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Abstract

Alzheimer’s disease (AD) is a multifactorial disorder leading to progressive memory loss

and eventually death. In this study, an APPswePS1dE9 AD mouse model has been ana-

lyzed for motor cortex theta, beta and gamma frequency alterations using computerized 3D

stereotaxic electrode positioning and implantable video-EEG radiotelemetry to perform

long-term M1 recordings from both genders considering age, circadian rhythm and activity

status of experimental animals. We previously demonstrated that APPswePS1dE9 mice

exibit complex alterations in hippocampal frequency power and another recent investigation

reported a global increase of alpha, beta and gamma power in APPswePS1dE9 in females

of 16–17 weeks of age. In this cortical study in APPswePS1dE9 mice we did not observe

any changes in theta, beta and particularly gamma power in both genders at the age of 14,

15, 18 and 19 weeks. Importantly, no activity dependence of theta, beta and gamma activity

could be detected. These findings clearly point to the fact that EEG activity, particularly

gamma power exhibits developmental changes and spatial distinctiveness in the APPs-

wePS1dE9 mouse model of Alzheimer’s disease.

Introduction

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder resulting in progres-

sive cognitive decline and memory loss. Histologically, AD is characterized by extracellular

amyloid plaques based on the excessive accumulation of amyloid beta (Aβ) peptides in the cen-

tral nervous system (CNS) [1–3]. Aβ peptides are cleavage products derived from the amyloid

precursor protein (APP) via sequential endoproteolysis by specific secretases, i.e. beta-site

amyloid precursor protein cleaving enzyme 1 (BACE-1) and γ-secretase [4]. The length of Aβ
peptides ranges from 36–43 amino acids [5]. In general, the abundance of Aβ1–40 is higher
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compared to Aβ1–42, the latter being prone to aggregate and exhibiting enhanced cytotoxic

effects [6]. Various APP mutations, such as Swedish double mutation KM670/671NL were

reported to be pro-amyloidogenic as they can facilitate the generation of toxic Aβ1–42 peptides

[7]. In addition, mutations in presenilin (PS)-1 and 2 that serve as catalytic sites for γ-secretase,

can further aggravate the production of pro-amyloidogenic Aβ1–42 [8]. Apart from the Aβ pla-

que formation, AD neurons can also exhibit neurofibrillary tangles resulting from intraneuro-

nal deposits of hyperphosphorylated tau (τ) protein [9, 10].

Numerous transgenic mouse models of AD supposed to fulfill the criteria of homology,

isomorphism and predictability have been generated in the past [11, 12]. These models dis-

play age-related AD-specific alterations such as Aβ plaques, axonal and synaptic dystrophy,

reduced synaptic plasticity and impaired learning and memory function [13–15]. Here we

use an APPswePS1dE AD mouse model which is characterized by the Swedish double muta-

tion (APPswe) cointegrated with human PS1 with exon 9 deletion (PS1dE9) [16–18]. These

mutations result in overproduction of APP and PS1 splice variants with subsequent increase

in neural Aβ load. Furthermore, transgenic mice display Aβ1–42 overload which might be

associated with increased mortality and sudden death [19–21]. Based on the proictogenic

effect of intracellular Aβ accumulation, it has been speculated that seizure activity might be

responsible for sudden death in this model [22, 23]. APPswePS1dE9 mice develop first Aβ
plaques around 4 month of age, particularly in the cortex and hippocampus. This coincides

with a mortality peak around 3–4 months of age [24, 25]. At the age of 6 months memory def-

icits in radial arm water maze are prominent [26] whereas at 12 months, mice start exhibiting

behavioral and cognitive deficits detectable in spatial navigation, reference learning and Mor-

ris water maze.

Cognitive alteration and learning and memory deficits are accompanied by complex cen-

tral dysrhythmia, particular within the cortex and septohippocampal system [27] affecting

theta and gamma activity [27]. Previous studies have investigated the electrical activity and

specific frequency characteristics from electrocorticograms and other deflections in APP

transgenic mice [4, 21, 22, 28–30]. Recent investigations [21, 30] focused on the analysis of

early Alzheimer’s disease stages (animals aged 2.5–4.5 months) as this critical time range

marks the first appearance of amyloid plaques. Lately, we performed a long-term radiotele-

metric study of hippocampal frequency characteristics in young adult (14–19 wks old) APPs-

wePS1dE9 mice using a Fast Fourier Transformation (FFT) based approach [31]. Automatic

seizure detection unraveled severe gender-specific electroencephalographic seizure activity

in both M1 and CA1 deflection. Seizure activity in APPswePS1dE9 exhibited high variability

as has been reported for other AD mouse models before. Importantly, hippocampal EEG fre-

quency analysis elicited complex age, gender and activity dependent alterations in the theta

and gamma range [31]. Females displayed an antithetic decrease in theta (θ) and increase in

gamma (γ) power at 18–19 weeks of age whereas related changes in males appeared earlier at

14 weeks of age. Furthermore, θ and γ power alterations in female APPswePS1dE9 turned

out to be most prominent in the inactive state suggesting an impairment of atropine-sensi-

tive type II theta in APPswePS1dE9 mice. These results clearly demonstrate that systemic

electrophysiological alterations occur before any clinical signs of Alzheimer’s disease can be

detected in these mice.

Here we present a systematic FFT-based frequency analysis and multi-parameter, i.e. gen-

der, age and activity dependent longitudinal investigation of θ, β and γ activity in the cortical

M1 EEG under unrestrained long-term recording conditions in young adult (14–19 wks old)

APPswePS1dE9 mice.

Cortical Theta, Beta and Gamma Architecture in APPswePS1dE9 Mice
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Materials and Methods

Study animals

In this study APPswePS1dE9 transgenic mice with a C57BL/6J background carrying a human

APP with Swedish double mutation (APPswe) cointegrated with human PS1 with exon 9 dele-

tion (PS1dE) were used [16, 17]. The experimental animals (B6.Cg-Tg(APPswe, PSEN1dE9)

85Dbo/Mmjax, MMRRC stock no. 34832-JAX) were purchased from Jackson Laboratory. In

total, 21 control animals (10 ♂, body weight: 26.94 ± 0.64 g; 11 ♀, body weight: 21.23 ± 0.53 g)

and 20 APPswePS1dE mice (9 ♂, body weight: 26.16 ± 0.56 g; 11 ♀, body weight: 21.73 ± 0.35

g) were analyzed in this study gender-specific. All experimental animals were housed in groups

of 3–4 in clear Makrolon cages type II with ad libitum access to drinking water and standard

food pellets. Mice were maintained at a temperature of 21 ± 2˚C, 50–60% relative humidity,

and on a conventional 12h light/dark cycle beginning at 5:00 a.m. using ventilated cabinets. All

animal experimentation was performed in accordance with the National Institute of Health

Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80–23) revised 1996

or the UK Animals (Scientific Procedures) Act 1986 and associated guidelines, or the Euro-

pean Communities Council Directive of 24 November 1986 (86/609/ EEC) and of September

22nd, 2010 (2010/63/EU). Experiments were carried out according to the Guidelines of the

German Council on Animal Care and all protocols were approved by the Local Institutional

and National Committee on Animal Care (Landesamt für Natur, Umwelt und Verbrau-

cherschutz, LANUV, Germany). Special attention was paid to minimize the animal sample

size and the suffering of mice.

Radiofrequency transmitter implantation for EEG recording

Mice were anesthetized using the volatile narcotic isoflurane (Baxter 100% V/V). Isoflurane

was applied via facemask using a Matrix TM VIP 3000 Calibrated Vaporizer and a scavenger

system from Harvard apparatus (USA) [32–34]. The radiofrequency transmitter TL11M2-

F20-EET (2-channel transmitter, Data Science International (DSI, Germany), specifications:

weight 3.9 g, volume 1.9 cc, input voltage range ± 1.25 mV, amplification factor (voltage gain)

200; nominal sampling rate 250 Hz) was implanted into a subcutaneous pouch on the back of

the experimental animals. The EEG electrodes of the radiotelemetry transmitter were stereo-

taxically positioned via a computerized 3D stereotaxic StereoDrive system (Neurostar, Ger-

many) [32–34].

Epidural electrode placement for electrocorticographic recordings

The differential epidural surface electrode of channel 1 of the TL11M2-F20-EET transmitter

was positioned at the following stereotaxic coordinates referring to the bregma craniometric

landmark: (+)-lead, cranial +1 mm, and lateral of bregma 1.5 mm (left hemisphere). The dif-

ferential electrode targets the primary motor cortex (M1). An epidural reference electrode

was placed on the cerebellar cortex at bregma -6 mm, lateral of bregma 1mm (left hemi-

sphere). Channel 2 of the transmitter was used for deep, intracerebral EEG recording from

the hippocampal CA1 region the results of which were reported elsewhere [27, 33, 34]. The

electrodes were fixed using glass ionomer cement (Kent Dental, UK) and the scalp was

closed using over-and-over sutures (Ethilon, 6–0). As mice are predisposed to hypothermia,

supplemental warmth was given to the animal with a heating pad during the whole surgical

procedure. A detailed description of the stereotaxic electrode placement and transmitter

implantation were previously described in detail [32–34]. For postoperative pain manage-

ment, Carprofen (5 mg/kg, Rimadyl, Parke-Davis/Pfizer, Germany) was administered
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subcutaneously. Mice were given 10 days post-surgery to fully recover. This recovery period

is based on the observation that no differences in basic physiological / behavioral parameters

such as food and water uptake, motor activity, body temperature etc. could be detected

between radiotransmitter implanted, non-implanted, and sham-operated mice 10 days post

surgery [35].

Confirmation of EEG electrode placement

To verify whether electrodes were properly placed in the cortical M1 region, brains were extir-

pated post-mortem and fixed in 4% paraformaldehyde. Subsequently, brains were cut to

60 μm slices using a Vibroslice Tissue Cutter EMS 5000-MZ (Campden Instruments Limited,

UK). Slices were hematoxylin-stained for potential damage or impingement of the cortex. Ani-

mals that exhibited cortical damage were excluded from analysis.

Radiotelemetric EEG data acquisition

The first long-term recording of 48 hrs was performed at day 10 post-surgery from the primary

motor cortex (M1). A second 48 hrs long-term recording was performed at day 17 post-

implantation using both deflections. For EEG data acquisition, the Dataquest ART 4.2 software

(DSI) was used. No a priori filter cutoffs were applied. The nominal sampling rate (f) of the

TL11M2-F20-EET transmitter is 250 Hz. Analysis was performed up to 70 Hz, considering the

transmitter specific bandwidth and the Nyquist-Shannon limit of 125 Hz for this transmitter

type. Note that high quality EEG recordings can be obtained for up to 8 wks. This limitation is

due to ossification processes from the burred drilled holes that can lift the electrodes and

induce EMG or ECG contamination.

Radiotelemetric activity recording and analysis

As the animal moves about in its cage, the telemetry signal transmitted to the receiver antennas

varies in strength. The signal strength may vary due to orientation of the animal relative to the

receiver, or due to the distance of the animal from the receiver antennas. When the signal

strength changes by a certain amount, an activity count is generated. The number of counts

generated is dependent on both distance and speed of movement (acceleration). Note that the

activity data provided by Dataquest A.R.T. is a relative measure of locomotor activity. Activity

analysis was carried out for controls and APPswePS1dE9 mice from both genders.

Analysis of electrocorticographic data

Recordings (48 hrs) of spontaneous EEG activity were performed based on a nominal sam-

pling rate of 250 Hz of the radiofrequency transmitter. EEG data were FFT analyzed using

NeuroScore 2.1 (DSI) in the frequency range of 0.5–70 Hz, comprising the typical delta (0.5–

4 Hz), theta (4–8 Hz), beta (12–30 Hz) and gamma bands of i) 30–50 Hz and ii) 50–70 Hz.

The upper gamma limit (70 Hz) is still below the Nyquist-Shannon limit of 125 Hz, thus FFT

based analysis is valid [36]. The length of the individual EEG epochs that were FFT analyzed

was 2 s. Subsequently, mean relative EEG power [%] was calculated for the individual fre-

quency ranges, for both genders and the individual circadian stages, i.e. two dark (D1, D2)

and two light cycles (L1, L2). In addition, activity data of mice during the conventional 12h

light/dark cycle (starting at 5:00 a.m.) were used to correlate activity in different EEG fre-

quency bands from both deflections with either the active (activity units > 0) or inactive state

(activity units = 0).

Cortical Theta, Beta and Gamma Architecture in APPswePS1dE9 Mice
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Data were statistically analyzed and displayed as mean ± SEM. Statistics for frequency anal-

ysis were carried through by multiple Student’s t-test, corrected for multiple comparison using

the Holm-Sidak method. Most of the statistics and graph presentations were performed with

GraphPad Prism 6 for Windows.

Results

Theta frequency analysis in controls and APPswePS1dE9 mice

Relative theta frequency power was analyzed in the range of 4–8 Hz for the light and dark

cycle for 14, 15, 18 and 19 wks of age (Fig 1; S1 and S2 Files). We further analyzed the influence

of the activity stage. Note that no differences in relative activity could be detected for any of

the ages and circadian cycles studied in APPswePS1dE9 mice and controls [31]. Male APPs-

wePS1dE9 mice exhibited significant increase in relative activity in the light, dark and total cir-

cadian rhythm at the age of 18 wks. No further alterations were detected [31]. Importantly, in

contrast to the complex alterations in hippocampal theta which we reported previously, no sig-

nificant alterations were detected in motor cortex (M1) theta activity in APPswePS1dE9. Sta-

tistical trends were observed in inactive males in the dark cycle at the age of 18 and 19 wks

(32.600 ± 2.834 v. 25.975 ± 1.443, p = 0.0824; 33.515 ± 2.381 v. 27.138 ± 1.272, p = 0.0561; Fig

1AII) and in active males in the light cycle at the age of 19 wks (26.190 ± 1.621 v. 22.578 ±
0.583, p = 0.0808, Fig 1BI).

Gamma frequency analysis in controls and APPswePS1dE9 mice

Relative gamma frequency power was analyzed in the range of 30–50 Hz for the dark (Fig 2A)

and light cycle (Fig 2B) for 14, 15, 18 and 19 wks of age (S1 and S2 Files). We also analyzed the

influence of the activity stage. Whereas our previous study revealed alterations in hippocampal

gamma frequency bands, no significant alterations in the motor cortex lower gamma range of

30–50 Hz range could be detected. For the 50–70 Hz range (Fig 2C and 2D), a statistical trend

Fig 1. Theta frequency analysis of cortical M1 EEG recordings in controls and APPswePS1dE9 mice. The mean relative EEG theta

power [%] was calculated FFT based for males and females considering potential circadian rhythmicity (dark phase (A), light phase (B)).

Frequency analysis was performed for all four ages (14, 15, 18, 19 wks). Black, controls; gray, APPswePS1dE9. Note that only animals

displaying highest quality EEGs (no EMG/ECG contamination) were finally included into the analysis. For sample size see original data.

doi:10.1371/journal.pone.0169654.g001
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was observed in active females in the light cycle at the age of 18 wks (4.134 ± 0.399 v. 5.688 ±
0.655, p = 0.0715, Fig 2DIII).

Beta frequency analysis in controls and APPswePS1dE9 mice

Finally, we analyzed beta (16–30 Hz) frequency power in APPswePS1dE9 (Fig 3, S1 and S2

Files). As for theta and both gamma frequency bands, no significant changes could be detected

for the beta range. Statistical trends were observed for inactive males and inactive females in

the dark cycle at 18 wks of age (8.870 ± 0.869 v. 13.583 ± 2.140, p = 0.0875, Fig 3AII and

10.356 ± 0.966 v. 13.583 ± 1.472, p = 0.0997, Fig 3AIV).

Discussion

Alzheimer’s disease is a neurodegenerative disorder that is accompanied by neural cell loss

that ultimately results in neural network dysfunction, such as dysrhythmia and / or aberrant

Fig 2. Gamma frequency analysis of cortical M1 EEG recordings in controls and APPswePS1dE9 mice. The mean relative gamma

EEG power [%] was calculated FFT based for males and females considering potential circadian rhythmicity (dark phase 30–50 Hz (A), light

phase 30–50 Hz (B), dark phase 50–70 Hz (C), light phase 50–70 Hz (D)). Frequency analysis was performed for all four ages (14, 15, 18,

19 wks). Black, controls; gray, APPswePS1dE9. Note that only animals displaying highest quality EEGs (no EMG/ECG contamination) were

finally included into the analysis. For sample size see original data.

doi:10.1371/journal.pone.0169654.g002
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excitability. We have previously reported that male APPswePS1dE9 exhibit a reduction in hip-

pocampal theta at an age of 14 wks that vanished while animals are getting older [31]. In con-

trast, females exhibited a hippocampal theta power reduction at later stage of 18 and 19 wks of

age. For both genders gamma activity displayed antithetic behavior. Importantly, an activity

dependent analysis further illustrated that the antithetic theta-gamma power distribution in

females was most prominent in the inactive state [31]. These results suggest that hippocampal

theta alterations are most likely to be related to type II theta as the latter is associated i.a. with

alert immobility [22, 27, 31, 37–40]. Disruption of theta activity results in spatial memory defi-

cits, whereas the restoration of theta-like rhythmicity restores learning capabilities in rats [41].

We conclude that inactive mice in both the dark and light phase predominately exhibit alert-

immobility which is accompanied by atropine-sensitive type II theta [42, 43]. Thus, our data

suggest that female APPswePS1dE9 mice in particular demonstrate reduced atropine-sensitive

type II theta at later stages which is likely to be due to septohippocampal impairment during

AD development. In summary, hippocampal theta and gamma architecture in APPswePS1dE9

mice turned out to be gender, age and activity dependent. Most importantly, these findings

and other studies [21, 30] clearly demonstrate that EEG alterations in APPswePS1dE9 mice

already occur at the age of 2.5–4 months when plaques formations initiates, i.e. long before

clinical signs of dementia such as cognitive decline become obvious.

Given this critical time window in early EEG alterations, we investigated potential similar

alteration in motor cortical theta, beta and gamma frequency activity in the APPswePS1dE9

mouse model of AD in this study. Sensorimotor cortex excitability can be altered in Alzheimer

patients [44, 45] and mouse models such as APPswePS1dE9 also exhibit motor impairments at

late AD stage at 12 months of age [46]. The central question we addressed here is whether

early cortical power alterations described in the frontal cortex of 16–17 wks old APPs-

wePS1dE9 mice [30] are also present in cortical M1 deflections.

Notably, our study was carried out under physiological, i.e. spontaneous, conscious and un-

restrained long-term recording conditions taking into account again gender, age and the

Fig 3. Beta frequency analysis of cortical M1 EEG recordings in controls and APPswePS1dE9 mice. The mean relative beta EEG

power [%] was calculated FFT based for males and females considering potential circadian rhythmicity (dark phase (A), light phase (B)).

Frequency analysis was performed for all four ages (14, 15, 18, 19 wks). Black, controls; gray, APPswePS1dE9. Note that only animals

displaying highest quality EEGs (no EMG/ECG contamination) were finally included into the analysis. For sample size see original data.

doi:10.1371/journal.pone.0169654.g003
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activity status of the experimental animals. Although we could observe statistical trends in

theta, beta and gamma power (Figs 1–3), no significant alterations were detected for any

experimental constellation. Several aspects are likely to be responsible for this phenomenon.

Pathohistologically, the Aβ burden of aged (up to 12 months) APPswePS1dE9 females appears

to be more severe than in old (up to 12 months) males [24, 47–49]. Investigation of Aβ dynam-

ics in this AD mouse line revealed further age- and gender-related specificities. In 4 months

old APPswePS1dE9 mice, brain Aβ load has been reported to be dominated by Aβ1–40 rather

than Aβ1–42 [24, 47]. Upon 6 months of age, Aβ ratio shifts towards Aβ1–42 that is maintained

until end of life. In addition, a recent study demonstrated that senile plaques in the cortex and

hippocampus can be detected in 3 months old males but barely in females of the same age

which means that Aβ plaques occur earlier in males [50].

Gurevicius et al. [30] performed initial power analysis in the frontal cortex in female APPs-

wePS1dE9 mice of 16–17 wks of age. Their non-telemetric short-term daytime recording of 1h

revealed an increase in alpha, beta and gamma power. It is widely accepted that the frontal cor-

tex and temporal lobe are early affected in AD, whereas the primary motor, sensory, and visual

isocortical areas are lately involved which corresponds to the sparing of motor, sensory, and

primary visual functions [51–54]. This is also reflected by the three stage (A-C) system of

Braak and Braak [53]. In general, the involvement of multimodal high-order association iso-

cortical areas is responsible for the progressive impairment of cognitive capabilities, including

executive dysfunction (prefrontal cortex), apraxias (parietal cortex), visuospatial navigation

deficits (occipitoparietal cortex), visuoperceptive deficits (occipitotemporal cortex), and

semantic memory.

[30] hypothesized that multiple factors including basal forebrain projections and local

hyperexcitability of cortical pyramidal cells based on increased resting membrane potential

[21] may account for the observed alteration in frontal cortex gamma power. Studies by Gar-

cia-Marin et al. [55] in the cortex (auditory cortex, visceral cortex, somatosensory cortex and

visual cortex) of 12 months old male APPswePS1dE9 mice suggested that there is a lack of

GABAergic perisomatic synapses of basket cells on the surfaces of cortical pyramidal neurons

that are in close contact with amyloid plaques. As perisomatic GABAergic synapses exhibit a

dominant influence on the output behavior of pyramidal neurons, their structural impairment

may result in hyperactivity of the neurons in close proximity to amyloid plaques. Gamma-

band rhythmogenesis is known to be inextricably tied to perisomatic inhibition, particularly

via GABA A receptors [56]. However, as interneurons primarily determine the power of faster

oscillations such as gamma [57–59], it seems unlikely that interneuronal pathology is solely

responsible for the observed cortical gamma increase reported by [30] and [60].

Conclusion

Our gender, age and activity dependent analysis of motor cortex theta, beta and gamma power

in young 14–19 wks old APPswePS1dE9 mice did not reveal any alterations compared to the

age-matched severe changes in the prefrontal cortex of this model reported previously [30].

Given the temporal pathohistological architecture in AD described above it seems likely that

early sparing of motor cortex areas in amyloid plaque formation accounts for the preservation

of theta, beta and gamma activity in the motor cortex of APPswePS1dE9 mice of 14–19 wks of

age.

In summary, these findings further underline that characterization of AD specific EEG

fingerprints or EEG biomarkers requires a sophisticated analysis of gender, age, activity and

selected brain areas as spatial, e.g. cortical differences in frequency alterations can be

tremendous.
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Supporting Information

S1 Fig. FFT based EEG analysis. Representative 10 sec EEG segments are displayed FFT

based up to 70 Hz. Representative amplitude spectra [V] are displayed for male APPs-

wePS1dE9 and control mice at the age of 14 wks for the dark cycle for both the active and inac-

tive state.

(PDF)

S1 File. Relative cortical power of different EEG frequency bands during the dark cycle.

Relative power values for both males and females are displayed using GraphPad Prism.

Recordings which exhibited EMG artefacts (due to motor activity) or electrical artefacts and

did not meet strict EEG quality criteria were not incorporated in the analysis (see Materials

and Methods section).

(PZFX)

S2 File. Relative cortical power of different EEG frequency bands during the light cycle.

Relative power values for both males and females are displayed using GraphPad Prism. Ani-

mals which exhibited EMG artefacts (due to motor activity) or electrical artefacts and did not

meet strict EEG quality criteria were not incorporated in the analysis (see Materials and Meth-

ods section).

(PZFX)
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