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Abstract
We investigate calibration and assessment of predictive rules when missing values

are present in the predictors. Our paper has two key objectives. The first is to investi-

gate how the calibration of the prediction rule can be combined with use of multiple

imputation to account for missing predictor observations. The second objective is to

propose such methods that can be implemented with current multiple imputation soft-

ware, while allowing for unbiased predictive assessment through validation on new

observations for which outcome is not yet available.

We commence with a review of the methodological foundations of multiple imputa-

tion as a model estimation approach as opposed to a purely algorithmic description.

We specifically contrast application of multiple imputation for parameter (effect) esti-

mation with predictive calibration. Based on this review, two approaches are formu-

lated, of which the second utilizes application of the classical Rubin’s rules for param-

eter estimation, while the first approach averages probabilities from models fitted on

single imputations to directly approximate the predictive density for future observa-

tions. We present implementations using current software that allow for validation

and estimation of performance measures by cross-validation, as well as imputation of

missing data in predictors on the future data where outcome is missing by definition.

To simplify, we restrict discussion to binary outcome and logistic regression through-

out. Method performance is verified through application on two real data sets. Accu-

racy (Brier score) and variance of predicted probabilities are investigated. Results

show substantial reductions in variation of calibrated probabilities when using the

first approach.
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1 INTRODUCTION

There has been much recent interest in the medical statistical, epidemiological, and even biomedical literature on calibration

(training) and validation (testing) of prediction rules in the prognostic context, when multiple imputations are used to account for

missing observations in the predictors. This renewed interest has been supported by (1) the emergence of easy-to-use packages

for the generation of imputations within statistical software such as R or Stata as well as (2) the now ready availability of fast

and cheap computing even with desktop configurations. This has unleashed creativity to propose and investigate various novel

combinations of predictive calibration with validation approaches and imputation.

A feature of this literature is that it is predominantly algorithmic and somewhat ad hoc in nature. Wood, Royston, and White

(2015), for example, focus on performance assessment and formulate various strategies. Wahl, Boulesteix, Zierer, Thorand, and

van de Wiel (2016) investigate the problem of combining predictive calibration with validation and imputation but with a partic-

ular focus on bootstrapping. Generation of post hoc summaries, among which performance estimates, after multiple imputation,

is discussed by Marshall, Altman, Holder, and Royston (2009). These authors also report on a literature review in recent biomed-

ical literature on use of multiple imputation in prognostic studies. Vergouwe, Royston, Moons, and Altman (2010) discuss case

studies on practical development of prognostic models with imputation, also addressing model selection. Miles (2015) contrasts

prediction-averaging versus application of Rubin’s rules to combine model parameter estimates for predictive calibration with

imputations.

In line with the predominantly algorithmic nature of these presentations, novel methods are developed as adaptations

of—or combinations with—the multiple imputation algorithm. Indeed, multiple imputation itself tends to be presented

as an algorithmic device, although it has a clear methodological foundation as an approximation of the joint density of

effect estimates near the mode. Multiple imputation is model estimation. By reestablishing focus on multiple imputation

as a model approximation and thus estimation approach, it may become more easy to identify suitable approaches for

method validation by formulating validation as model assessment and similarly for the definition of the predictive approach

itself.

In so far as consensus exists within the literature on the fundamental challenges posed by multiple imputation in

prognostic calibration, it is that while imputation must take into account observed outcomes, unbiased validation by

definition requires outcomes to be omitted when calibrating models; Wood et al. (2015, p. 615); Wahl et al. (2016, p.

2). A less recognized issue is that multiple imputation in the predictive context requires calibration of a distinct pre-

dictive density than is currently implemented in existing imputation software, which is focused on effect estimation

instead.

To elucidate these issues, our paper commences with a methodological review of multiple imputation with special emphasis

on the distinction between prediction and effect estimation in the imputation context (Section 2). Based on this discussion, we

propose two basic approaches for the calibration of prognostic rules with multiple imputations that can be implemented with

existing imputation software and allow for validation using a set-aside validation set excluding outcome data (Section 3). The

second of these is based on classical Rubin’s rule estimation, while the first utilizes an approximation to the predictive density of

future outcome. This discussion may be viewed as a formalization of the methods suggested by Miles (2015). In contrast to the

above discussed existing literature, which predominantly focuses on simulation (Vergouwe’s paper being a notable exception),

we subsequently present a data-based application using two real data sets from our own consultative experience, which have

motivated our interest in this research. To compare methods, we study data-based summary statistics, specifically predictive

accuracy and variance based on application of methods to the data (Sections 4 and 5). We finish with a review of main results

and key conclusions, and formulate recommendations.

2 METHODOLOGY

2.1 Parameter estimation and Rubin’s rules
To formalize our discussion, we assume a substantive prediction model specified by a density 𝑓 (𝑌 ∣ 𝑿,𝜷), which describes the

variation in a vector 𝑌 = (𝑌1,… , 𝑌𝑛)𝑇 of outcomes of interest on a sample of 𝑛 patients, conditional on a corresponding general

matrix of predictors 𝑿 and depending on an unknown vector of regression parameters 𝜷. The latter will need to be estimated

from sampled data, prior to subsequent use of the model for future patients. We only consider scenarios with missing data in

the predictors in this paper, such that 𝑿 = (𝑿𝑚,𝑿𝑜), which separates into missing 𝑿𝑚 and observed 𝑿𝑜 components and with
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𝑌 fully observed. If our primary interest were to reside in the regression parameter vector 𝜷, then we would seek to estimate the

conditional (so-called posterior) density

𝑝(𝜷 ∣ 𝑿𝑜, 𝑌 ) = ∫ 𝑝(𝜷,𝑿𝑚 ∣ 𝑿𝑜, 𝑌 )𝑑𝑿𝑚

= ∫ 𝑝(𝜷 ∣ 𝑿𝑚,𝑿𝑜, 𝑌 )𝑝(𝑿𝑚 ∣ 𝑿𝑜, 𝑌 )𝑑𝑿𝑚,

(1)

which is obtained as the marginalized joint posterior density on the two unknown components 𝜷 and 𝑿𝑚, marginalized across

the nuisance unobserved covariate values in 𝑿𝑚. The last equality reveals this may also be thought of as the probability density

for the target parameter of interest 𝜷, conditional on the unknown quantities 𝑿𝑚, averaged across the uncertainty in 𝑿𝑚 (but

always conditional on the actually observed data). This latter equality explains the workings of classical multiple imputation,

as it generates imputed data from the conditional density 𝑝(𝑿𝑚 ∣ 𝑿𝑜, 𝑌 ), for each of which simulations may be generated from

the corresponding densities 𝑝(𝜷 ∣ 𝑿𝑚,𝑿𝑜, 𝑌 ), to approximate the moments of 𝑝(𝜷 ∣ 𝑿𝑜, 𝑌 ) in a sampling-based manner. The

Rubin’s rules-based approach represents a practical compromise to achieve this averaging, by first sampling imputations �̂�𝑚,𝑘

drawn from 𝑝(𝑿𝑚 ∣ 𝑿𝑜, 𝑌 ) and with 𝑘 = 1,… , 𝐾 for a total number of 𝐾 imputations. Subsequently, we estimate the modes 𝜷𝑘

of the conditional densities 𝑝(𝜷 ∣ �̂�𝑚,𝑘,𝑿𝑜, 𝑌 ) evaluated at the completed data sets (�̂�𝑚,𝑘,𝑿𝑜, 𝑌 ) and for all 𝑘. Large-sample

results from classical frequentist theory are then used to approximate the conditional density 𝑝(𝜷 ∣ 𝑿𝑜, 𝑌 ) at the mode, and these

results give rise to the so-called Rubin’s rule estimate of the expectation as

𝜷𝑀𝐼 = 1
𝐾

𝐾∑
𝑘=1

𝜷𝑘. (2)

Readers can consult Carpenter and Kenward (2013, pp. 46–48), Carlin (2015) or Gelman, Carlin, Stern, and Rubin (2004, pp.

519–523), among many other sources for further results and details. Our notations in the above and following are also loosely

based on those of Carpenter and Kenward (2013, e.g., pp. 44–48).

2.2 Prediction, the predictive density, and imputation
In the predictive scenario, the averaging described in Equation (1) no longer suffices and should be expanded to average across the

regression coefficients, in order to account for both the missing values 𝑿𝑚, and the uncertainty in 𝜷. Let 𝑌 be a future univariate

outcome, which we want to predict from covariates �̃�. As before, we have available a previous sample of data from the sample

population, with outcomes 𝑌 and covariates 𝑿, which we will refer to as the calibration data. To simplify the discussion and

notations, we will in the first instance assume that there are no further missing values in the predictor data �̃�, such that we can

write 𝑝(𝑌 ∣ 𝑿𝑜, 𝑌 ) for the predictive density of future outcomes, which denotes the conditional dependence on the past observed

calibration data 𝑿𝑜, 𝑌 , while ignoring the obvious dependence on �̃� for the time being.

In analogy to the previous section, to predict future outcomes 𝑌 , we must calibrate the predictive density

𝑝(𝑌 ∣ 𝑿𝑜, 𝑌 ) = ∫ 𝑓 (𝑌 ,𝜷,𝑿𝑚 ∣ 𝑿𝑜, 𝑌 )𝑑𝜷𝑑𝑿𝑚

= ∫ 𝑓 (𝑌 ∣ 𝜷,𝑿𝑚,𝑿𝑜, 𝑌 )𝑝(𝜷,𝑿𝑚 ∣ 𝑿𝑜, 𝑌 )𝑑𝜷𝑑𝑿𝑚;
(3)

see Seber (1984, p. 292) and Lessafre (2012, p. 53). The last line shows that the integration can now be achieved by averaging

across both imputations �̂�𝑚,𝑘 and simulations 𝜷𝑘 from the density 𝑝(𝜷,𝑿𝑚 ∣ 𝑿𝑜, 𝑌 ), while conditioning on the observed cali-

bration data 𝑿𝑜, 𝑌 . In analogy to Equation (1), this implies we may calculate the expectations 𝑃𝑘 = 𝐸(𝑌 ∣ 𝜷𝑘, �̂�𝑚,𝑘,𝑿𝑜, 𝑌 ) for

each pair of imputed values 𝜷𝑘, �̂�𝑚,𝑘, from the conditional density 𝑝(𝜷,𝑿𝑚 ∣ 𝑿𝑜, 𝑌 ). The set of predictions 𝑃𝑘, 𝑘 = 1,… , 𝐾 ,

may then be summarized using the mean in analogy to Rubin’s rules, medians, or some other suitable summary measure to

get the final prediction estimate 𝑃 . For example, using Rubin’s rules to summarize the set of predictions 𝑃𝑘, 𝑘 = 1,… , 𝐾 will

estimate 𝐸(𝑌 ∣ 𝑿𝑜, 𝑌 ) as

𝑃𝑀𝐼 = 1
𝐾

𝐾∑
𝑘=1

𝑃𝑘. (4)
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For full generality, the future outcomes may themselves also have missing values in the predictors, such that �̃� = (�̃�𝑜, �̃�𝑚),
allowing that the actual missing observations may not occur in the same covariates containing missing values in the calibration

data. In the presence of missing values, we will have in full generality that

𝑃 = 𝐸(𝑌 ∣ �̃�𝑜,𝑿𝑜, 𝑌 ), (5)

and similarly for the 𝑃𝑘, which implies that the above Equation (3) should also be expanded in the obvious manner to

include averaging across �̃�𝑚. Furthermore, there is an additional nontrivial complication if we wish to use the predicted

outcomes 𝑌 to assess the predictive capacities of any approach in the presence of missing data �̃�𝑚, as it is essential that any

imputation model used for the unobserved components of �̃� does not make use of the associated outcomes 𝑌 . This would

apply particularly for cross-validation, but seems to generate a conflict between multiple imputation and cross-validation, as

outcomes are needed in any implementation of multiple imputation to preserve the correlation structure with the outcomes to be

predicted.

3 PRAGMATIC IMPLEMENTATION USING EXISTING IMPUTATION
SOFTWARE

In principle, implementation of the above approach is automatic and completely standard within the (fully) Bayesian approach.

It has been amply described in the literature by Gelman et al. (2004), and Brooks, Gelman, Jones, and Meng (2011).

Summarizing for simplicity, it consists of calibrating the conditional densities of any predictor variable, conditional on all

other predictor variables and the outcome. In addition and crucially, we also need to calibrate the density of the outcome

conditional on all predictors, which is the primary model component of interest in the predictive context. Missing values are

treated as unknown parameters within this approach as discussed above and their estimation as well as that of any outcome

proceeds in an iterative fashion starting from suitable starting values until convergence, as in regular Markov chain Monte

Carlo (MCMC)-based estimation, sequentially simulating values from the appropriate conditional densities. Optimization of

this iterative sequence of equations constitutes calibration of the joint model on outcome and missing values from the primary

(training) data. Once convergence is achieved, the resulting system of equations may be applied to the set of predictor values of

any new observation (for which the outcome has not yet been observed) and the simulated outcome measures may be suitably

summarized to generate the predicted value. The latter is essentially the approach taken in recent contributions by Erler et al.

(2016) and Erler, Rizopoulos, Jaddoe, Franco, and Lesaffre (2019), for example, which is also a good recent illustration of the

methodology. This approach is likely optimal from the predictive point of view. Nevertheless, it may still suffer from practical

drawbacks.

1. The approach is intrinsically of much higher complexity than is customary in current traditional clinical application. Some

users may have philosophical objections to the use of the fully Bayesian approach.

2. The method is difficult to implement and requires a high level of technical expertise and knowledge of Bayesian computing,

which will usually be lacking.

3. The Bayesian approach may be difficult to validate, particularly in situations with small to medium sample sizes when a

separate set-aside validation set cannot be made available. This applies particulary when cross-validation must be used.

The last is probably the most serious, besides the need to abandon the traditional Rubin multiple-imputation compromise

framework and associated software with which many researchers will be familiar. In the remainder of this paper, we restrict

to cross-validation and formulate a pragmatic approach to approximate the predictive calibration described in Section 2.2 as

closely as possible using existing MI software, while also allowing for cross-validation.

To achieve this, we first describe a general approach to validation, which allows outcome data 𝑌 to be set-aside for subsequent

validation of prediction rules, while also allowing for the imputation of any missing data �̃�𝑚 and 𝑿𝑚 in the corresponding

validation and calibration predictor sets, respectively (Section 3.1). We then propose an algorithm that directly estimates the

outcomes by pooling predictions and contrast this with an alternative approach based on direct applications of Rubin’s rule

(Section 3.2) for the estimation of model parameters. Although our discussion focuses on cross-validation, it could be adapted

in an obvious manner for a single set-aside validation set.



728 MERTENS ET AL.

3.1 Combining cross-validation and multiple imputation
A simple approach to set-aside outcome data and generate (multiple) imputations, while preventing the problems described

in the end of Section 1 and Section 2.2, is to remove the complete set of outcomes 𝑌 from each left-out fold, which is defined

within the cross-validation. (Alternatively, if we have a separate validation set, we combine the validation and calibration data,

after which we remove the outcomes corresponding to the validation set from this combined data set.) Imputation models may

then be fit on the remainder of the observed data (�̃�𝑜,𝑿𝑜, 𝑌 ) and imputations can be generated from these models, including

for any unobserved data �̃�𝑚 in the left-out fold predictor set. In other words, the outcomes are artificially set to “missing”

within the set-aside validation fold. After imputation of the missing observations in the predictors, a suitable prediction model

can be fit on the imputed calibration data (�̂�𝑚,𝑿𝑜, 𝑌 ). We then apply this model to predict the outcomes from the imputed

validation predictor data ( ̂̃𝑿𝑚, �̃�𝑜). The outcomes 𝑌 are then returned to the left-out fold, after which the entire procedure

can be repeated for the next fold within the entire cross-validatory sequence. Note that the imputed values for 𝑌 are simply

discarded.

3.2 Combining predictive calibration with multiple imputation
With the above implementation of multiple imputation and validation, there are two basic approaches to calibrate prediction

rules with multiple imputations, while allowing for cross-validation assessment of predictions for the set-aside outcome data

with existing MI software.

The first is to define the folds on the complete data set, after which a single imputation and corresponding predictions for

the set-aside outcomes are generated for each fold as described above. This procedure generates a complete set of predictions

across the entire data set based on application of single imputation, after which we may redefine the fold definition and repeat

the procedure. In this manner, we generate a large set of cross-validated predictions
̂̃
𝑌 𝑖𝑘, across all observations 𝑖 = 1,… , 𝑛

and for 𝑘 = 1,… , 𝐾 for 𝐾 repetitions of the approach. Prediction and multiple imputation are thus entwined in this approach

and the final prediction can be derived by taking means or medians or other suitable summary, across the 𝐾 predictions within

each individual.

The second approach uses only a single fold definition, which is kept fixed across multiple imputations. For each left-out fold

in turn, 𝐾 (multiple) imputations are then generated on the corresponding calibration and validation predictor data (�̃�𝑜,𝑿𝑜, 𝑌 )
(with outcomes again removed from the set-aside validation fold), after which Rubin’s rule is applied to obtain estimates of the

model parameters in a single consensus model. The latter single model can then be applied to generate—in principle—predictions

on the 𝐾 imputed predictor sets ( ̂̃𝑿𝑚𝑘, �̃�𝑜), 𝑘 = 1,… , 𝐾 such that we have in full generality again 𝐾 cross-validated predictions

for each individual. The latter will of course all coincide for complete records.

A fundamental difference between the first and second approach is that we use 𝐾 distinct models for the prediction of a

single observation in the first, while there is only a single (Rubin’s rule combined) model used in the second method. The other

difference is the extra variation in fold definitions in the first approach. Alternatively, Approach 1 can be seen as a compromise

approximation to the calibration of the predictive density as described in Section 2.2 and which can be implemented using

standard software. Approach 2 on the other hand uses the model

𝑓 (𝑌 ∣ 𝜷𝑀𝐼,𝑿),

which is obtained by using the pooled (Rubin’s rule) model parameters as plug-in point estimators in the assumed substantive

population model. Figures 1 and 2 display the structure of both approaches in the case of logistic regression with multiple

imputation and cross-validation for the analysis of binary outcome (see also the algorithmic descriptions in the supporting

information). In addition to these two approaches, we also investigated a third, which is a variant of Approach 2. It consists of

also averaging the imputations within the predictors (in addition to averaging the generated regression coefficients) within each

individual, and then apply the pooled regression coefficient to the predictor data with missing values replaced by the averaged

imputed values (Marshall et al., 2009). Code and data are implemented in an R package “mipred” and available on CRAN and

Github (https://github.com/BartJAMertens).

We finally point out that it is implicit in the above matrix notation that different observations may have missing values in

distinct covariates. Indeed, the above algorithms do not even formally require calibration and validation sets to have missing

observations on the same predictors, although from a statistical point of view, different patterns of missingness could give rise

to obvious concerns regarding the underlying sampling mechanisms.

https://github.com/BartJAMertens
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fth fold

Pool predic�ons

jth fold
vth fold

,2

. . . 

. . . 

. . . 

ith

,

. . . 

(− ) (− )

Apply each model to the left-out (imputed)

predictors in the validation set to obtain the 

prediction.

,1

(− )

To generate K
imputa�ons, 
generate K copies 
of the data matrix.
For each matrix, 
define a new fold 
par��on
consis�ng of L
folds.

For each imputed matrix, estimate a model on the 

calibration fold corresponding to the 

complementary validation fold containing the ith

observation.

ith

Matrix with outcome vector Y and corresponding design matrix X. The crosses denote missing observa�ons in predictors.

To cross-validate predic�ons for the ith observa�on, iden�fy its 
fold in each par��on and remove the corresponding outcomes Y 
in that (valida�on) fold. Now generate a single imputa�on on each
of these data matrices with those valida�on outcomes removed.
We obtain K imputed matrices consis�ng of two complementary 
calibra�on and valida�on folds with outcomes deleted from 
valida�on folds.

Single imputa�on

F I G U R E 1 To predict outcomes through cross-validation, Approach 1 defines 𝐾 distinct fold partitions on 𝐾 copies of the data-matrix. A

single imputation is then generated on the data, with outcomes deleted from the validation fold containing any 𝑖th observation. After imputation, the

prediction model is fitted on the complementary calibration set and applied to the (potentially imputed) predictor data in the validation fold. This

provides 𝐾 predictions for each 𝑖th observation, which can be averaged or combined using other suitable summary measure into the final prediction

𝑃 𝑖
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ith  observa�on 

. . .  

Generate K imputa�ons on this 
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the lth fold 
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Save the K cross-validated regression 
parameters for the lth valida�on fold. 

. . .  

,1 ,. . .  

(− ) (− )(− )

Pool parameters  
(− ) , k=1,…,K 

,2
 

Define a fold par��on consis�ng 
of L folds and keep this fold 
defini�on fixed across 
imputa�ons. Consider each lth 
fold in turn as a valida�on set 
and remove the corresponding 
outcomes Y from that fold. 

X 

Matrix with  
outcome 
vector Y and 
corresponding 
design matrix 
X. The crosses 
denote missing 
observa�ons in 
predictors. 

F I G U R E 2 Approaches 2 and 3 use the same fold-partition across 𝐾 copies of the data matrix. To generate cross-validated predictions for

each (validation) fold, outcomes are first removed from that fold and 𝐾 imputations (multiple) are performed on this outcome-deleted matrix. 𝐾

models are then generated on the 𝐾 imputed calibration portions of the data, which are combined in a pooled model. This combined model is then

applied to the (imputed) data in the set-aside validation folds
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4 DATA

We consider two data sets from our personal statistical consultation experience to illustrate and assess the proposed method-

ologies. Both examples investigate variation in all-cause mortality in prospective cohort studies. The first of these (cardiac

resynchronization therapy [CRT] data) studies a population subject to increased cardiovascular risk which underwent CRT to

identify patients at most risk in order to improve treatment decisions. A consecutive sample of 1053 patients was collected by the

Department of Cardiology of the Leiden University Medical Centre (Leiden, The Netherlands) with recruitment from August

1999 to July 2013. A Cox model was constructed using 14 predictor variables (atrioventricular junction ablation, age, gender,

etiology, New York Heart Association class, diabetes, hemoglobin level, renal function, left bundle branch block, QRS duration,

atrial fibrillation, left ventricular systolic [Lvdias] and diastolic functions, and mitral regurgitation); see Höke et al. (2017) for

details. There were 524 patients (50%) with missing observations in predictor variables. These missing observations are fur-

thermore almost completely concentrated in a single predictor variable (Lvdias), with negligible numbers of missing values in

a restricted set of other predictors. Missing observations for Lvdias were due to failure of the measuring device. Hence, it may

reasonably be assumed to represent a missing completely at random example, as missing data are caused by failure of equipment.

This does not apply to the second data set (chronic lymphocytic leukemia [CLL] data), which describes risk factors and

outcomes of patients with CLL after a hematopoietic stem cell transplantation. The data were originally extracted from the

registry of the European Society for Blood and Marrow Transplantation. Thirty-two centers contributed to a data quality

initiative in which these data were checked and enriched, which resulted in the data set of which an extract is presented here. This

contains all 694 patients but only the variables selected in the risk factor analysis for overall survival are included in the analyses

presented in the current paper (Schetelig et al., 2017a; Schetelig et al., 2017b). The predictor variables are related to the patient

(age and performance status as measured by the Karnofsky Index, both at transplantation), disease (cytogenetics, remission

status), previous treatment (autologous transplantation), and procedure (human leukocyte antigen [HLA] and sex match

between donor and patient). The data contain 241 records with predictor missing values (35%) mainly scattered across three

predictor variables. These are performance status (9% missing), remission status (6% missing), and cytogenic abnormalities

(25% missing).

In this paper, we performed no variable selection and the full set of available predictors was fit (see comments in Marshall

et al., 2009, on prespecification of covariates in predictive modeling, p. 2) for both the CRT and CLL data (14 and 8, respectively).

For the CRT data, this corresponds to the analysis approach in the original clinical research paper (Höke et al. (2017).

To simplify the methodological and data-analytic development, we restrict ourselves in this paper to early death within a

fixed time window following patient study inclusion. This allows us to simplify to the analysis of binary outcome and logistic

regression. Censored observations are treated as nonevents. For the CRT data, we consider the first two years of follow-up, for

which we have 153 deaths and 38 censored records (3.6%). For the CLL data, we only investigate one-year survival where we

have 184 early deaths and 46 censored records (6.6%).

5 APPLICATION AND RESULTS

We applied Approaches 1, 2, and 3 to both the CRT and CLL data. Each approach was applied using either 𝐾 = 1 (single

imputation), 10, 100, or 1000 as number of imputations. In addition, to allow for an assessment of variation due to imputation,

we repeated each application by generating 10 replicate analyses for each choice of 𝐾 . We may then summarize the changes that

occur in the cross-validated predicted probabilities caused by changing the imputations used in the calibration, by comparing

the distinct predictions between replicates. We consistently used 𝐿 = 10 (number of cross-validation folds) throughout. Within

any application of a method, we calculated the final cross-validated predicted probability of the binary outcome using both the

mean and the median across the 𝐾 calibrated probabilities within an individual (note the latter will be constant by definition

for patients with completely observed records [no missing predictor values] in Approaches 2 and 3). As we found very little

difference between either the mean- or median-based results, we decided to only present mean-based summaries in this paper.

To pool regression coefficients in Approaches 2 and 3, Rubin’s rule (mean averaging) was used. Note that all approaches coincide

for 𝐾 = 1. We emphasize that all summary performance measures are calculated on cross-validated predictions as output by

Approaches 1, 2, and 3 (Figures 1 and 2).

All analyses were carried out using R (3.4.3) (R Core team, 2017). Multiple imputations were generated using the package

MICE (2.46) (van Buuren, Boshuizen, & Knook, 1999) and using chained equations and standard settings (van Buuren, 2015).
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5.1 Summary measures
We focus on accuracy as measured by the Brier score (see Hand, 1997, section 6.5, p. 107) as well as a variance measure, which

is introduced below, to compare performance between approaches on the real data.

The Brier score is calculated for each 𝑟th replication of an analysis with any approach for a fixed choice of 𝐾 as

𝐵𝑟 =
1
𝑛

𝑛∑
𝑖=1

(𝑃𝑖𝑟 − 𝑌𝑖)2, (6)

with 𝑃𝑖𝑟 the estimated (cross-validated) event probability for the 𝑖th individual in the 𝑟th replicated analysis and 𝑌𝑖 the true class

indicator. We average the 10 within-replicate Brier scores 𝐵𝑟, 𝑟 = 1,… , 10 to obtain an estimate 𝐵 of the expected accuracy for

the investigated approach at the number of imputations 𝐾 .

The second summary is a measure of the amount of variation between replicate predictions 𝑃𝑖𝑟 for an approach with a fixed

number of imputations 𝐾 and is defined as follows. We first calculate the mean prediction 𝑃 𝑖 across replications for each patient

as well as the deviations 𝐷𝑖𝑟 = 𝑃𝑖𝑟 − 𝑃 𝑖. While these deviations 𝐷𝑖𝑟 are heteroscedastic, their variation will be approximately
constant across patients with 0.2 ≤ 𝑃 𝑖 ≤ 0.8 (Cox & Snell, 1989). We therefore discard all deviations corresponding to patients

with 𝑃 𝑖 < 0.2 or 𝑃 𝑖 > 0.8 and compute the 90th and 10th percentiles 𝑄0.9 and 𝑄0.10 across all remaining deviations 𝐷𝑖𝑟. Finally,

we report 𝑅 = (𝑄0.9 −𝑄0.10) × 100 as a measure of spread of predictive probabilities induced by imputation variation (expressed

as percentage). While this variance measure is ad hoc, it has the advantage of providing an absolute measure of the change in

predicted probabilities directly at the probability scale. It is not affected by choice of transformation, such as variance stabilizing

transform or the need to back-transform to the original scale.

We calculated the above measures for both data sets and for 𝐾 = 1 (single imputation), 10, 100, and 1000. For the Brier

score, the calculation was first carried out using all cross-validated predictions across all patients. Then, we partitioned the set

of cross-validated predictions into the subset corresponding to patients with fully observed records (no missing data) and the

subset corresponding to patients with predictors containing some missing values. We then repeated the Brier score calculation

for each subset of cross-validated predictions separately. Likewise, the variance measure 𝑅 was calculated separately in each of

both partitions (fully observed individuals and missing-data portion). It is important to note that this is not to be confused with

“complete case analysis,” as the previously described Approaches 1, 2, and 3 are always applied to the full data set. Partitioning

only takes place for the calculation of the summary measures, once the derived cross-validated predictions have been obtained

from the procedures applied to the full data. We also emphasize that all results are based on cross-validated predictions. Our

reason for splitting up the summary measures calculations on partitions as described above is that, there will obviously be much

more variation due to imputation for patients with missing predictors, as their variation is affected by both the direct variation in

the imputed predictors, as well as the imputation variation of calculated regression coefficients. Predictions from “fully observed

records” are only affected by the latter.

5.2 Accuracy results
Figures 3 and 4 display results for Brier scores. The different plotting symbols 1, 2, and 3 distinguish between the three

approaches. As expected, Brier scores are always higher when calculated on records containing missing values, due to the

greater uncertainty induced through the need to estimate these in imputation. Results calculated from the complete data are a

compromise between Brier scores on the fully observed cases and those for records containing missing data.

Crucially, for accuracy, results do not seem to differ between the approaches, whether investigating the CRT or CLL data. For

the CRT data, we notice a small decrease in Brier scores from 𝐾 = 1 to 𝐾 = 10 in both the missing data and when calculated

across the entire data set. The same effect cannot be seen in the fully observed part of the data, which indicates that the slight

gain in accuracy is due to the increased precision gained by multiple as opposed to single imputation. There does not seem to

be further gain when increasing imputations beyond 𝐾 = 10, however. In comparison and for the CLL data, Brier scores are

essentially constant across 𝐾 .

5.3 Variation results
Calculating the variation measure 𝑅 for 𝐾 = 1, corresponding to single imputation and for which all three approaches coincide,

gives 𝑅 = 20.6% and 𝑅 = 9.9% when summarizing predictions in the partially and fully observed records, respectively, in the

CRT data. For the CLL data, these numbers are 𝑅 = 15.3% and 𝑅 = 9.6% for partially and fully observed records, respectively.

As expected, predicting from fully observed records is “more easy” in the sense that it is associated with less variability, which
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F I G U R E 3 Average Brier scores for Approaches 1, 2, and 3 evaluated on the CRT data example, plotted versus the number of imputations

used (𝐾 = 1, 10, 100, 1000). Results are presented as calculated on the full data set (middle plot), using records containing missing values only

(left-side plot) and using the complete cases only (right-side plot), but always based on models calibrated on the full data. The plotting symbol (1, 2,

or 3) indicates the approach used
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F I G U R E 4 Average Brier scores for Approaches 1, 2, and 3 evaluated on the CLL data, plotted versus the number of imputations used (𝐾 = 1,

10, 100, 1000). Results are presented as calculated on the full data set (middle plot), using records containing missing values only (left-side plot) and

using the complete cases only (right-side plot), but always based on models calibrated on the full data. The plotting symbol (1, 2, or 3) indicates the

approach used

is a consistent feature of the full results for 𝐾 = 10, 100, 100 with the first approach as shown in Figures 5 and 6. It is due

to prediction for fully observed records not being affected by the variation induced by the need to estimate the unobserved

predictors using imputation, as for the partially observed records, in addition to the variation in regression coefficients induced

by imputation. The most striking feature may however be the magnitude of the absolute deviations among predicted probabilities

fitted for 𝐾 = 1, due to imputation variation.

Figures 5 and 6 show the change in the variation measure 𝑅 when increasing 𝐾 . The behavior is very different between

Approach 1 and Approaches 2 and 3. For the CRT data and Approach 1, increasing 𝐾 to 10 imputations leads to a reduction

of the variation measure to 7.4% and 3.1% for partially and fully observed data, respectively. These numbers gradually further

decrease as we increase 𝐾 to 100 and 1000. Specifically 𝑅 reduces from 7.4%, to 2.3% and 0.8% for partially observed data.

For fully observed data, the reduction is from 3.1% to 0.9% to 0.3%.

We can note how the variation measures reduce similarly for Approaches 2 and 3 with increasing 𝐾 , but very differently from

Approach 1. First note how an increase to 𝐾 = 10 only reduces 𝑅 to 10.1% and 7.5% for Approach 2. Further reductions as

we increase to 𝐾 = 100 and 1000 are much smaller, as we have 𝑅 = 6.6% and 6.5% for partially observed records at 100 and

1000 imputations, respectively. Similarly we have 𝑅 = 6.9% and 6.9% for fully observed records at 100 and 1000 imputations.

Results from Approach 3 are virtually identical.

Only for Approach 1 do we observe a gradual decrease in variation of predictions as 𝐾 increases and as one would reasonably

expect. For Approaches 2 and 3, the gains are however much smaller and nonexistent once we have reached 𝐾 = 100, after

which no further reductions in variation are observed. For any given level of 𝐾 , Approach 1 beats Approaches 2 and 3 in terms
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F I G U R E 5 Percentage deviations of predictions 𝑅 across replicate calibrations for Approaches 1, 2, and 3 in the CRT data example, plotted

versus the number of imputations used (𝐾 = 10, 100, 1000). Results are shown separately for fully observed records (solid dots) and observations

containing missing observations (open dots), but always based on models calibrated on the full data. R measures at 𝐾 = 1 are 9.9% for fully observed

records and 20.6% for missing observations and identical across approaches (hence not shown in above plots)
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F I G U R E 6 Percentage deviations of predictions 𝑅 across replicate calibrations for Approaches 1, 2, and 3 in the CLL data example, plotted

versus the number of imputations used (𝐾 = 10, 100, 1000). Results are shown separately for fully observed records (solid dots) and observations

containing missing observations (open dots), but always based on models calibrated on the full data. R measures at 𝐾 = 1 are 9.6% for fully observed

records and 15.3% for missing observations and identical across approaches (hence not shown in above plots)

of variation and for both fully and partially observed data. Note how the variation measures at 𝐾 = 1000 for Approaches 2 and

3 are barely improving on the variation we can observe at 𝐾 = 10 for Approach 1 already.

For Approach 1, we can note that the payoffs for increased imputation face diminishing returns, although the variation con-

tinues to reduce toward the zero lower bound. It is of interest that only for 𝐾 = 1000 and Approach 1, variation is reduced to

levels which may be acceptable for clinical application.

Results from the analysis of the CLL data (Figure 6) are from a qualitative point of view a complete confirmation of the

above observations. At 𝐾 = 10 and Approach 1, for example, 𝑅 = 4.6% and 2.9% for partially and fully observed records,

with further reductions for increasing 𝐾 more modest but with variation gradually approaching zero. For Approaches 2 and

3, these numbers are 7.4% and 7.1% (Approach 2) and 7.8% and 7.6% (Approach 3) and with negligible further reductions as

𝐾 is increased to 1000. In fact, for the CLL data, variation measures 𝑅 are completely separated between Approach 1 on the

one hand and Approaches 2 and 3 on the other. The lowest variation measure 𝑅 = 6.2 at 𝐾 = 1000 for Approach 2 on partially

observed records, is substantially above 𝑅 = 4.6% for partially observed data for Approach 1 with 𝐾 = 10. Again, we only

achieve variation levels for 𝑅 of 0.5% and 0.3% at 𝐾 = 1000 for Approach 1, which again indicates that imputation numbers

may need to be substantially increased beyond current practice.

Finally concerning Approach 3, we note that neither gain nor loss of performance is observed relative to Approach 2 in terms

of accuracy and variance. Importantly, however, this also implies that using the mean imputation in prediction does not reduce

the performance deficit relative to Approach 1.
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T A B L E 1 Summary description of the simulation scenarios investigated. A 23 design is used, corresponding to all combinations of either Low

(L) or High (H) for the parameters 𝛽0, 𝛽1, and the percentage of missing values. These scenarios are investigated in either the MCAR or MAR case.

See also Figure 7 and supporting information for variance results (𝑅 measure) on these scenarios in the MCAR case

Scenario 𝜷𝟎 𝜷𝟏 % Missing Shorthand Reference Notation
1 −1.39 log(1.1) 10% LLL

2 0.405 log(1.1) 10% HLL

3 −1.39 log(2) 10% LHL

4 0.405 log(2) 10% HHL

5 −1.39 log(1.1) 50% LLH

6 0.405 log(1.1) 50% HLH

7 −1.39 log(2) 50% LHH

8 0.405 log(2) 50% HHH

5.4 Simulation
We use simulations to assess differences between methodologies in terms of mean square error (Brier score) and variation,

but also bias, which cannot be assessed in data-based analyses. Simulations are inspired by the variance–covariance structures

observed in the CRT data. We simulated 100 data sets of 1000 observations each and containing a univariate binary outcome

measure 𝑌 as well as a four-dimensional predictor vector 𝑿 = (𝑋1,… , 𝑋4) for each observation. To simulate each data set,

1000 observations are first drawn for 𝑿 from the multivariate normal 𝑁4(𝜇,Σ), with 𝝁 = 𝟎 and Σ set equal to the observed

variance–covariance matrix of the four continuous covariates in the CRT data set. Binary outcomes are generated from the

Bernoulli distribution with probability 𝑃 , determined by a logistic regression model ln(𝑃∕(1 − 𝑃 )) = 𝛽0 +𝑋1𝛽1 +⋯ +𝑋4𝛽4.

Missing values are then introduced for 𝑋1, either completely at random (MCAR) or at random (MAR). For the MAR scenario,

observations in 𝑋1 are set to missing, based on the simulated binary variable (missing yes/no) from a Bernoulli distribution with

probability 𝑈𝑖 = min[𝑋∗
2𝑖 𝑀∕ 𝑋

∗
2, 1] for each 𝑖th observation, with 𝑀 a constant to control the number of missing values and

𝑋∗
2𝑖 = (𝑋2𝑖 − min(𝑋2))∕(max(𝑋2) − min(𝑋2)).
Simulations are generated with the above setup for eight scenarios in a 23 design corresponding to all combinations of the

following three binary options. Set 𝛽0 = −1.39 or 𝛽0 = 0.405, corresponding to either 𝑃 (1|𝑿 = 𝟎) = 0.2 or 𝑃 (1|𝑿 = 𝟎) =
0.6. Put either 𝛽1 = log(1.1) or 𝛽1 = log(2), keeping the other regression effects fixed for all simulations as 𝛽2 = log(2), 𝛽3 =
log(0.85), and 𝛽4 = log(0.75). Set 𝑀 such that we obtain either 10% or 50% missing values for 𝑋1. Table 1 summarizes the

scenarios and provides the shorthand reference notation used in Figure 7 as well as in the full set of tables and figures in the

supporting information.

For each of the above eight scenarios, cross-validated predictions were generated with Approaches 1 and 2, using the previ-

ously described algorithms and for either 𝐾 = 1, 10, or 100 imputations. For each data set generated, each analysis was replicated

10 times (using a completely new set of imputations) to assess the impact of imputation variation on the predicted probabilities.

The previously described average Brier score 𝐵 and variance measure 𝑅 were calculated. Bias is similarly defined for each 𝑟th

replication as

𝐵𝑖𝑎𝑠𝑟 =
1
𝑛

𝑛∑
𝑖=1

(𝑃𝑖𝑟 − 𝑃𝑖),

with 𝑃𝑖𝑟 the fitted and 𝑃𝑖 the simulated true probability for the 𝑖th individual. This measure is then averaged over all replicates

within each simulated data set to obtain the final average bias measure 𝐵𝑖𝑎𝑠. Finally, this procedure is repeated for 100 distinct

data sets generated from the above simulation setup and the averages are taken of all summary measures for Brier score (𝐵),

variance (𝑅), and bias (𝐵𝑖𝑎𝑠) across all data sets for each scenario.

In brief, the simulations confirm and further support our findings from data analysis. Figure 7 shows results on the variance

measure 𝑅 for simulation scenarios 1 (LLL) and 3 (LHL) in the MCAR case and for 𝐾 = 1, 10, and 100 imputations, respectively,

with similar setup as for the CRT and CLL data analyses (Figures 5 and 6). The full set of figures and table summaries for

MCAR as well as MAR across all scenarios (1–8) can be found in the supporting information. In these figures, each row of plots

corresponds to a single scenario, with the left-most and middle plots displaying results from Approaches 1 and 2, respectively.

The plots to the right show the relative reductions (𝑅2 − 𝑅1)∕𝑅1 of the variance summary measure between Approaches 2 and 1,
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F I G U R E 7 Measures of average percentage prediction deviations (𝑅). The two rows of plots from top to bottom correspond to simulation

MCAR Scenarios 1 and 3. The two left columns of plots show results from Approaches 1 and 2 (as also shown in Figures 5 and 6) versus the number

of imputations used in the calibration of the predictors. The right-side column of plots displays the corresponding relative variance reductions for

Approach 1 relative to Approach 2. See Table 1 for description of the scenarios. Results for all other scenarios and MAR are found in the supporting

information

with 𝑅2 and 𝑅1 the measures from Methods 2 and 1, respectively. The similarity of variance results from Figure 7 (and likewise

for figures in the supporting information) with the data analytic results on the CRT and CLL examples in Figures 5 and 6 is

clear. The key difference between Scenarios 1 and 3 is the much higher variances when the effect size 𝛽1 is large (Scenario 3).

The same is observed in the supplementary results for Scenarios 4, 7, and 8 versus all other scenarios (1, 2, 5, 6). Otherwise,

variance patterns are similar from qualitative point of view. Results from the MAR case are virtually identical to those from

MCAR and can be found in the supporting information.

The supporting information contains tables for all statistics, summarizing the variance, Brier, and bias measures for both the

MCAR and MAR scenarios and 𝐾 = 1, 10, and 100 imputations, respectively, with Monte Carlo standard errors (MC SEs). The

previously described levels of the simulation parameters 𝛽0, 𝛽1, and 𝑀 are denoted in these tables as either low (L) or high (H)

(see also Table 1). In addition, the supporting information displays figures of these tabulated results for the bias and Brier score

measures discussed above across all scenarios. These figures also show relative reductions for Brier score and bias measures

between approaches, with compatible definition to the above for variance.

The key results are again found in the systematically and substantially lower levels of variation observed for the first approach

(A1 in the tables) across all scenarios investigated, as compared to the second approach (A2), although the absolute levels of

variation are less extreme than observed in the real data. Variation tends to be lower when predicting from fully observed records

as compared to prediction with records containing missing data, but again this applies particularly to the first approach. Reduced

variation for prediction of fully observed records is not observed as consistently for Approach 2 and the variance reductions are

also smaller. Note how the relative differences between Approaches 1 and 2 increase with increased numbers of imputations, in

favor of Approach 1. We did not find evidence of important differences between approaches in Brier scores or bias measures for

any scenario. In particular, the relative reduction measures between Approaches 1 and 2 for Brier score and bias are effectively

zero for all scenarios and irrespective of the number of imputations used. Biases tend to be small, except for simulations with 𝛽1
large and when records have partially missing predictors. For these scenarios, we also observed small reductions in Brier scores

when predicting on fully observed records as compared to partially missing records.
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6 CONCLUSIONS AND RECOMMENDATIONS

We have investigated the problem of combining predictive calibration with (cross) validation in prognostic applications, when

multiple imputations are used to account for missing values in predictor data. Instead of following a primarily algorithmic ad

hoc approach, we have commenced with a methodological review of multiple imputation in the predictive setting. Specifically,

we clarified how predictive calibration requires estimation of a different predictive density (Equation (3))—and thus integra-

tion across both missing observations and unknown effect parameters—as opposed to averaging across missing values only

(Equation (1)), which is implicitly implemented in current standard multiple imputation software. Instead of pursuing a direct,

fully Bayesian approach to the calculation of the integrals as in Erler et al. (2016) and Erler et al. (2019), we have proposed

a methodology that estimates by approximation the expectation of the required predictive density. We achieve this by averag-

ing the predictions from individual models fitted on the single imputed data sets within a set of (multiple) imputations that

can be generated with existing multiple imputation software (Approach 1). We contrasted this methodology with direct use of

Rubin’s rules-based model calibrations (Approaches 2 and 3). Finally, we compared methods on accuracy and variance measures

calculated on cross-validated estimates of the predicted probabilities in two real data sets, and in a simulation study.

Results suggest that methodological approaches are indistinguishable with respect to accuracy (Brier score). Large differences

from both the qualitative and quantitative point of view are however observed between Approach 1 (combining predictions) and

Approaches 2 and 3 (pooling regression coefficients), with respect to the variation of predictions for individual patients between

repetitions of the procedure with different imputations (variability due to imputation variation). The following observations can

be made:

1. Absolute levels of variation of predicted probabilities due to imputation variability are very high when predictions are based

on models calibrated using a single imputation only.

2. Use of multiple imputations reduces this variation, but Approach 1 is vastly more efficient at reducing variation of predicted

probabilities as compared to Approaches 2 and 3, for the same increase in imputation numbers.

3. Only Approach 1 appears to have the basic property of variation reducing to zero as the number of imputations increases.

For Approaches 2 and 3, variance measures stabilize once 100 imputations have been used and do not reduce further.

From these observations, the following general recommendations can be formulated on the use of imputation to account for

missing values, when the primary objective is to predict (binary) outcome in future patients, based on models calibrated on

previously observed data from the same population.

1. Multiple imputations must be used to reduce the variation of predicted probabilities which is due to imputation. Use of single

imputation in predictive calibration should be rejected and the practice phased out, irrespective of the prediction methodology

chosen when imputation is applied.

2. One should use direct averages or other suitable combination of the individual predictions (Approach 1), obtained from the

models fitted on the individual imputed data sets within a set of multiple imputations, instead of application of a single

combined model for prediction, such as given by the Rubin’s rules pooled model (Approaches 2 and 3), for example.

3. Numbers of imputations used in predictive modeling must be drastically augmented above current practice to reduce variation

to levels suitable for routine clinical application. While numbers closer to 1000 imputations or beyond may be needed, this

issue requires further research and dedicated procedures to estimate imputation numbers in specific applications. A literature

review (Marshall et al., 2009, p. 6) indicates the majority of clinical applications used between 5 and 10 imputations.

We emphasize that the results from this paper in favor of Approach 1 are relevant when applying statistical models specifically

for the primary purpose of prediction. If the objective is instead to learn about the nature of the dependence of outcome on

predictors, as in etiologic research, for example, then the findings described in this paper are not relevant. Put simply, if we are

only interested in reporting effect estimates and their standard errors, we continue to use the classical results and methods on

application of Rubin’s rules for pooling of multiple models described in existing literature (Carpenter & Kenward, 2013; Carlin,

2015). Conversely however, even when we are specifically interested in calibration of a predictive rule, this does not imply that

the Rubin’s rules pooled model suddenly becomes uninteresting or irrelevant. Indeed, even though we should use averages or

other combinations of predictions from distinct models on multiple imputations as described in this paper, we may still wish

to report information about the extent to which the constituent prediction models that contribute to this combined prediction

vary between one another across the imputations. Likewise, we would like to get a sense of the “average model.” The Rubin’s
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rules pooled model and standard errors are well suited for this purpose. This information may continue to be reported in applied

papers, side-to-side with summary measures on the predictive potential of the combined predictor.

7 DISCUSSION

Irrespective of the above results, we hope our paper would stimulate the medical statistical community to propose future work on

a combination of multiple imputation, predictive calibration, and validation by reference to the methodological outline described

in Section 2 of this paper. In principle, pursuing a fully Bayesian approach would ensure such rigor as it automatically leads to

calibration of the required integrals described in Section 2. The recent papers by Erler et al. (2016, 2019) are an example of this

approach, although specifically concerned with the analysis of repeatedly observed longitudinal outcome data and thus outside

the scope of our contribution. Indeed, our proposed methodology (Approach 1) may be viewed as an approximation of such

fully Bayesian implementations with existing software. An alternative to Bayesian modeling might be to adapt existing multiple

imputation software such that it allows to save the imputation model equations for use in the imputation of future observations,

which may have missing predictor values.

Ideally novel software should facilitate modeling of the substantive outcome to be predicted, such that both objectives (impu-

tation and predictive modeling) can be achieved simultaneously. To our knowledge, current multiple imputation software is

restricted to estimation of (pooled) regression (effect) measures and standard errors within a fixed data set. We should also point

out that, with exception for the analysis of continuously distributed data using the joint multivariate normal (Hughes et al., 2014)

and again as far as we are aware, the MICE software on which the implementation of approaches described in this paper relies

on (as for similar imputation software in STATA or SPSS, for example) has no solid theoretical basis, and specifically cannot

be interpreted as a formal “Gibbs sampling” implementation. This of course in turn also constrains the theoretical underpinning

of the implementations of approaches compared in this paper, which are based on MICE.

7.1 Imputation, variance, and bias
In the next few paragraphs, we highlight specific issues where our paper makes contributions to current literature. First, our work

has reviewed imputation methodology and its connection with predictive density calibration, which may be viewed as underlying

ideas present in a more rudimentary manner in the paper by Miles (2015), in addition to an extensive practical assessment. The

paper by Miles concludes with a more equivocal assessment between predictive approaches, which is however largely due to

the exclusive focus on mean square prediction error. It is remarkable that current literature on multiple imputation in prediction

applications ignores the impact of the large variability associated with imputation. An important contribution of the present paper

is to show that this imputation variation affects the resulting prediction in very different ways between the approaches studied

with prediction averaging the clear winner. From the predictive point of view and when imputation is used, variation may be at

least as important as potential bias, if not more. Indeed, trading variance for bias is a successful prediction calibration strategy

utilized in shrinkage estimation, for example (Hastie, Tibshirani, & Friedman, 2008). To stress the importance of variation

when studying predictive calibration with imputations is consistent with the focus on variation due to imputation in the existing

literature concerned with application of multiple imputation for effect estimation. We hope that future work will have greater

attention for the assessment of predictive variation.

7.2 Imputation, predictive performance assessment, and validation
The (cross) validatory implementations proposed in our paper avoid the inherent bias caused by using the same data for both

model fit and the presented predictive assessments. Failure to do so is a persistent weakness that invalidates comparisons made

and presented in current literature, including the papers by Miles (2015), Wood et al. (2015), and even the contribution from

Wahl et al. (2016). If one only wishes to assess prognostic performance, then an alternative approach discussed by some authors

is to directly apply Rubin’s rules to measures of “model fit and performance,” calculated on models fit to single imputations,

as described in (Marshall et al., 2009, see p. 3 of the paper), but the idea is also implicit in Wood et al. (2015). To discuss the

relative merits of this procedure to those investigated in this paper, we need to keep the central objective and paradigm studied

in this paper in mind. This is to investigate, in the context of missing values and imputation, the problem of how to calibrate

predictive methods on the one hand—and how to assess them on the other. The fundamental process used in the paper is that any

method eventually used for prediction should be specified before application to the prediction of new outcome data, such that

any predictive performance measure can be calculated on predictions obtained from application of such models and may thus be
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unambiguously ascribed to that specific prediction method. This paradigm is an established principle and should not be put in

dispute, even when investigating missing data problems. The paper achieves this objective by considering various formulations

of how predictive rules could be calibrated in the presence of missing data—one being to plug in pooled estimates of unknown

parameters calculated using distinct numbers of imputations for missing values—the other an approach that integrates out the

missing values by approximation using distinct numbers of imputations. The paper implements these methods for various choices

of the numbers of imputations and then applies them to outcome data that have not previously contributed to the calibration of the

models to obtain the performance measures. As such, we adhere to basic principles of model building and subsequent assessment.

A Rubin’s rule average of performance estimates from individual prediction models, each fitted on a single imputation, might

be viewed as an estimate in the above described sense, as what could be expected on average from a prediction model estimated on

a single imputation, with the standard deviation giving a measure of uncertainty due to changes in the individual predictions from

one (single imputation–based) model to the next. As the current paper demonstrates, however, this procedure unfortunately does

not generally give the performance estimates, with the above interpretation, for either the Rubin’s rule pooled model, or for the

prediction-averaging approach (see Figures 5 and 6, as well as simulation results). An advantage of direct application of Rubin’s

rules pooling of performance estimates is that it can give estimates of standard errors on the pooled summary performance

estimate. Easy availability of a standard error is however no guarantee of the suitability of a statistic as an estimator. Standard

error calculation of summary performance estimates for the prediction methods discussed in this paper could be achieved in

principle through error propagation. Methodologies to implement this would need to be developed and themselves validated.

7.3 Imputation for prediction and machine learning
The methodology presented in this paper explicitly allows for and accommodates the imputation of missing data in the predictors

of new observations to be predicted (as explained Section 3.1). The recent paper by Mercaldo and Blume (2018) is relevant in this

context for the interesting introductory overview on current approaches to imputation in prediction (Section 1.2). Indeed, authors

state that in imputation-based approaches “… the additional out-of-sample record should be combined with the original data,

and the full imputation algorithm should be refit to properly fill in missing values.” Obviously, this is a complicating aspect of

imputation-based solutions and difficult to achieve, but it is precisely this approach that is fully implemented and evaluated in our

paper. An alternative, if we wish to avoid this difficulty, is to avoid imputation altogether by calibrating multiple prediction scores

for distinct missingness patterns in the data and then only apply those scores that are compatible with the fully observed data

portion of the new record to be predicted. The Mercaldo and Blume paper investigates this approach extensively. The practice of

augmenting the original calibration data with the out-of-sample data in imputation for practical prediction application requires

further study, which we hope to carry out in future research and publication.

We should point to an obvious connection between machine learning, particularly ensemble learning, and Approach 1. It

is known that ensemble methods, for example, Breiman (1996), Wolpert (1992), and (Hastie et al., 2008, section 8.8), can be

highly effective at variance reduction through averaging of predictions from multiple constituent models. The latter are usually

obtained through refitting of some base model, often after perturbation of the data in some sense, such as bootstrapping. In

our case, the perturbations can be thought of as arising from distinct realizations of the required imputation. Breiman (1996)

explains how averaging methods, as for Approach 1, can produce large predictive gains when “instable” predictors are combined.

In connection to machine learning methodology, it is also of interest to note that Approach 1 is generally applicable across all

prediction methods, irrespective of whether these have a formal statistical methodological foundation, whereas Approach 2 can

only be applied to the subclass of prediction models for which Rubin’s rule pooling of model coefficients can be applied.

7.4 Data-based evaluation, implementation, and relevance
Finally, we hope our paper would stimulate the medical statistical community to evaluate model approaches on real data and

to study data-based summary statistics such as accuracy or direct measures of variance as in this paper—and not solely rely

on simulations that can too easily be adapted or selected to suit researchers’ needs or preconceived ideas. Current literature on

predictive calibration and validation with imputation typically reverts to simulations-only evaluations, sometimes presented as

“data-based” simulations. See also Boulesteix et al. (2018) for a recent discussion on improving simulation studies.

We conclude with two remarks on implementation and relevance. First, we have consistently used means to pool the predicted

probabilities (as for the regression coefficients using Rubin’s rule) in this paper. One could however imagine other choices, such

as averaging at the logit scale, use of medians, and so on, which would not substantially alter the nature of the approaches shown.

For the research in this paper, we have recalculated all results using medians and found results that are both from a quantitative,

and hence also qualitative, point of view near identical to the results shown here. We also visually inspected the distributions of
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probabilities averaged and found them to be near-symmetric near the mode. To simplify the presentation, we therefore decided

to use the mean throughout.

Our paper has focused on logistic regression for binary outcome in prognostic studies. We have already pointed out that

our results and conclusions are likely to apply to prediction problems with generic outcome and should thus be viewed as of

general relevance to the statistical literature on prediction and are unlikely to restrict to binary outcome only. Likewise, we

anticipate that similar conclusions will apply to models beyond logistic regression studied here. For prognostic studies and to

achieve full generality, the extension to life-time outcomes in the presence of censoring should also be investigated, particularly

for Cox models. This entails some special complications apart from censoring, particularly the need to also address variation in

baseline hazards as well as special considerations as to how censored survival outcomes should be accounted for within multiple

imputation (Carpenter & Kenward, 2013, chapter 8). We have executed this research and based on this can confirm that the key

results from the present paper on mean square error and variance for binary outcome do indeed carry over to the survival setting

with Cox regression analysis. The description of this research however requires a separate dedicated paper.
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