM-GUI online server [27]. NAMD (version 2.9) [28]
and CHARMM36 [29] force field were used for the MD simulations. LigandScout 4.4
Expert (Inte:Ligand GmbH., Maria Enzersdorf, Austria [18,30]) was used for analysis of
the ligand interactions in the MD simulation, and for the generation of the pharmacophore
models and the virtual screening for model validation. The library for the pharmacophore
model validation was prepared using the CHEMBL dataset [31] for hERG compounds,
then filtered and processed using the KNIME Analytics Platform [32], with the addition of
OpenBabel [33], RDKit [34], and Inte:Ligand Expert KNIME Extensions nodes [35].

2.2. Homology Modeling

The sequence of human KV10.1 was downloaded from Uniprot [36] (O95259) and
aligned with the sequence of the hERG channel from the PDB structure (5VA1 [8]), using
the Expresso algorithm from the T-Coffee web servers [19]. The sequence was then visually
inspected and further modified to match previously published data [9]. MODELLER
9.21 [20] was used to generate 100 homology models using the hERG channel (PDB 5VA1)
as template. The unresolved loops and side chains were constructed by MODELLER [20],
with modified parameters for the Cα symmetry between all four of the subunits, and
α-helix constraint for portions of the voltage-sensor domain with lower resolution in the
hERG cryo-EM structure, compared to the KV10.1 cryo-EM structure.

2.3. Homology Model Evaluation

Homology model evaluation was performed for the 10 best and 10 worst models
created. They were selected based on the combination of the scoring functions molpdf,
Discrete Optimized Protein Energy (DOPE), and GA341, as computed by MODELLER
9.21 [20]. Geometric errors were calculated using VERIFY 3D [21], ERRAT [22], PROVE [23],
and PROCHECK, which include phi-psi outliers, overall model quality, secondary structure
evaluation, and deviation from standard atomic volumes [24].

2.4. Docking of Compounds

Ligand docking was performed using Schrödinger Drug Discovery Suite (version
2018-3) [25]. The homology model prepared (Figure 1) was used for grid generation in
the Schrödinger Maestro software. The box in Figure 1 that represents a region for a
potential binding site is positioned below the selectivity filter, without defining any further
constraints. Ligands (Table 1) were protonated using OpenBabel (version 2.4.0), with pKa
set to 7.4 [33]. Conformations were generated using the Schrödinger Suite ligand software
LigPrep, with a maximum of 1000 conformations per ligand, and with the other settings set
to their default values. For docking in Schrödinger Suite, the Glide SP protocol was chosen
with the poses per ligand set to 100.
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Figure 1. (A) Best homology model of the transmembrane part of the KV10.1 channel in the open conformation, with only
two opposing subunits shown for better clarity. The subunits are colored by domain: S1, yellow; S2, orange; S3, red; S4,
purple; S5, blue; S6, brown; pore, green; rest of protein not embedded in the membrane, gray. The selectivity filter in the
pore domain is shown as green sticks. (B) Enlarged view from (A) (as indicated) to show the central cavity that is the
binding site for various KV10.1 pore blockers, with only three subunits shown for clarity. The binding site is shown as a
gray surface, with astemizole in blue sticks, oriented into one of the hydrophobic side pockets below the selectivity filter.

Table 1. Structures and inhibitory activities of the KV10.1 inhibitors investigated in this study.

Compound Structure KV10.1 IC50 [µM] Cells and Technique Used in the
Assay
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2.5. Molecular Dynamics Preparation and Simulation

The NAMD [28] simulation package (version 2.9) and the CHARMM36 [29] force field
were used for the MD simulation. The corresponding parameters for the ligands were
derived from geometry-optimized structures using the suite of programs in Gaussian16 [42]
and the PARAMCHEM CGENFF [43,44] website. Three potassium ions were manually
placed in the selectivity filter of the channel at the S0, S2, and S4 binding sites of selectivity
filter with two water molecules in between, as published previously [45]. The ligand–
protein complex was embedded in a 140 × 140 Å phosphatidylcholine (POPC) lipid bilayer,
and solvated with transferable intermolecular potential 3P (TIP3P) water molecules, and
the system was neutralized by setting the 0.15 M KCl solution with Charmm-GUI. Each of
the systems contained about 250,000 atoms, and they were all initially minimized using
the steepest descent method for 500 steps, followed by 1000 steps of the adaptive Newton–
Raphson method; they were then heated and equilibrated at 300 K for 5 ns. The systems
were parameterized using the CHARMM36 force field. Production runs of 100 ns per
system were performed under the isothermal-isobaric (NPT) conditions. Temperature and
pressure were controlled using a Nose-Hoover thermostat and piston [46]. Long-range
electrostatics were calculated using the particle mesh Ewald (PME [47]) method with a
12 Å cut-off, with switching and pair list distances of 10 Å and 16 Å, respectively. All of the
chemical bonds between hydrogen and heavy atoms were held fixed using the SHAKE
algorithm [48], while an integration time step of 2 fs was used.

2.6. Analysis of Molecular Dynamics Simulation

The protein stability was assessed by root mean square fluctuation (RMSF) analysis
per residue using Python library MDAnalysis [49,50]. The protein and ligand were first
aligned to the first frame using VMD [51] root-mean-square deviation (RMSD) Trajectory
Tool, and 5000 uniformly distributed conformations were extracted. The aligned trajectory
was analyzed using Python library MDAnalysis, and the RMSF values for all of the systems
were plotted using Python library Matplotlib. Pairwise analysis was performed instead of
classical RMSD calculations of ligand stability, using Python library MDAnalysis, to better
represent the changes in the ligand RMSD as the simulation progressed, rather than just for
the first conformation at the beginning of the simulation. The ligand from 5000 uniformly
distributed conformations was extracted from the full trajectory, and the analyzed data
were plotted using Python library Matplotlib.

2.7. Pharmacophore Modeling

For the MD trajectory analysis using LigandScout 4.4 Expert, all of the MD trajectories
of the protein–ligand complexes were preprocessed to contain 500 evenly distributed frames
across the entire production run. The MD trajectories were used to generate ensembles of
structure-based pharmacophore models for each complex, to analyze the ligand–protein
interactions. From the last 20 ns of each MD simulation, the four most frequently occurring
pharmacophore models in the MD trajectory were selected, and these were merged to
generate the merged pharmacophore model for each ligand–protein complex. These
merged pharmacophore models for each ligand-protein complex were further merged
into a model that represented the final merged KV10.1 structure-based pharmacophore
model, which describes the important pharmacophore features of all of the simulated
KV10.1 inhibitors. Based on the individual merged structure-based pharmacophore models
and validation of the models by virtual screening, the features of the final merged KV10.1
model were manually adjusted to increase the performance.

2.8. Virtual Library Preparation

Validation of the final merged KV10.1 structure-based pharmacophore model was
performed by screening against two libraries. The first library contained 15 compounds
with known IC50 values for KV10.1 inhibition and a known binding site in the channel pore
(Supporting Information Table S1) [17]. The second library contained compounds (‘decoys’)
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that are not likely to inhibit KV10.1. These decoys were generated using two approaches.
The first set of decoys was generated using the Database of Useful Decoys: Enhanced
(DUDE) decoy online server [52]. For each of the 15 known KV10.1 inhibitors, the DUDE
server generated 50 decoy molecules, which resulted in 750 decoy ligands. Compared
to known inhibitors, the decoys generated had similar 1D physicochemical properties,
but dissimilar 2D topologies. The second decoy set was generated using compounds that
lacked hERG inhibitory activity, as there are no reported inactive compounds for KV10.1
in the literature. Inactive compounds for the hERG channel were selected based on the
high similarity of the binding sites between these two channels. The compounds were
retrieved from the ChEMBL database [31] using Target CHEMBL ID (CHEMBL240) for
hERG using the KNIME Analytics Platform [32]. Compounds with declared IC50 ≥ 100 µM
were selected as inactive. In addition, the selected compounds were filtered to remove
duplicates and protonated (pH 7.4) using the additional OpenBabel [33], RDKit [34] nodes
in the KNIME workflow. The second decoy library contained 448 decoy ligands (Sup-
porting Information Table S2). The active and decoy libraries in the SMILES format were
transformed into multiconformational LigandScout libraries (.ldb) using the algorithms of
LigandScout with default setting “BEST” (maximum number of conformers per molecules,
200; timeout: 600 s; RMS threshold, 0.5; energy window, 15.0; maximum pool size, 4000;
maximum fragment build time, 30 s).

2.9. Virtual Screening

To validate the final merged KV10.1 structure-based pharmacophore model in Ligand-
Scout, virtual screening was performed to refine the model and to select the one that best
discriminated between the active and decoy molecules. The settings used in LigandScout
screening were: scoring function, pharmacophore-fit; screening mode; match all query
features; retrieval mode, stop after first matching conformation; maximum number of
omitted features, 0; check exclusion volumes, true.

3. Results and Discussion

Unfortunately, all of the known KV10.1 inhibitors also inhibit the highly similar cardiac
hERG channel, and therefore these have limited potential for development into anticancer
drugs that act through this novel mechanism of action. With the goal being to develop
selective KV10.1 inhibitors as potential anticancer drugs [53], we investigated their binding
modes in the KV10.1 channel pore using advanced molecular modeling methodologies.
The creation of the common structure-based pharmacophore model for KV10.1 inhibitors
binding to the channel pore allowed us to compare it with the known hERG ligand-based
pharmacophore models and to assess the potential for targeting the KV10.1 channel pore
for the development of KV10.1-selective anticancer agents.

3.1. Homology Modeling of the KV10.1 Open Pore Conformation

As pore blockers bind to the open pore conformation of KV10.1, and the cryo-EM of rat
KV10.1 was solved in the closed pore conformation, we first built a homology model of the
open pore conformation of KV10.1 based on the hERG structure as template (Figure S1 in
Supplementary Materials) [7,8]. The hERG channel was selected based on the 63% similarity
in the pore domain with KV10.1 [9]. The homology model of the open pore conformation of
KV10.1 for further experiments (Figure 1, Figure S1) was selected based on the combination
of the scoring functions (Figure 2) and evaluation of geometric errors calculated using
VERIFY 3D [21], ERRAT [22], PROVE [23], and PROCHECK, which include phi-psi outliers,
overall model quality, secondary structure evaluation, and deviation from standard atomic
volumes (Figure 3). There were only small variations at the beginning and the end of each
subunit, which are of minor importance, as the binding site is not located in that part of the
protein (Figure 2). The only statistically significant difference was in the PROVE calculation
of buried outlier atoms, which was in favor of the best models. The best model for docking
was selected based on the evaluation results and visual inspection. On visual inspection,
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models that had extracellular loops above the selectivity filter or in any other unusual
conformation were removed.
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3.2. Docking of KV10.1 Inhibitors for Binding to the Channel Pore

All of the compounds were docked to the central cavity of the KV10.1 channel of the
homology model of the KV10.1 open pore conformation using Schrödinger’s Glide docking
software. As the pore is symmetric, there are four possible orientations for each ligand in
the putative binding site below the selectivity filter (Figure 1B). The 100 highest-ranked
docking poses per the ligands analyzed and the binding of the ligands to only one of
these four sites was considered in the further analysis. The calculated binding affinities
of the docked ligands (i.e., GlideScore values) were in relatively good agreement with
the experimental data (Table 2). One of the outliers was clofilium, which ranked in the
group of MK-499 and imipramine with an affinity of ~30 µM, although clofilium is one
of the most potent KV10.1 inhibitors. The amines and aromatic rings of the top-ranked
20 docking poses per ligand were analyzed. The location of each amine (colored spheres
in Figure 4A) and aromatic ring (colored spheres in Figure 4B) are visualized in Figure 4.
Almost all of the amines were located in close proximity to S436 of KV10.1 (Figure 4A),
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directly below the entrance to the selectivity filter of the channel, and in the same plane
as the aromatic residue Y464. S436 and Y464 are described in the literature as important
residues for binding and stabilization of the ligands [41,54]. Aromatic rings of studied
ligands were in close proximity to F468 (Figure 4B), making their position suitable for
π-stacking interaction.

Table 2. Scoring function scores of the KV10.1 inhibitors investigated in this study.

Compound GlideScore [kcal/mol]

Astemizole −11.459
Clofilium −9.465

Imipramine −8.995
MK-499 −9.631

Quinidine −7.287
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The binding pose of each ligand for the MD simulation of the homology model of the
KV10.1 open pore conformation was selected from the top 20 ranked poses based on the
Schrödinger GlideScore scoring function score (Figure 5). The binding poses did not differ
significantly from each other, except for clofilium and quinidine (Figure S2), where Glide
scored the horizontally mirrored poses similarly. For clofilium, a pose with an aromatic ring
in the lower part of the central cavity was chosen, which was similar to that reported for
the hERG channel, because of the proximity of the aromatic rings of Y464 and F468, which
have a strong influence on clofilium binding to hERG (Figure 5B) [55,56]. Quinidine was
docked with a quinuclidine moiety (an aliphatic moiety with amine) that pointed either
toward the selectivity filter or in the opposite direction, toward the exit of the central cavity.
The highest scoring pose of quinidine with the quinuclidine moiety below the selectivity
filter was selected for MD simulation (Figure 5E). The selected pose placed the cationic
center below the selectivity filter, where there is negative electrostatic potential that also
correlates with the placement of the cationic centers of other ligands [8].
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Hydrogen bonds are shown as green dashed lines.

3.3. Molecular Dynamics Analysis of Ligand and Protein Stabilities

We examined the stabilities of the KV10.1 structures (as segments S1–S6) in these MD
simulations of the protein–ligand complexes to determine any differences between them.
The RMSF values of the Cα atoms of all of the amino acid residues were calculated to
evaluate the flexibility of each residue (Figure 6). As expected, the parts of the protein that
were not embedded in the lipid bilayer (Figure 6, white areas that represent intracellular
and extracellular loops; Figure 1A) had higher RMSF values due to the greater flexibility
of the amino acids in the water environment than the membrane (Figure 6, colored bars
representing transmembrane segments S1–S6; Figure 1A), which had RMSF values < 2 Å.
In general, there were no important differences in the RMSF values between the protein–
ligand complexes.
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We also analyzed the ligand stabilities using pairwise RMSD analysis performed with
MDAnalysis Python library (Figure 7). Pairwise analysis was used to better understand the
changes in the ligand binding modes during the simulations, as the RMSD values of one
frame can be compared to those of any other frame in the simulation. The binding modes of
all of the simulated ligands in the pore of KV10.1 stabilized after the first 20 ns, as reflected
by the RMSD values of <2 Å. The most stable ligands were clofilium and imipramine,
while astemizole, quinidine, and MK-499 showed small conformational changes, although
without significant change in the binding mode after the first 20 ns of the production run.
The changes in ligand conformation can be seen in Figure 7 as horizontal and vertical
yellow bands. For example, quinidine has shifted significantly in the first 8 ns of the
simulation as it approaches the selectivity filter, indicated by the yellow color representing
high RMSD values (Figure 7E). Smaller shifts of the ligand are shown as less noticeable
color changes, as in the case of clofilium, especially after 30 ns of the simulation (Figure 7B).

3.4. Analysis of Binding Interactions of KV10.1 Inhibitors in the Molecular Dynamics Simulations

LigandScout [30] pharmacophore feature occurrence was used to analyze the inter-
actions between the ligands and the KV10.1 channel (Table 3, Figure S3). A set of 500
structure-based pharmacophore models per KV10.1–ligand complex was generated using
the MD analysis tools in LigandScout. Figure S3 shows the plots of the unique and most
frequently appearing models, the total number of interaction features they contain (x-axis),
and the frequency (number of appearances; y-axis) at which they occurred during the last
20 ns of the simulation. Astemizole, clofilium, and MK-499 extended into the eag-family
specific hydrophobic side pockets below the selectivity filter (Figure 1B and Figure S4).
Residues S433, T435, S436, V437, and A453 have been reported to have important ef-
fects on the binding of various ligands and are located in the hydrophobic side pockets.
In the KV10.1 channel, the A453S mutation reduces the inhibitory activity of clofilium,
MK-499, and quinidine [41]. Tertiary amine analogs of clofilium showed approximately
2-fold greater inhibition of hERG when the S641A mutation (A453 in KV10.1) was present,
which is located downstream of the selectivity filter and upstream of the hydrophobic side
pocket [56]. In the simulation of KV10.1 here, A453 is too far from the binding position
of clofilium, MK-499, and quinidine to come into contact with them during the simula-
tion. Therefore, it is likely that the structural changes in the A453S mutant involve the
neighboring residues, and possibly alter the hydrophobic side pockets of KV10.1 (Figure 8).
Interestingly, A453S has a smaller effect on the inhibition of KV10.1 by quinidine (two-fold
increase in IC50) than on that of clofilium (eight-fold increase in IC50). These experimental
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observations are consistent with our docking experiments and the MD simulations, where
quinidine does not bind in the hydrophobic side pockets of KV10.1. However, only a
three-fold increase in IC50 was recorded for MK-499, which in the present simulation enters
the hydrophobic side pocket to a similar extent as clofilium [41]. There were no interactions
with A453 and the anisole ring of astemizole, which binds similarly to the benzonitril
moiety of MK-499. Although astemizole is a well-studied KV10.1 and hERG inhibitor,
mutational studies with residues deeper in the hydrophobic side pockets are still lacking.
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Figure 7. Ligand stabilities in MD simulations analyzed using pairwise RMSD calculations, for
astemizole (A), clofilium (B), imipramine (C), MK-499 (D), and quinidine (E). Large color differences
next to the diagonal line indicate major conformational changes compared to the neighboring frames.
A representative example can be seen for (E), where quinidine was closer to the selectivity filter, and
the quinolone moiety was rotated to form π–π interactions with F468 (see main text).
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Table 3. Relative occurrences (%) of interactions with different residues in the KV10.1 binding site during the MD simulations
for astemizole, clofilium, imipramine, MK-499, and quinidine (as indicated). Residues are labeled as A–D according to the
subunits of KV10.1. The cells are colored according to the pharmacophore features: blue, aromatic; yellow, hydrophobic;
red, hydrogen bond acceptor; green, hydrogen bond donor; cyan, positive ionizable; pink, halogen bond donor.

Astemizole
A465_A A465_B A465_C S461_C T435_D T472_A T472_C Y464_A Y464_B Y464_C V437_D

50 98 87 51 92 62 98 33 88 39 24 95 93 19 93

Clofilium
A465_A A465_C Y464_C V437_D F468_B F468_C T472_D

94 97 28 93 90 84 93 99

Imipramine
A465_B A465_D F468_D S436_B T472_C Y464_A Y464_B Y464_D

65 99 98 32 95 96 75 14 73 97 50

MK-499
S461_A T472_B Y464_B Y464_C Y464_D V437_D

32 43 96 52 55 100 66 15 61 80

Quinidine
A465_C A465_D F468_A Y464_A Y464_B Y464_D

82 92 99 79 93 87 51 94
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Figure 8. Stable binding poses within the homology model of the KV10.1 open pore conformation for the ligands astemizole
((A); blue sticks), clofilium ((B); orange sticks), imipramine ((C); green sticks), MK-499 ((D); pink sticks), and quinidine ((E);
magenta sticks) from the last 20 ns of the simulations. The KV10.1 amino-acid residues reported in the literature as important
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spheres. Hydrogen bonds are shown as green (hydrogen bond donors) and red dashed lines (hydrogen bond acceptors).
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Here, S433 is in close proximity to A453, on the opposite α-helix located in the pore
segment. Mutation of S433 to alanine reduces clofilium inhibition of KV10.1 by a factor
of two, whereas mutation to cysteine has almost no effects. In these MD simulations, we
did not observe any interactions between S433 and clofilium (Figure 8B), although there
was formation of a short-lived hydrogen bond with the benzonitrile of MK-499 (Figure 8D).
Interestingly, mutations S433A and S433C decrease the IC50 values of inhibition of KV10.1
by quinidine, even though S433 is located too deep in the hydrophobic side pocket to
form any interactions with quinidine (Figure 8E); quinidine remained below the entry
into the selectivity filter throughout the simulation [41]. Additional structural studies on
the effects of the S433A and S433C mutations on the channel structure and the binding
of different ligands are needed to better understand the importance of this residue for
inhibitor binding.

There is a serine residue in the lower part of the hydrophobic side pocket at the
entrance to the selectivity filter in the KV10.1 and hERG channels (S436 in KV10.1; S624
in hERG). Compared to the wild-type KV10.1 channel, the S436T mutation reduces the
inhibition of KV10.1 by clofilium by a factor of ~10, whereas in combination with the V437I
mutation, the inhibition is reduced by a factor of almost 40 [41]. The same mutations have
much weaker effects on quinidine inhibition of KV10.1, with 2-fold and 3-fold increases in
IC50, respectively. In the hERG channel, the S624 mutation reduces inhibition by clofilium,
whereas residues T623 (T435 in KV10.1) and V625 (V437 in KV10.1) that are adjacent to S624
are also important for binding [57]. A mutation study with V625A also showed a reduction
by a factor of 4 in hERG inhibition by quinidine, which is consistent with the effects
of the KV10.1 V437 mutations [58]. For clofilium, there were hydrophobic interactions
with residues T435 and V437 for 93% and 90% of the simulation time, respectively, while
interactions with S436 were not detected (Figure 8B, Table 3). Interactions formed in the
hydrophobic side pocket of KV10.1 by the aliphatic tail of clofilium were present throughout
the simulation. The importance of these interactions might explain why clofilium analogs
with shorter aliphatic tails show reduced inhibition of the hERG channel [59]. Hydrophobic
interactions with T435 and V437 were present in more than 90% of the simulations with
astemizole, and they were also present in the simulations with MK-499 at frequencies of
48% and 80%, respectively (Figure 8D, Table 3). The valine mutation to alanine in hERG
(V625A), which corresponds to V437A in KV10.1, reduced MK-499 inhibition by a factor
of 50, which indicated the great importance of this residue for MK-499 binding. Similarly,
the mutation to alanine of the neighboring hERG residues T623 and S624 showed reduced
MK-499 inhibition, although to a lesser extent than the V625 mutation [54]. The T435 and
V437 residues that are conserved in KV10.1 interacted with MK-499 in this MD simulation,
which might therefore confirm the binding of MK-499 in the hydrophobic side pocket
of KV10.1 (Figure 8D). Imipramine showed the most pronounced interactions with S436
in these simulations, with more than 95% occurrence of hydrogen bonding between the
imipramine amine and the hydroxyl group of S436 (Table 3). However, there are no data
available on the effects of the S436 mutation on imipramine inhibition of KV10.1.

Cationic centers are well-known features of hERG inhibitors, and these are present
in most of the previously created ligand-based pharmacophore models [14–16]. Cation–π
interactions were most prominent for MK-499 (61% occurrence) and astemizole (19% occur-
rence) (Table 3). The amines that represent these cationic centers can also form hydrogen
bonds, e.g., with S436 at the entrance of selectivity filter, although these interactions were
mainly formed with imipramine (Figures 7C and 8C). We assume that the cationic centers of
the ligands are located below the selectivity filter, due to the negative electrostatic potential
located there [8]. Comparing the initial docking binding poses of the ligands with the
binding poses at the end of the simulations, the cationic centers of all of the ligands were
seen to have moved closer to the entrance of the selectivity filter. For astemizole, clofilium,
and MK-499, which entered the hydrophobic side pocket, the movement of the cationic
center also moved the ligands deeper into the side pocket (i.e., ~2.5 Å for astemizole, ~2.0 Å
for clofilium, ~2.4 Å for MK-499).
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The most studied residues in KV10.1 and hERG for ligand binding are the aromatic
tyrosine (Y464 in KV10.1; Y652 in hERG) and phenylalanine (F468 in KV10.1; F656 in hERG)
residues in the central cavity (Figure 8). Mutations Y652A and F656A in hERG increased
the IC50 for clofilium by 1329-fold and 484-fold, respectively [56]. In the present simulation,
the aromatic ring of clofilium formed hydrophobic interactions with aromatic residues
Y464 and F468 throughout the simulation, and based on the LigandScout [30] analysis,
5% of these were π–π interactions (Figure 8B). Visual inspection of the MD trajectory
revealed T-shaped π–stacking of Y464 and the aromatic ring of clofilium (Figure 9A). These
interactions were formed with Y464 and F468 from the adjacent subunits. The α-helix of
segment S6 was slightly rotated, such that the side chain of F468 was oriented toward the
channel pore (lower part of the central cavity), directly below the aromatic ring of clofilium.
Although LigandScout [30] detected only a brief occurrence of π–π interactions between
clofilium and Y464/F468, there was some interesting stacking of the aromatic rings of the
neighboring subunits and clofilium in the molecular trajectory. The aromatic rings of Y464
and clofilium resembled T-shaped π–stacking, and F468 and the chlorophenyl moiety in
parallel displaced π–stacking orientation at a distance of ~5 Å (Figure 9A). A similar rotation
of the side chain of F468 in the central cavity was also seen in the simulations of imipramine
and quinidine (Figure 9B,C). The chlorophenyl moiety of clofilium formed several halogen
bonds with residues Y464, A465, and T472, as well as hydrophobic interactions similar
to those of the fluorophenyl moiety of astemizole. Among the other interactions of the
quaternary amine, several of the π–stacking interactions and potential halogen bonds of the
chlorophenyl moiety of clofilium were consistent with potent KV10.1 inhibition (Table 1).
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Figure 9. Rotation of the F468 side chain (orange star) upon ligand binding within the homology model of the KV10.1.
The distances measured between the aromatic network formed with residues F359, Y464, F468, and the ligands are shown
with blue dashed lines. Uncoupling between F359 and Y464 of the subunit with rotated F468 shows ~2–3 Å increase in
distance between the aromatic rings. One subunit is hidden to increase the visibility of the interactions. (A) Clofilium
(orange sticks) forms T-shaped and parallel-displaced π–π interactions. (B) Imipramine (green sticks) forms two T-shaped
and one parallel-displaced π–π interaction. (C) Quinidine (purple sticks) forms a parallel-displaced π–π interaction.

In the MD simulation of the KV10.1–imipramine complex, there was rotation of
F468, which formed parallel-displaced π–π interactions and occluded the aromatic ring
of imipramine. The F468C mutation reduced the inhibition of KV10.1 by imipramine by a
factor of 5, which correlated well with the MD simulation results [11]. Three Y464 residues
also form π–π interactions, one in a T-shaped orientation and two in a parallel-displaced
orientation on the other aromatic ring of imipramine.
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Mutation studies of the aromatic rings in the central cavity showed that the F468C
mutation reduced astemizole inhibition by a factor of about 20 [11]. The interactions
analyzed in the MD simulation identified high incidence of hydrophobic and aromatic
interactions between the aromatic rings of astemizole and Y464 and F468. Most aromatic
interactions were formed with the benzoimidazole moiety of astemizole and Y464 (24%
occurrence), but there were also aromatic interactions of the anisole and fluorophenyl
moieties with Y464 of other subunits. Throughout the simulation, different types of
interactions between astemizole and Y464 were seen for more than 90% of the simulation
time (Table 3). Hydrophobic interactions with F468 (36% occurrence) were identified less
frequently than with Y464, and we did not observe rotation of the F468 side chain into the
central cavity, as described above for clofilium, imipramine, and quinidine. Astemizole
and MK-499 both formed hydrogen bonds with the hydroxyl group of Y464, which raises
the interesting question of whether the Y464F mutation reduces the KV10.1 affinity of the
two ligands.

MK-499 also formed several interactions with Y464/F468. The most frequent and
diverse interactions were with Y464. There was no rotation of F468 in the central cavity,
but rather there was rotation of Y464 (Figure 8D, Table 3). Y464 positioned itself under
the piperidine ring and formed a cation–π interaction (61% occurrence) and a hydrogen
bond with the hydroxyl group of MK-499 (26% occurrence). Although astemizole binds
similarly to MK-499, there was no rotation of Y464. There was also an additional Y464 in
close proximity to the piperidine ring of MK-499 that formed hydrophobic interactions
with it throughout the simulation, as well as hydrogen bonding (66% occurrence) with the
chroman oxygen (Table 3).

We analyzed the distances of the aromatic network formed with F359, Y464, F468, and
the aromatic rings of clofilium, imipramine, and quinidine (Figure 10). The residue F359
that is located in segment S5 is analogous to F557 in the hERG channel, which has been
reported to be important for the binding of several ligands [60]. Various binding modes
have been proposed in which the ligands enter laterally from the central cavity to form
an interaction with F557, with some of them moved almost completely out of the central
cavity, possibly leaving enough space for the unobstructed passage of potassium ions
through the selectivity filter [60,61]. We believe that perhaps instead of tight interactions
between the ligands and F359 (F557 for hERG), the π–π network formed by the aromatic
residues F359, Y464, F468, and the ligands is crucial. Of particular interest, some ligands
can induce a conformational change of F468 into the central cavity, leading to disruption of
the π–stacking of residues F359 and Y464. We observed this as an increase in the distance
between the centers of the aromatic rings, from 4 Å to 8 Å (Figure 10). The rotation of Y464
for MK-499 showed significantly less interference with the π–π interactions of residues
F359 and F468, compared to the rotation of F468. Such π–π networking was also observed
in the hERG channel with residues F619, F557, Y652, and F656, and there was disruption of
the π–π stacking between F557 and Y652 upon binding of cisapride [62]. The π–π network
of KV10.1 lacks an additional aromatic ring that is present in hERG, as F619, which is
instead M431 in KV10.1. One less aromatic residue in KV10.1 might be another reason the
inhibitors showed a difference in inhibition of KV10.1 and hERG.
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Figure 10. Distances between the aromatic rings of residues F359 and F468 of each subunit in the central cavity obtained by
molecular dynamics simulations of astemizole (A), clofilium (B), imipramine (C), MK-499 (D), and quinidine (E) in complex
with the homology model of the KV10.1. The distances increase for clofilium, imipramine, and quinidine, due to the rotation
of F468 in the central cavity.

One of the most frequently detected interactions in all of these simulations (except
for those with the aromatic rings in the central cavity) were hydrophobic interactions
with A465 (Figure 8, Table 3). Interactions with at least one residue of A465 occurred in
more than 90% of the simulation times for all of the ligands, except for MK-499, which
showed a reduced frequency of 51%. There were also hydrogen bonds with S461 in the
simulations of astemizole (51% occurrence) and MK-499 (32% occurrence). The formation
of hydrogen bonds between the hydroxyl group on the 4-hydroxydihydropyran moiety
of MK-499 and S461 (32% occurrence) or Y464 (25% occurrence) might lead to the potent
binding affinity of MK-499. The study of the hERG channel showed that the MK-499 analog
without the hydroxyl group on the dihydropyran moiety showed a reduced IC50 by a



Int. J. Mol. Sci. 2021, 22, 8999 17 of 24

factor of 18, which highlights the potential involvement of the hydroxyl group in hydrogen
bond formation. The A453S mutation reduced the inhibition of clofilium (6-fold increase
in IC50), MK-499 (4-fold increase in IC50), and quinidine (2-fold increase in IC50), which
demonstrated the importance of A453 for ligand binding, similar to what was seen in the
MD simulations [41]. In the hERG channel, the equivalent residue is A653, which has been
shown to be essential for normal channel function [63]. In the lower part of the central
cavity, there were also interactions between T472 and all of the ligands. Astemizole and
MK-499 formed hydrogen bonds with T472 for approximately 40% of the simulation time.

We also analyzed water-mediated hydrogen bonding in MD trajectories. In the case
of clofilium, imipramine, and quinidine, hydrogen bond formation between the ligands
and water molecules occurred in less than 1% of the simulation time; in the case of MK-499,
interaction with a water molecule occurred in 27% of the simulation time; and in the case
of astemizole, a water molecule formed hydrogen bonds in 42.6% of the simulation time.
The latter was associated with the basic amine of the astemizole.

3.5. Creation of the Merged Structure-Based Pharmacophore Model

Our aim was to build a structure-based pharmacophore model that describes the
binding modes of the simulated ligands to this homology model of the KV10.1 open pore
conformation. The pharmacophore models generated in the MD trajectory for ligand
interaction analysis (described above) were used to generate a merged pharmacophore
model. Based on the occurrence of unique pharmacophore models among the 500 models
from the MD trajectory, we selected the four most frequently appearing pharmacophore
models per ligand, which were aligned and merged into structure-based pharmacophore
models in LigandScout for each protein–ligand complex (Figure 11). The most frequently
appearing pharmacophore models for the five ligands all show hydrophobic interactions
in the lower part of the central cavity with residues Y464, A465, F468, and T472. All of the
inhibitors except astemizole formed π–π interactions with Y464 or F468, while MK-499 and
quinidine also formed hydrogen bonds with the hydroxyl group of Y464. The cation–π
interaction was present in the pharmacophore models of astemizole, imipramine, and
MK-499 (Figure 11).

The merged pharmacophore models generated for each of the KV10.1–ligand com-
plexes were inspected and modified. Specifically, the overlapping pharmacophore features
were interpolated, and all of the vector features were converted to nonvector sphere fea-
tures. Five merged structure-based pharmacophore models for the five simulated ligands
were then aligned. However, there was a problem with the quinidine pharmacophore
model, as it could not be aligned with the merged models for the other four simulated
ligands, and it was therefore excluded from the creation of the final merged pharmacophore
model. The reason for the failed alignment of the quinidine model is due to the different
binding mode of quinidine compared to the other simulated ligands.

The key features for the alignment were a positively charged feature, two hydrophobic
features and some of the exclusion spheres. The hydrophobic feature in the hydrophobic
side pocket was shared by the pharmacophore models of astemizole, clofilium, and MK-
499. The hydrophobic feature in the lower part of the central cavity in close proximity
to the aromatic residue Tyr464 was shared by all the remaining four ligands. The final
merged model of all of the four ligands had five hydrophobic features, one positively
charged feature, three hydrogen bond donor features, two hydrogen bond acceptor features,
four aromatic ring features, and one halogen bond feature (Figure 12A). None of the
pharmacophore features was associated with the water molecule.
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Figure 12. (A) Aligned and merged structure-based pharmacophore models from the MD simula-
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Figure 11. Two-dimensional projections of the frequently appearing pharmacophore models for astemizole (A), clofilium
(B), imipramine (C), MK-499 (D), and quinidine (E) in complex with the homology model of the KV10.1; these were used in
the creation of the final merged pharmacophore model. The pharmacophore features are: hydrophobic features, yellow;
aromatic features, blue discs with arrows; hydrogen bond donors, green arrows; hydrogen bond acceptors, red arrows;
positive ionizables, blue circles.
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Figure 12. (A) Aligned and merged structure-based pharmacophore models from the MD simulations
of astemizole, clofilium, imipramine, and MK-499 in complex with the homology model of the KV10.1.
Pharmacophore features are: hydrophobic features, yellow spheres; aromatic features, blue discs;
hydrogen bond donors, green spheres; hydrogen bond acceptors, red spheres; positive ionizable,
blue star; halogen bond, pink sphere. (B) Simplified model used for validation, with hydrophobic
and positive ionizable features connected by blue lines set as essential (only one feature marked with
orange star is essential, the other one is optional), and the other features marked with blue stars set
as optional. (C) Similarity of the present model is seen by the hERG pharmacophore model described
by Cavalli et al. [15].

To simplify the pharmacophore model, two hydrophobic features (Figure 12B, orange
stars) were configured in a way that one is essential and the other is optional. The model
was set up this way because some of the molecules do not bind in the hydrophobic side
pockets (e.g., imipramine) or are more linear (e.g., MK-499). This increased the specificity
of the model and maintained the retrieval of true active molecules. The third hydrophobic
feature and the positive ionizable feature were selected as essential (Figure 12B, features
without stars), while the remaining hydrophobic feature, and the hydrogen bond acceptor,
hydrogen bond donor, and halogen bond features were set as optional (Figure 12B, blue
stars). The final model (Figures 12B and 13A) identified 11 of the 15 reported pore blockers
of KV10.1 (Table S1). Quinidine, dronedarone, tetraethylammonium, and LY97241 did not
fit the final pharmacophore model. This was expected for quinidine (described above), and
for dronedarone and tetraethylammonium because of their sizes. Dronedarone was too
large and clashed with the exclusion spheres, while tetraethylammonium was too small
to fit the three essential pharmacophore features simultaneously. LY97241 is structurally
very similar to clofilium, which was used to create the model, but was not retrieved by
the model.
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Figure 13. (A) Alignment of astemizole with the final three-dimensional merged pharmacophore model used for the virtual
screening. Gray spheres show exclusion volumes. (B,C) Resulting ROC curves (blue) from the virtual screening of 463
compounds (15 KV10.1 inhibitors; 448 decoys [hERG inactive compounds based on ChEMBL for IC50 > 100 µM]) with the
final merged pharmacophore model, with exclusion spheres (B) and without exclusion spheres (C). TP, true positives; FP,
false positives; AUC, area under the curve; EF, enrichment factor.

To test the model, we used a virtual library from two different sources. One library
consisted of compounds with low or no hERG inhibition (Table S2), and therefore with low
probability of inhibition of KV10.1. These compounds were retrieved from the ChEMBL
database [31]. The second library of decoys was generated based on the 15 reported
pore blockers of KV10.1 using the DUDE [52] decoy online server, which creates decoys
with similar physicochemical properties but different molecular topologies. Our model
performed well with a 15.4 enrichment factor at 1% of the library screened (Figure 13B).
The model found 11 of 15 reported pore blockers active, and 99 of 448 hERG decoys active.
Since the number of hERG decoys retrieved by the model is still quite high, the final merged
pharmacophore model can be used as a filter in virtual screening and the hit list can then
be rescreened with a set of more selective structure-based pharmacophore models derived
from MD simulations of the individual hEAG1–ligand complexes.

Our model resembles the hERG model proposed by Cavalli et al. [15], with the
hydrophobic features at the same proposed distances from each other (Figure 12B,C). The
main difference between the Cavalli et al. [15], model and ours is the additional exclusion
spheres that restrict the space available for ligand binding and increase the selectivity of
the model. When we tested our model in virtual screening without the exclusion spheres,
it retrieved 223 of 448 hERG decoys (Figure 13C), and 508 of 850 decoys generated using
the DUD-E server (Figure S5). Therefore, the selectivity of the model between the active
and inactive compounds was poor. Dronedarone was the only additional active compound
that was retrieved by the pharmacophore model without exclusion spheres.

Ligands that have been reported to inhibit KV10.1, but where the mechanism of action
is not through the block of the potassium ion flux by binding to the central cavity of
the channel, should therefore not fit our pharmacophore model. Our model was tested
on such a virtual library (Supporting Information Table S3) that was constructed from
ligands collected in a review article [17], with the addition of our newly identified set of
KV10.1 inhibitors [53]. The pharmacophore model identified 16 of 61 active compounds.
Chlorpromazine was among these, which is a modulator of the PAS domain. The structural
similarity of chlorpromazine to imipramine might explain its inhibition of KV10.1 (which
lacks the PAS domain) at higher voltages, which would explain why our model identified
it as a hit [64]. The other molecules identified as hits were amiodarone and some purpure-
alidin analogs [65,66]. These were positioned in our model similar to imipramine, whereby
the halogen substituents of the aromatic ring fit the two hydrophobic pharmacophore
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features, and the other aromatic ring protruded from the pharmacophore model in the
direction that would represent entry into the central cavity. This mode of pharmacophore
model matching was not observed for other active compounds in our virtual screening.

4. Conclusions

In this study, we used a combination of several molecular modeling techniques to
analyze the binding mode of astemizole, clofilium, imipramine, MK-499, and quinidine
in the pore of KV10.1, which is a promising target for anticancer drug development as it
is expressed in more than 70% of tumors. With the aim being to understand the binding
modes of ligands to the KV10.1 pore, we analyzed the potential of this binding site for the
discovery of selective inhibitors.

The pharmacophore models created from the MD simulations were merged into a final
MD-derived structure-based pharmacophore model that described the binding of KV10.1
inhibitors that bind to the central cavity. The pharmacophore model created distinguishes
potential blockers from nonblockers, and it can be used to narrow down ligands that would
bind in the central cavity of KV10.1. The model shows high similarity to the previously
reported hERG pharmacophore model, which is consistent with the similar structures in
the central cavity of the KV10.1 and hERG channels [15]. Our model includes exclusion
spheres that greatly improved the selectivity and accuracy of the predictions, which thus
define an important advantage of our model over previously published models for the
hERG channel. The ligand–channel interactions in the MD trajectory that were identified
were similar to those reported in the literature. Moreover, we observed an interesting
rotation of F468 in a central cavity that disrupts the π–π network of aromatic residues that
connect the pore domain to the voltage-sensor domain. Although the homology model of
the open-pore conformation of KV10.1 was used in our study, the results agree well with
the available experimental data. This demonstrates the advantages of using novel hERG
structures to develop KV10.1 models for further development of novel KV10.1 inhibitors.
However, new experimental KV10.1 structures in open pore conformation will inform
us whether the assumed hydrophobic side pockets present in the hERG channel are also
present in KV10.1.

The discovery of the disruption of the π–π network might represent an excellent
starting point for further research to better understand ligand binding to KV10.1. Our
pharmacophore model can be used to find new potential inhibitors of KV10.1, to help to
increase the small number of currently known KV10.1 inhibitors. Furthermore, it can be
used as a tool to distinguish ligands that do not bind in the central cavity, and so are more
likely to inhibit KV10.1 in other ways, potentially increasing the likelihood that they will
not inhibit the structurally similar hERG channel.

In addition, the molecular modeling method used in this work can be applied to
other targets where the exact binding modes of the ligands are not known. As shown, it
has several advantages over commonly used ligand-based methods, such as improved
selectivity and accuracy of predictions, as well as insights into the disruption of important
interaction networks in the protein structure.
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66. Moreels, L.; Bhat, C.; Voráčová, M.; Peigneur, S.; Goovaerts, H.; Mäki-Lohiluoma, E.; Zahed, F.; Pardo, L.A.; Yli-Kauhaluoma, J.;
Kiuru, P.; et al. Synthesis of novel purpurealidin analogs and evaluation of their effect on the cancer-relevant potassium channel
KV10.1. PLoS ONE 2017, 12, e0188811. [CrossRef] [PubMed]

http://doi.org/10.1016/0263-7855(96)00018-5
http://doi.org/10.1021/jm300687e
http://www.ncbi.nlm.nih.gov/pubmed/22716043
http://doi.org/10.3390/cancers13061244
http://doi.org/10.1073/pnas.210244497
http://www.ncbi.nlm.nih.gov/pubmed/11005845
http://doi.org/10.1002/minf.201700142
http://www.ncbi.nlm.nih.gov/pubmed/29465167
http://doi.org/10.1124/mol.105.016741
http://doi.org/10.1124/mol.104.000117
http://doi.org/10.1124/mol.63.5.1051
http://doi.org/10.1021/jm4010434
http://doi.org/10.1038/srep24182
http://doi.org/10.1038/s41598-019-53120-6
http://doi.org/10.1038/s41598-020-72889-5
http://doi.org/10.1159/000185544
http://doi.org/10.1074/jbc.RA119.012377
http://www.ncbi.nlm.nih.gov/pubmed/32047112
http://doi.org/10.1007/s00424-018-2131-2
http://www.ncbi.nlm.nih.gov/pubmed/29549440
http://doi.org/10.1371/journal.pone.0188811
http://www.ncbi.nlm.nih.gov/pubmed/29220359

	Introduction 
	Materials and Methods 
	Software 
	Homology Modeling 
	Homology Model Evaluation 
	Docking of Compounds 
	Molecular Dynamics Preparation and Simulation 
	Analysis of Molecular Dynamics Simulation 
	Pharmacophore Modeling 
	Virtual Library Preparation 
	Virtual Screening 

	Results and Discussion 
	Homology Modeling of the KV10.1 Open Pore Conformation 
	Docking of KV10.1 Inhibitors for Binding to the Channel Pore 
	Molecular Dynamics Analysis of Ligand and Protein Stabilities 
	Analysis of Binding Interactions of KV10.1 Inhibitors in the Molecular Dynamics Simulations 
	Creation of the Merged Structure-Based Pharmacophore Model 

	Conclusions 
	References

