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Abstract

In this research, we exploit an image-based deep learning framework to distinguish three major subtypes of renal cell carcinoma
(clear cell, papillary, and chromophobe) using images acquired with computed tomography (CT). A biopsy-proven
benchmarking dataset was built from 169 renal cancer cases. In each case, images were acquired at three phases(phase 1, before
injection of the contrast agent; phase 2, 1 min after the injection; phase 3, 5 min after the injection). After image acquisition,
rectangular ROI (region of interest) in each phase image was marked by radiologists. After cropping the ROIs, a combination
weight was multiplied to the three-phase ROI images and the linearly combined images were fed into a deep learning neural
network after concatenation. A deep learning neural network was trained to classify the subtypes of renal cell carcinoma, using
the drawn ROIs as inputs and the biopsy results as labels. The network showed about 0.85 accuracy, 0.64-0.98 sensitivity, 0.83—
0.93 specificity, and 0.9 AUC. The proposed framework which is based on deep learning method and ROIs provided by
radiologists showed promising results in renal cell subtype classification. We hope it will help future research on this subject

and it can cooperate with radiologists in classifying the subtype of lesion in real clinical situation.
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Introduction

The kidney makes and ejects urine to maintain homeostasis
and remove harmful substance. Renal cell carcinoma (RCC) is
the most common type of kidney cancer that accounts for 2—
3% of human malignancies [1]. According to the cell appear-
ance, RCC can be largely categorized into three subtypes—
clear cell renal cell carcinoma (ccRCC), papillary renal cell
carcinoma (pRCC), and chromophobe renal cell carcinoma
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(chRCC). Those three major subtypes constitute more than
90% of the renal cell carcinomas (RCCs) [2]. The ccRCC is
known to be the most lethal subtype, whereas the pcRCC and
chRCC subtypes have relatively better survival rates [3].
Nowadays, RCC subtype classification is clinically important
due to the increased use of novel therapeutic agents, which
requires new paradigms to distinguish RCC subtypes [2, 4].
For the subtype classification, visual inspection on comput-
ed tomography (CT) images by radiologist is performed to
reduce unnecessary biopsy test for subtype classification.
There is growing evidence that renal cancer tumor heteroge-
neity which can be acquired by image scanning can be used in
predicting tumor characterization, stage, nuclear grade, re-
sponse to treatment, and overall survival [2]. To reduce the
inspection time and cost, computer-aided diagnosis (CADX) is
considered to help radiologists for the medical image interpre-
tation and diagnosis [5, 6]. CADx is applied to differentiate
malignancy or benignancy for tumors or lesions [5, 7-9].
Previous researches on the image-based quantitative clas-
sification of the renal masses have focused on differentiating
benign lesions from malignant ones [10, 11] or malignant ones
from normal kidney [12]. Nonetheless, the very next plausible
step on this field appears to be studying how to distinguish the
malignant subtypes of the renal masses [13, 14], because
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image features of different RCC subtypes can be used for
predicting clinical behavior, treatment response, and overall
prognosis [2, 4]. Furthermore, the non-invasive diagnosis
might be valuable particularly for elderly patients with small
masses [15].

In the previous research about renal cancer subtype classi-
fication, Kocaka et al. [13] applied artificial neural network
and support vector machine to distinguish the subtypes of
renal cancer based on features selected by radiologists.
Mileto et al. [14] used dual-energy CT for radiologists to dif-
ferentiate ccRCC from pRCC visually with iodine mapping.

Our study was designed to develop reproducible and gen-
eralizable models for discriminating three major subtypes of
RCCs using computed tomography (CT) image analysis along
with a machine learning algorithms. To the best knowledge of
the authors, this research is the first one about deep learning—
based renal cancer subtype classification.

Methods and Materials

All experimental protocols were approved by Seoul National
University Bundang Hospital, Seongnam-si, Kyunggi-do,
South Korea. Informed consent was obtained from all patients
for their consent to use their information in the research with-
out violating their privacy. A total of 169 renal cancer cases
were scanned in Seoul National University Bundang Hospital
(Seongnam-si, Kyunggi-do, South Korea). In each case, im-
ages were acquired at three phases (phase 1, before injection
of the contrast agent; phase 2, 1 min after the injection; phase
3, 5 min after the injection). CT scans were obtained on Philips
Brilliance CT 64, IQon, 256 iCT, Siemens Definition edge.
The protocol used in image acquisition is presented in Table 1.
In Table 1, pitches were 0.641:1 in Philips Brilliance 64,
0.985:1 in Philips IQon CT, 0.993:1 in Philips iCT 256, and
0.6:1 in Siemens Definition edge.

Datasets

A total of 169 renal cancer cases were scanned in Seoul
National University Bundang Hospital (Seongnam-si,

Gyeonggi-do, South Korea). In each case, images were ac-
quired at three phases. There were 57 clear cell cases, 56
papillary cases, and 56 chromophobe cases. We randomly
selected 34 test cases (12 chromophobe, 10 papillary, 12
clear). Thus, 135 training cases were used as a training set.
After image acquisition, radiologists examined the slices of
those three phase images and selected one slice image of renal
cancer that seems to be appropriate for diagnosis in each
phase. The examination was done in axial view. Thus, we
gathered three slice images corresponding to three phases for
a case. The biopsy results were used as labels. For a case,
radiologists marked the rectangular ROI (region of interest)
in each phase image. Each rectangle has a different length and
width. Therefore, if we crop the ROI in each phase just as
drawn by radiologist, the size of the cropped image may vary.
Instead of using the rectangular ROI just as drawn by radiol-
ogist, we set the rectangular ROI drawn in the pre-contrast
phase as a reference. After matching the center of the ROIs
of three phase images considering the reference image, ROIs
were redrawn in 60-s delay phase image and 5-min delay
phase image to make the width and the height of ROIs equal
to that of the reference as shown in Fig. 1.

After redrawing ROIs in each phase image, ROI bound-
aries were additionally rescaled with a scale factor of 0.8 and
1.2 for image scale augmentation, as illustrated in Fig. 2.

This rescaling process was done in each phase image.
Then, images were cropped considering the drawn ROIs. To
facilitate the training, the cropped images were resized into
patches of 255 x 255 size using bilinear interpolation.
Therefore, we made 3 phase x 3 scale images for each patient
case. We also employed mirroring augmentation, shuffling of
training data, which are provided by Caffe framework [16].

Network Construction and Training

Rather than using three phase images as they were, we multi-
plied a combination weight to three phase images.
Unfortunately, the optimal combination weight is not known
for the three-phase images of renal cancer. Thus, we linearly
combined the three channel images to induce the neural net-
work to find the optimal combination weight. This was to

Table 1 Image acquisition

protocol used in this research IV contrast

Pre-constrast

50-s delay

S-min delay

Pitch

Slice thickness
kVp/helical rotation
Axial reconstruction

Coronal reconstruction

1130cc Xenetix 350 (Guerbet, Aulnay-sous-Bois, France), 3 cc/s
Liver dome to ischial tuberosity

Liver dome to ischial tuberosity

Liver dome to genitalia

0.641:1-0.993:1

2.0 mm

120/0.5 s

5.0 mm standard

5.0 mm
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Fig. 1 After matching the center
of the three-phase images, the
ROIs are redrawn. a pre-contrast
image. b 60-s delay phase image.
¢ 5-min delay phase image.
Yellow rectangle is drawn by
radiologists, and red rectangle is
redrawn considering ROI of the
reference

improve channel images that had a significant impact on sub-
type classification.

This linearly combined three channel images were fed into
a CNN (convolutional neural network) after concatenation.
For CNN, we employed GoogLeNet [17], which is
established in 2014, and modified the network for our pur-
pose. Two auxiliary classifiers were removed in this research.
In this research, we assumed two-class problem (for example,
chromophobe vs non chromophobe or clear cell vs none clear
cell), following the evaluation method of the previous re-
searches [13, 14]. In reference [13], they also performed
three-subtype differentiation. However, they reported that
three-subtype class differentiation showed relatively poor per-
formance [13]. Because GoogLeNet has originally 1000 class
outputs, we modified the network to reduce the output to two
class outputs. All pixels in each patch are treated as the input
neurons. This is illustrated in Fig. 3.

Because transfer learning followed by fine-tuning is known
to show better performance than learning from scratch in
many cases [18], the proposed network was initialized by
ImageNet [19] pretraining model and was fine-tuned using
RCC images. First, a network was trained on other task data,
for example, object classification [19]. Then, the trained net-
work parameters were transferred to another network for RCC
classification and used as the network initialization. This
method is generally used when there are not sufficient data

Fig. 2 ROI boundaries were rescaled with scale factors 0.8 and 1.2 for
image scale augmentation. Original ROI is presented with scale factor 1.0
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to train complex network with a large amount of parameters. It
has been proven that this transfer learning is effective in var-
ious domains such as mammography [20], X-ray [21], histol-
ogy images [22, 23], and retinal images [24, 25]. The input
data was three phase images and the label was the correspond-
ing subtype. We used the Caffe [16] deep learning framework
and NVidia 1080 GPU to train the CNNs. The network was
trained by stochastic gradient descent (SGD) method with
base learning rate of 0.0001, learning momentum 0.9, weight
decay 0.0002, and a poly learning policy. We used the image
batch size of 70 that was the maximum batch size in our
system.

Experimental Results

Because we assumed two-class problem, three experiments
were performed (chromophobe vs non-chromophobe, papil-
lary vs non-papillary, and clear cell vs non-clear cell). We
presented the performance of the proposed deep learning
framework of renal cancer classification in terms of accuracy,
sensitivity, specificity, and AUC (area under the curve).
Optimal parameters were chosen based on a tenfold cross-
validation with the 135 training data. Then, the optimized
parameters were applied to evaluate the performance on the
34 test datasets. We presented the performance of ccRCC
classification in Fig. 4, pRCC classification in Fig. 5, and
chRCC classification in Fig. 6. In the ccRCC classification
experiment, chRCC and pRCC were considered as non-clear
cell class. In the same way, chRCC and ccRCC were consid-
ered as non-papillary renal cell carcinoma class in pRCC clas-
sification, and ccRCC and pRCC were considered as non-
clear cell class in chRCC classification. We also presented
the result summary in Table 2. For three-class problem, which
is chRCC vs pRCC vs ccRCC, we presented the result in
Table 3, for comparison.

Discussion

The proposed method seems to have promising performance
in classification of renal cancer. In spite of the fact that the
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Fig. 3 The conceptual
architecture of CNN used in this
research
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location of the cancers had to be provided by radiologists, the
proposed method could accurately classify cancers as chromo-
phobe, papillary, or clear cell. Therefore, the proposed frame-
work can support radiologists to accurately decide the follow-
ing procedure. For experienced radiologists, the proposed
method may not be useful for early detection and diagnosis.
However, this method can help those who are not fully trained
in radiology.

Though the proposed method seems to work well in the
classification of papillary carcinoma and clear cell carcinoma,
it did not show good performance in the classification of chro-
mophobe renal cell carcinoma as expected. Because the num-
ber of chromophobe cases was close to those of clear cell
cases and papillary cases, this may not be due to an imbalance
in the ratio of data. It may be because the features obtained
from the training data used in this research could not distin-
guish chromophobe renal cell carcinoma sufficiently from
others, while more various features were required to distin-
guish chromophobe renal cell carcinoma than other renal cell
carcinoma subtypes. In that case, we should gather more data
to enhance the classification performance.
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Fig. 4 Diagnostic performances of ccRCC classification

The motivation to combine each channel linearly was to
improve channels that had a significant impact on subtype
classification. We applied the learning method to the linear
combination weight so that it would be calculated to produce
optimum results automatically. Our hypothesis was that the
current image adjusted for human inspection may not be the
best for the machine learning—based methods. The linear com-
bination of three channel images can be considered as another
three channel images which are adjusted for neural network.
Considering the result of this research, we can assume that
three channel images can be modified and adjusted to have
potentially better performance, though their weight cannot be
completely fixed. It seems that the best combination weight
may vary from task to task. In this research, the best weight
calculated by learning algorithm varied from task to task. As
mentioned above, those weights for combining each channel
linearly were calculated automatically via the learning process
itself to be optimized for the training data. If those weights
were different from the learned weights, the performance may
decrease. In our database, when those weights were set man-
ually without learning process, we guess that the performance

e o @9
o N @
T T T
L " L

sensitivity
o
wm
L

o
S
T
i

03} 4

0.2F 4

01F -

0 A A A A " 4 A A A
0 0.1 02 03 04 05 06 07 08 0.9 1

1-specificity

Fig. 5 Diagnostic performances of pRCC classification
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Fig. 6 Diagnostic performances of chRCC classification

may be decreased by 0-8%. This research may give a hint for
a potentially new way of inspection with performance im-
provement. However, validation of the effect of the linear
combination of each channel on the performance of human
inspector is beyond the scope of this research. To validate the
effect, we have to consult radiologists to see whether the com-
bination is more helpful in discriminating the suspicious re-
gion than the currently used images. The authors are planning
to proceed this in the near future.

For comparison, we referred to the previous research to
evaluate the proposed method. In reference [14], radiologists
differentiated ccRCC from pRCC visually and showed an
AUC of 0.923 (88 cases). In reference [13], machine
learning—based approach was used to differentiate ccRCC
from non-ccRCC, and it showed an AUC between 0.731
and 0.935 (68 cases). Therefore, we consider that the proposed
method shows comparable or better performance. And it
should be noted that the proposed method did not use hand-
crafted features selected by radiologists, which is the advan-
tage of deep learning method. However, more data is required
for a more precise evaluation and generalization.

In evaluation, we refered the method of the previous re-
searches [13, 14] and considered the subtype classification
problem as several two-class problems. In reference [13], they
reported that three-subtype class differentiation showed

Table 2  Diagnostic performances of the proposed CNNs

Sensitivity Specificity Accuracy AUC
Clear cell 0.6458 0.9353 0.8484 0.9355
Papillary 0.9875 0.8307 0.8694 0.9117
Chromophobe 0.7865 0.9545 0.8879 0.8795
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Table 3  Diagnostic performances of the proposed CNNs (3 class)
Sensitivity Specificity Accuracy
Clear cell 0.2656 1.0000 0.7335
Papillary 0.4688 0.9609 0.8088
Chromophobe 0.6354 0.9290 0.8241

relatively poor performance [13]. Their report was in accor-
dance with our results, for we also had relatively poor results
in three-subtype class differentiation, as shown in Table 3.
That might indicate that there is substantial overlap between
subtypes. It also seems to be that while we are given a fixed
number of data, the output nodes of three-subtype problem
requires more data to be optimized than the output nodes of
two-subtype problem does. As mentioned above, we used the
GoogLenet modified for our task. At the end of the
GooglLenet, softmax function was used for the classification.
The number of weights of the softmax function increases as
the number of output nodes increases. The number of weights
of softmax function in three-subtype problem is 3/2 times
larger than the number of weights of softmax function in
two-subtype problem. However, more research is required to
clarify the reason.

Conclusion

In this research, we exploit a deep learning framework to
differentiate the distinctive subtypes of lesions in renal cancer
with CT imaging. A biopsy-proven benchmarking dataset of
169 case images was built and used to evaluate the proposed
method. We combined the three-phase input images linearly
so that three-phase input images should be reformed and fed
into a neural network, which can be also applied in other
researches. The networks showed an AUC close to 0.9, re-
gardless of the subtypes. The proposed framework which is
based on deep learning method and ROIs provided by radiol-
ogists showed promising results in renal cell subtype classifi-
cation. We hope it will help future research on this subject and
it can cooperate with radiologists in classifying the subtype of
lesion in real clinical situation.

Acknowledgement We would like to show our gratitude to Dr. Seung
Hyup Kim MD, Ph.D of Department of Radiology, College of Medicine,
Seoul National University Hospital for his support. This research was
supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (2017R1C1B5077068) and by
Korea National University of Transportation in 2017, and also supported
by the Technology Innovation Program funded By the Ministry of Trade,
Industry and Energy (MOTIE) of Korea (10049785, Development of
'medical equipment using (ionizing or non-ionizing) radiation'-dedicated
R&D platform and medical device technology).



J Digit Imaging (2019) 32:638-643

643

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

10.

11.

Viktor H et al.: Systemic inflammation in a melanoma patient treat-
ed with immune checkpoint inhibitors-an autopsy study. J
Immunother Cancer 4, 2016

Sasaguri K, Takahashi N: CT and MR imaging for solid renal mass
characterization. Eur J Radiol 99:40-54, 2017. https://doi.org/10.
1016/j.ejrad.2017.12.008

Cheville JC et al.: Comparisons of outcome and prognostic features
among histologic subtypes of renal cell carcinoma. Am J Surg
Pathol 27:612-624, 2003

Shinagare AB, Krajewski KM, Braschi-Amirfarzan M, Ramaiya
NH: Advanced renal cell carcinoma: Role of the radiologist in the
era of precision medicine. Radiology 284:333-351, 2017. https://
doi.org/10.1148/radiol.2017160343

Cheng JZ, Chou YH, Huang CS, Chang YC, Tiu CM, Chen KW,
Chen CM: Computer-aided US diagnosis of breast lesions by using
cell-based contour grouping. Radiology 255:746-754, 2010

Giger ML, Karssemeijer N, Schnabel JA: Breast image analysis for
risk assessment, detection, diagnosis, and treatment of cancer. Annu
Rev Biomed Eng 15:327-357, 2013

Sun T, Zhang R, Wang J, Li X, Guo X: Computer-aided diagnosis
for early-stage lung cancer based on longitudinal and balanced data.
PLoS One 8:¢63559, 2013

Wang J et al.: Discrimination of breast Cancer with
microcalcifications on mammography by deep leaming. Sci Rep
6,2016

Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, Seong
YK: A deep learning framework for supporting the classification of
breast lesions in ultrasound images. Phys Med Biol 62:7714-7728,
2017

Fenget Z et al.: Machine learning-based quantitative texture analy-
sis of CT images of small renal masses: Differentiation of
angiomyolipoma without visible fat from renal cell carcinoma.
Eur Radiol 28(4):1625-1633, 2018

Yu H, Scalera J, Khalid M, Touret AS, Bloch N, Li B, Qureshi MM,
Soto JA, Anderson SW: Texture analysis as a radiomic marker for

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

differentiating renal tumors. Abdom Radiol (NY) 42:2470-2478,
2017. https://doi.org/10.1007/s00261-017-1144-1

Hussain MA et al.: Collage CNN for renal cell carcinoma detection
from CT Machine Learning in Medical Imaging. MLMI 2017. Lect
Notes Comput Sci 10541:229-237, 2017

Kocaka B et al.: Textural differences between renal cell carcinoma
subtypes: Machine learning-based quantitative computed tomogra-
phy texture analysis with independent external validation. Eur J
Radiol 107:149-157, 2018

Mileto A et al.: lodine Quantification to Distinguish Clear Cell from
Papillary Renal Cell Carcinoma at Dual-Energy Multidetector CT:
A Multireader Diagnostic Performance Study. Radiology 273(3):
1610-1616, 2014

Pierorazio PM, Hyams ES, Mullins JK, Allaf ME: Active surveil-
lance for small renal masses. Rev Urol 14:13-19, 2012

Jia Y, et al.: Caffe: Convolutional architecture for fast feature em-
bedding ACM Multimedia 2, 2014

Szegedy C, et al.: Going deeper with convolutions IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015

Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura
D, Summers RM: Deep convolutional neural networks for
computer-aided detection: CNN architectures, dataset characteris-
tics and transfer learning. IEEE Trans Med Imaging 35:1285-1298,
2016

Deng J, et al.: Imagenet: A large-scale hierarchical image database.
Computer vision and pattern recognition, IEEE Conference on
CVPR 2009, 2009

Lévy D, Jain A: Breast Mass Classification from Mammograms
using Deep Convolutional Neural Networks arXiv preprint arXiv:
1612.00542, 2016

Choi S: X-ray image body part clustering using deep convolutional
neural network: SNUMedinfo at ImageCLEF 2015 medical clus-
tering task CLEF (Working Notes), 2015

XuY, etal.: Gland instance segmentation by deep multichannel side
supervision Med Image Comput Comput Assist Interv (MICCAI)
9901:496-504, 2016

Chen H et al.: Mitosis detection in breast cancer histology images
via deep cascaded network Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. Menlo Park: AAAI Press,
2016

Maninis KK, et al.: Deep retinal image understanding. Med Image
Comput. Comput. Assist. Interv. (MICCAI), 2016

Worrall DE, Wilson CM, Brostow GJ: Automated retinopathy of
prematurity case detection with convolutional neural networks.
International Workshop on Large-Scale Annotation of Biomedical
Data and Expert Label Synthesis (LABELS), 2016, pp 68-76

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1016/j.ejrad.2017.12.008
https://doi.org/10.1016/j.ejrad.2017.12.008
https://doi.org/10.1148/radiol.2017160343
https://doi.org/10.1148/radiol.2017160343
https://doi.org/10.1007/s00261-017-1144-1

	The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method
	Abstract
	Introduction
	Methods and Materials
	Datasets
	Network Construction and Training

	Experimental Results
	Discussion
	Conclusion
	References


