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Abstract 

Background:  Invasive lobular breast carcinoma (ILC), the second most prevalent histological subtype of breast 
cancer, exhibits unique molecular features compared with the more common invasive ductal carcinoma (IDC). While 
genomic and transcriptomic features of ILC and IDC have been characterized, genome-wide chromatin accessibility 
pattern differences between ILC and IDC remain largely unexplored.

Methods:  Here, we characterized tumor-intrinsic chromatin accessibility differences between ILC and IDC using 
primary tumors from The Cancer Genome Atlas (TCGA) breast cancer assay for transposase-accessible chromatin with 
sequencing (ATAC-seq) dataset.

Results:  We identified distinct patterns of genome-wide chromatin accessibility in ILC and IDC. Inferred patient-spe-
cific transcription factor (TF) motif activities revealed regulatory differences between and within ILC and IDC tumors. 
EGR1, RUNX3, TP63, STAT6, SOX family, and TEAD family TFs were higher in ILC, while ATF4, PBX3, SPDEF, PITX family, 
and FOX family TFs were higher in IDC.

Conclusions:  This study reveals the distinct epigenomic features of ILC and IDC and the active TFs driving cancer 
progression that may provide valuable information on patient prognosis.

Keywords:  Invasive lobular breast carcinoma, Invasive ductal breast carcinoma, Differential chromatin accessibility 
landscape, EGR, SOX, TEAD, FOX family transcription factors, Transcriptional regulation
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Introduction
Breast cancer, the leading malignancy in women, has 
molecularly discrete subtypes based on the expression of 
estrogen receptor alpha (ESR1, also known as ER), pro-
gesterone receptor (PGR, also known as PR), and/or the 
amplification of human epidermal growth factor recep-
tor 2 (ERBB2, also known as HER2). Of the ~ 200,000 
newly diagnosed cases of invasive breast cancer each 
year, 70% are estrogen receptor-positive (ER+) [1]. More 

patients die from advanced ER+ breast cancer than all 
other breast cancer types combined. ER+ breast cancer 
comprises two main histological subtypes with varying 
molecular features and clinical behaviors: 85–90% are 
invasive ductal carcinoma (IDC) and 10–15% are inva-
sive lobular carcinoma (ILC) [2–4]. ILC is predominantly 
ER+ and PGR-positive but can, rarely, show HER2 pro-
tein overexpression. While ILC is initially associated with 
longer disease-free survival and a better response to adju-
vant hormonal therapy than IDC, the long-term progno-
sis for ILC is worse than IDC; 30% of ILC patients will 
develop late-onset metastatic disease up to 10 years after 
the initial diagnosis [5]. In several retrospective studies 
that compared clinical and pathological responses, ILC 
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also appeared less responsive to chemotherapy than IDC 
[6–8].

Although ER+ ILC and IDC tumors are treated clini-
cally as a single disease [9], recent studies have estab-
lished ER+ ILC as a distinct disease with unique sites 
of metastasis, frequent presentation of multifocal dis-
ease, delayed relapses, and decreased long-term sur-
vival compared to ER+ IDC tumors [10–14]. Large-scale 
studies from The Cancer Genome Atlas (TCGA) and 
the Molecular Taxonomy of Breast Cancer Interna-
tional Consortium (METABRIC) have reported genomic 
and transcriptomic analyses on resected IDC and ILC 
tumors [15, 16]. The distinguishing feature of ILC is the 
functional loss of E-cadherin, a protein that mediates 
epithelial-specific cell–cell adhesion [17]. The loss of 
E-cadherin expression in CDH1 mutants is associated 
with phosphatidylinositol 3 kinase (PI3K)/Akt pathway 
activation and growth factor receptor (GFR) signaling 
activation including epidermal grown factor receptor 
(EGFR) and insulin-like growth factor 1 receptor (IGF1R) 
[18, 19]. E-cadherin knockouts of IDC cell lines result 
in remodeling of transcriptomic membranous systems, 
greater resemblance to ILCs, and increased sensitivity to 
IFN-γ-mediated growth inhibition via activation of IRF1 
[20].

The National Cancer Institute (NCI) Genomic Data 
Analysis Network (GDAN) generated assay for trans-
posase-accessible chromatin with high-throughput 
sequencing (ATAC-seq) data for a subset of TCGA sam-
ples (404 patients) [21], including ER+ ILC and IDC 
tumors. ATAC-seq is a transformative technology for 
mapping the chromatin-accessible loci genome-wide 
and identifying nucleosome-free positions in regulatory 
regions. It needs only ~ 50,000 cells and is simpler than 
previous methods, such as DNase-seq [22]. Epigenomic 
changes at the level of chromatin accessibility, potentially 
linked to distinct differentiation states, might reveal epi-
genetic reprogramming and developmental origin differ-
ences between ER+ ILC and IDC. However, chromatin 
accessibility landscape differences between ER+ILC and 
IDC tumors based on patient samples have not been 
systematically characterized. Complementing genomic 
and transcriptomic studies, we mapped the epigenetic 
heterogeneity in ER+ ILC and IDC with a systematic 
analysis of chromatin accessibility patterns based on the 
primary tumor breast cancer TCGA ATAC-seq dataset 
[23]. We defined the compendium of ~ 190,000 genome-
wide cis-regulatory regions in breast cancer ER+ ILC 
and IDC with 11,762 differentially accessible (DA) peaks 
between ILC and IDC, which represented 5.98% of total 
ATAC-seq peaks. EGR1, RUNX3, TP63, STAT6, SOX 
family, and TEAD family transcription factor (TF) activi-
ties were significantly higher in ILC, consistent with their 

role in the regulation of the extracellular matrix and 
growth factor signaling pathways, whereas ATF4, PBX3, 
SPDEF, PITX family, and FOX family TF activities were 
significantly higher in IDC. The inferred TF activities and 
context-specific target genes based on ATAC-seq data 
identified biological pathways that are likely distinct in 
ER+ ILC vs. IDC. Together, these results provide new 
insights into ER+ ILC and IDC biology.

Results
Chromatin accessibility differences between ER+ /HER2‑ 
ILC and IDC breast cancer
Epigenetic differences at the level of chromatin acces-
sibility, potentially linked to different differentiation 
states, could distinguish ER+ ILC and IDC tumors. We 
characterized tumor cell-intrinsic chromatin accessibil-
ity patterns using primary ER+ breast cancer ATAC-seq 
data from TCGA [21]. Using an atlas of 204,728 peaks 
across all ILC and IDC breast tumors (n = 67) [21], we 
grouped tumors according to their histological subtypes 
and hormone receptor status according to their clinical 
annotation [23] [24]: ER+ /HER2-  ILCs (n = 13), ER+ /
HER2-  IDCs (n = 30), and ER+ /HER2+ IDCs (n = 7). 
Principal component analysis (PCA) of peak read counts 
showed that all these ER+ tumors were clustered closely, 
the ER+/HER2- or HER2+ IDCs more closely associated, 
and the ILCs slightly separated (Fig. 1A). In addition, we 
found three ER+/HER2- IDC samples and one ER+/
HER2+ IDC sample were outliers. We observed similar 
patterns and the same outliers through PCA of RNA-seq 
and reverse phase protein array (RPPA) data (Additional 
file  1: Figure S1A–B). Because there were few ER+ /
HER2+ samples, we used ER+/HER2- ILCs (n = 13) and 
ER+/HER2-  IDCs (n = 27) for downstream analyses. 
Hereafter, we simply denote ILCs vs IDCs omitting ER+/
HER2-.

To understand epigenomic landscape differences 
between ILCs and IDCs, we analyzed differential chro-
matin accessibility. We found 11,762 DA peaks (abso-
lute log2 fold change > 1.0 and adjusted p value < 0.05) 
between ILCs and IDCs, which represented 5.99% of all 
ATAC-seq peaks (Fig. 1B–C). Among these, 5,124 peaks 
(2.61%) showed increased accessibility in ILCs and 6,638 
peaks (3.38%) showed increased accessibility in IDCs. 
Most of the DA ATAC-seq peaks were at distal intergenic 
regions (48.46% for ILCs and 40.79% for IDCs); 36.26% 
for ILCs and 36.84% for IDCs were at introns; 9.83% for 
ILCs and 16.64% for IDCs were at promoters; and 3.03% 
for ILCs and 3.5% for IDCs were at exons (Fig.  1D). 
Moreover, overlap of the DA ATAC-seq peaks with chro-
matin immunoprecipitation sequencing (ChIP-seq)-
defined ChromHMM regulatory states [25] showed that 
most of the DA ATAC-seq peaks were at the enhancer 
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Fig. 1  Differential chromatin accessibility between ER+ /HER2- ILC and ER+/HER2- IDC. A PCA of ATAC-seq signal in all peaks (n = 204,728). All 
tumors of ER+ were clustered together, but ILC and IDC tumors were slightly separated. The three outliers of ER+/HER2- IDCs and one outlier 
of ER+/HER2+ IDCs are annotated in the plot. B Volcano plot of ATAC-seq peaks comparing ILCs (n = 13) to IDCs (n = 27). Significant peaks with 
differential chromatin accessibility are highlighted in red. The vertical dotted line indicates an absolute log2 fold change of 1.0 and the horizontal 
dotted line indicates an FDR-corrected p value 0.05 criterion; the DA peaks enriched in ILCs (n = 5,124) vs IDCs (n = 6,638). FDR-corrected p values 
were obtained using DESeq2. C Hierarchical clustering of the 11,762 DA peaks. The significant DA peaks identified in Fig. 1B were aggregated to 
11,762 peaks and represented as chromatin accessibility patterns in ILCs and IDCs. Colors represent log2-transformed peak count data and the 
z-score row was normalized. D Pie charts show the percentage of DA ATAC-seq peaks (FDR < 0.05) at the promoter, intronic, intergenic, and exonic 
regions for ILCs versus IDCs. E Enrichment of TF-binding motifs for the subclusters of DA regions of ILCs and IDCs. The top 10 enriched motifs are 
shown. F Enrichment of PANTHER pathways for subclusters of DA regions of ILCs and IDCs. In the bar plot, the gray line indicates the significance of 
the PANTHER pathways (hypergeometric test, adjusted p value < 0.05). GREAT was used to identify the PANTHER pathways overrepresented in the 
DA peaks
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group state (67.5% for ILCs and 40.0% for IDCs); 10.8% 
for ILCs and 19.9% for IDCs were at the transcriptional 
activity state; 5.6% for ILCs and 9.8% for IDCs were at 
the promoter state; and 2.9% for ILCs and 11.6% for IDCs 
were at the quiescent state (Additional file 1: Figure S2).

We used HOMER motif analysis of DA ATAC-seq 
peaks to identify key TFs driving the expression differ-
ences between IDCs and ILCs [26]. DA sites in ILCs were 
highly enriched with binding motifs for the Sry-related 
HMG box (SOX), TEA domain (TEAD), runt-related 
transcription factor (RUNX) family, and TP63 TFs. In 
contrast, forkhead box (FOX) family binding motifs (e.g., 
FOXM1, FOXA1, FOXK1) were enriched in IDC sites 
(Fig. 1E). Interestingly, SOX family TFs were major pre-
dicted motifs in DA promoter peaks enriched in ILCs, 
but not in DA distal intergenic or intronic peaks (Addi-
tional file 1: Figure S3A–C). FOX family TFs were domi-
nant motifs in the DA distal intergenic or intronic peaks 
enriched in IDCs, but not in the DA promoter peaks 
(Additional file  1: Figure S3D–F, for complete list see 
Additional file 2: Tables S1 and S2).

To identify key biological processes that drive onco-
genic gene expression differences between IDCs and 
ILCs, we analyzed the pathways for DA ATAC-seq peaks 
using the Genomic Regions Enrichment of Annotations 
Tool (GREAT) [27]. The DA peaks enriched in ILCs and 
IDCs were associated with different pathways. Oxidative 
stress response, interleukin signaling, and p53 pathways 
were overrepresented in ILCs, whereas endothelin signal-
ing, EGF receptor signaling, T cell activation, inflamma-
tion, and angiogenesis pathways were overrepresented 
in IDCs (p value < 0.01) (Fig. 1F). Interestingly, the PI3K 
pathway was enriched in both ILCs and IDCs. Thus, 
the epigenomic differences identified distinct TF motif 
enrichment and biological signatures between ILCs and 
IDCs.

To correlate alterations in chromatin accessibility with 
transcriptional output, we integrated ATAC-seq data 
with RNA-seq data. Consistent with the correlation of 
global differential accessibility and expression, differ-
ential accessibility of individual genes was often associ-
ated with significant differential expression (Fig.  2A–B). 
Genes with the greatest differential accessibility between 
ILCs and IDCs at their promoter, intronic, and nearby 

intergenic peaks are shown in Fig.  2B. For example, 
FAM83A and ERICH5 were significantly more accessible 
in IDCs, while FAM189A and SSPN were significantly 
more accessible in ILCs (Fig.  2C). FAM83A is involved 
in the chemoresistance and stemness of breast cancer 
through its interaction with the EGFR/PI3K/AKT sign-
aling pathway [28, 29]. FAM189A is down-regulated in 
breast cancer [30, 31] and SSPN is down-regulated in 
TNBC [32]. Overall, we identified context-specific fea-
tures, including accessibility and expression patterns 
associated with IDCs vs. ILCs.

The coordinated activity of many TFs characterizes ILC 
and IDC tumors
We inferred sample-specific TF motif activities based on 
genome-wide chromatin accessibility data using CREMA 
(Cis-Regulatory Element Motif Activities, see Methods). 
This allowed us to map chromatin accessibility profiles 
to a lower-dimensional inferred TF activity space, largely 
preserving the relationships between samples. Inferred 
activities of 29 TF motifs were significantly associated 
with histological subtypes by false discovery rate (FDR)-
corrected p value < 0.05 and absolute mean activity differ-
ence > 0.035 (Fig. 3A and Additional file 1: Figure S4). We 
found that Early Growth Response 1 (EGR1) [33], TEAD 
family (TEAD1, TEAD3, and TEAD4), SOX family, 
(SOX2, SOX4, and SOX8), and RUNX3_BLC11A TFs had 
significantly higher activities in ILCs than IDCs (Fig. 3B). 
Similarly, FOX family (FOXA1, FOXA3, FOXC2, FOXL1, 
FOXK1, FOXP2, FOXP3, FOXD3, FOXI1, and FOXF1), 
paired like homeodomain (PITX family) (PITX1 and 
PITX2), PBX3, and HSF4 had significantly higher activi-
ties in IDCs than ILCs (Fig.  3C). Consistently, EGR1 
mRNA is upregulated in ILCs [33] and TEAD increases 
the expression of nuclear Yes-associated protein (YAP), a 
transcription coactivator playing a role in cell prolifera-
tion and invasion in ILCs [34, 35]. However, other TFs 
have not been studied in the context of ILCs and IDCs. 
TF activities from the same families were also correlated 
across samples (Fig. 3D). Overall, these results were con-
sistent with the motif enrichment analysis based on the 
DA peaks in ILCs vs. IDCs (Fig. 1E).

To determine whether TF activities were associated with 
protein expression, we compared immunohistochemically 

(See figure on next page.)
Fig. 2  ILC and IDC tumors share a common chromatin state space. A Scatter plot of differential expression (RNA-seq log2FC, x-axis) and differential 
accessibility (mean ATAC-seq log2FC over all peaks associated with a gene, y-axis) between IDCs and ILCs tumors. Significantly DA genes are 
highlighted with red or blue color. B Differential accessibility and differential expression between ILCs and IDCs. Left: ATAC-seq signal log2 fold 
change for peaks of significantly DA genes; right: log2 fold change of RNA-seq gene expression (color for significantly decreased/increased 
individual peaks or genes; adjusted p value < 0.05). C The upper panel depicts genome browser tracks (GRCh38) showing chromatin accessibility at 
ERICH5 and FAM18A2 gene loci in ILCs and IDCs. The lower panel of genome browser tracks shows chromatin accessibility at FAM189A2 and SSPN 
gene loci which have DA peaks enriched in ILCs. The dotted line boxes highlight the ATAC-seq peaks of DA between ILCs and IDCs. All the track lines 
have the same y-axis limits, and the peak height is scaled over all samples
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Fig. 2  (See legend on previous page.)
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(IHC) stained images for available TFs between ILCs and 
IDCs obtained from the Human Protein Atlas (HPA) data-
base [36]. The HPA tissue images of breast tumors provide 
histological subtype but not hormone receptor subtype 
information. Therefore, we used only ILC (n = 3) or IDC 
(n = 4) images that had ER high/medium staining intensity 
and HER2 low/not detected staining intensity (Additional 
file  1: Figure S5). The IHC images demonstrated that 
EGR1, TEAD4, SOX2, and BCL11A proteins were highly 
expressed in ILCs, but were not detected in IDCs con-
sistent with the increased TF activities in ILCs. Likewise, 
the IHC images of FOXA1, FOXA3, ATF4, PITX1,  and 
ZNF35 showed medium or high protein expression in 
IDCs but were not detected or showed low expression in 
ILCs. Although the HPA staining images indicated that 
increased TF activities in ILCs or IDCs were associated 
with protein expression in the corresponding histological 

subtypes, a larger cohort is needed to derive stronger 
conclusions.

We looked for functional evidence of IDC- and ILC-
specific TF regulators using published breast cancer 
genome-wide “dropout” screens using pooled small hair-
pin RNA (shRNA) libraries [37]. The dataset included 
three ER+ ILC cell lines and 11 ER+ IDC cell lines (HER2-
type data were not available). We ran small interfering 
RNA (siRNA)/shRNA mixed-effect model (siMEM) for 
three ER+ ILC cell lines vs. other breast cancer cell lines 
or for 11 ER + IDC cell lines vs. others to calculate con-
text-specific essentiality scores for IDC- or ILC-specific 
TFs. Additional file 1: Table S3 lists the essentiality scores 
of the TFs in ER+ ILC (15/18 TFs) or ER+ IDC (15/19 
TFs) cell lines. We identified RUNX3, SOX4, TEAD3, 
UBP1, NFIA, and BCL11A as essential for ER+ ILC cell 
proliferation, and FOXA1 and SPDEF as essential for 

Fig. 3  ATAC-seq analysis identifies key TFs in ILC and IDC tumors. A Inferred TF motif activity differences between ILCs and IDCs. The x-axis is 
the mean TF activity differences and the y-axis is –log10 (FDR-corrected p values). Multiple hypothesis testing correction was done using the 
Benjamini–Hochberg procedure. The vertical dotted line indicates an absolute mean TF activity difference of 0.035 and the horizontal dotted line 
indicates the FDR-corrected p value = 0.05 for significant TFs. B EGR1, TEAD4, SOX2, RUNX3_BCL11A had inferred high TF activities in ILCs. C FOXA1, 
HSF4, PBX3, and PITX1 had inferred high TF activity in IDCs. The significance of the TF motif activity difference was determined by the Wilcoxon 
rank-sum test adjusted p value. D The Pearson correlation for TF activities in all ILC and IDC tumors
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ER+ IDC cell proliferation (FDR < 0.2). RUNX3 inhib-
its estrogen-dependent proliferation by targeting ERα in 
breast cancer cell lines and functions as a tumor suppres-
sor, but its role has not been defined [38]. Interestingly, 
we identified FOXA1 and SPDEF as the top essential TFs 
for ER+ IDC cells. The original genome-wide shRNA 
screening also identified FOXA1 and SPEDEF as the top 
luminal/HER2 essential genes out of 975 essential genes 
[37]. In ER+ breast cancer cell lines, FOXA1 inhibits cell 
growth by inducing E-cadherin expression and suppress-
ing ER pathway activity, which suggests that FOXA1 can 
be a favorable prognostic marker in human breast cancer 
[39–41]. SPDEF expression is also enriched in luminal 
tumors and promotes luminal differentiation and survival 
of ER+ cells [42].

Gene sets for IDC‑ and ILC‑specific TFs display coherent 
functions and are consistent with gene expression changes
Tables 1 and 2 summarize the enriched canonical path-
ways for the target genes of the TFs associated with ILCs 
or IDCs. Interestingly, most TFs with high activities in 
ILCs, including EGR1, HMGA1, NFIX_NIFB, RBPJ, 
SOX family, TEAD family, TP63, UBP1, and ZFHX3, 
were associated with genes encoding extracellular matrix 
(ECM)-associated proteins for structure or remodeling. 
IDC-specific TFs including ARNT, ATF4, and ZNF35 
were associated with PI3K or IL2 signaling mediated 
by PI3K. We next examined TF target gene expression 
in IDCs and ILCs using TCGA and METABRIC gene 
expression data. Figure 4 shows the cumulative distribu-
tion of expression changes between ILC- or IDC-specific 
TF activities for predicted targets based on ATAC-seq 
data. The TF regulators identified for ILC and IDC were 
associated with the upregulation of their targets. There 
was significant upregulation of motif-based targets of 
TFs based on ATAC-seq relative to all genes in the TCGA 
and METABRIC tumor data (p value < 1e − 3, one-sided 
Kolmogorov–Smirnov test). Thus, ILCs and IDCs are 
associated with different TFs, and the TFs regulate target 
gene expression and biological pathways specific for ILCs 
versus IDCs.

Discussion
Many studies have examined the distinct molecular fea-
tures and prognostic outcomes for ILC vs. IDC tumors. 
We provide here the first comprehensive genome-wide 
chromatin accessibility landscape analysis of ER+ ILC 
and IDC using primary breast cancer TCGA ATAC-seq 
data. We identified a chromatin accessibility signature, 
TFs, and biological pathways specific to ER+ ILC and 
IDC tumors. TFs (e.g., EGR1, SOX, and TEAD family) 
involved in ECM interactions and developmental path-
ways had higher activity in ILC compared to IDC. The 

differences in activities of TFs in ILCs vs. IDCs based 
on chromatin accessibility were also consistent with TF 
protein expression and upregulation of TF target gene 
expression.

The altered TF activities associated with these histologi-
cal subtypes have a direct relationship to the biological 
presentation of the resulting tumors and their diagnosis. 
For example, EGR1 can be activated via the MAPK signal-
ing pathway through stimulation by reactive oxygen spe-
cies [43] consistent with our pathway enrichment analysis 
in ILCs (Fig.  1F and Table  1). In prostate cancer, EGR1 
induces TGFβ1 expression which stimulates tumor tissue 
growth and angiogenesis [73]. Further, EGR1 contributes 
to tumor invasion and metastasis in ovarian cancer cells 
by activating the expression of SNAIL and SLUG which 
are involved in MAPK signaling pathway and cause E-cad-
herin transcriptional loss [74]. The TEAD family, specifi-
cally TEAD4, has been shown to bind with the oncogenic 
TF KLF5 and in turn induce transcription of fibroblast 
growth factor binding protein 1 (FGFBP1), which is 
promoting cell proliferation through expansion of the 
fibroblast cell type in TNBC [75]. TEADs interact with 
transcription coactivator Yes-associated protein (YAP)/
transcriptional coactivator with PDZ-binding motif 
(TAZ), thereby affecting the Hippo pathway that plays a 
key role in cell proliferation, invasion, and resistance to 
breast cancer treatment [53, 76]. Lastly, the SOX fam-
ily TFs are critical regulators of developmental processes 
and contribute to tumor development and progression. 
Although SOX-mediated transcription regulation is active 
in breast cancer [77, 78], no association with histological 
subtypes was reported. SOX TFs have been shown to act 
in both an oncogenic capacity and as a tumor suppres-
sor [78]. SOX2 and SOX9 are shown to interact during 
increased cancer stem cell content and the development 
of drug resistance. SOX2 increase in association with 
estrogen reduction reduces the expression of the SOX9. 
Upregulated SOX2 proteins induce chemoresistance in 
breast cancer cells and promote their stemness property 
through the recruitment of regulatory T cells (Tregs) to 
the tumor microenvironment [79, 80]. SOX9 is known to 
work downstream of SOX2 to control the luminal pro-
genitor cell content resulting in increased tumor initia-
tion, drug resistance, and poor prognosis [81]. SOX4 is an 
oncogene that promotes PI3K/Akt signaling, angiogen-
esis, and resistance to cancer therapies in breast tumors; 
thus, SOX4 is a biomarker for PI3K-targeted therapy [82, 
83]. TP63, a member of the TP53 gene family, is highly 
expressed in metaplastic breast cancer [84].

DA sites in IDCs were highly enriched with ATF4, 
PBX3, SPDEF, PITX family, and FOX family TF motifs 
(Fig. 1E and 3A). For example, SPDEF is a protein whose 
function is dependent on the breast cancer subtype [71]. 
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Table 1  Candidate TF regulators selected at 5% FDR for ILC. Functional annotations were determined from terms overrepresented 
from the canonical pathway gene sets associated with the candidate regulator

TF symbol Pathways associated with TF target genes 
(top 3)

p value
TCGA​

p value METABRIC Relation to breast cancer Reference

EGR1 Genes encoding, enzymes and their regula-
tors involved in the remodeling of the ECM

 < 1.0E-16  < 1.0E-16 Overexpression induces E-cadherin transcrip-
tion inhibition

[43]

Genes encoding secreted soluble factors

Genes encoding structural ECM glycopro-
teins

HMGA1 E2F transcription factor network  < 3.4E-03  < 1.0E-16 Overexpression promotes metastasis [44]

Genes encoding structural ECM glycopro-
teins

Regulation of Ras family activation

NFIA Genes encoding secreted soluble factors  < 1.0E-16  < 1.0E-16 Interacts to affect chromatin remodeling [45]

Ephrin B reverse signaling

ErbB receptor signaling network

NFIX_
NFIB

Genes encoding structural ECM glycopro-
teins

 < 1.0E-16  < 1.0E-16 Upregulated in ER + tumors and acts as an 
oncogene

[46]

Genes encoding secreted soluble factors

Genes encoding enzymes and their regula-
tors involved in the remodeling of the ECM

RBPJ Genes encoding enzymes and their regula-
tors involved in the remodeling of the ECM

 < 7.6E-01  < 3.2E-13 Regulates the NOTCH1 pathway via tran-
scriptional repression resulting in recurrence 
of tumors

[47]

Genes encoding structural components of 
basement membranes

GMCSF-mediated signaling events

RUNX3_
BCL11A

E-cadherin signaling in keratinocytes  < 1.0E-16  < 1.0E-16 RUNX3 inhibits cell proliferation by targeting 
ERα. BCL11A highly expressed in TNBC, drives 
metastasis

[38, 48]

TCR signaling in naïve CD4 + T cells

IL12 signaling mediated by STAT4

SOX2 Alpha6 beta4 integrin–ligand interactions  < 2.2E-04  < 1.0E-16 Relates to cancer cell stemness, tumorigenic-
ity, and transcription regulation of the CCND1 
gene

[49]

Ephrin B reverse signaling

Genes related to regulation of the actin 
cytoskeleton

SOX4 Genes encoding structural ECM glycopro-
teins

 < 8.4E-03  < 1.0E-16 Regulation of EMT-related genes, increased 
clonogenicity, angiogenesis, and tumor cell 
dissemination

[50]

Signaling events mediated by the Hedgehog 
family

Wnt/beta-catenin Pathway

SOX8 Signaling events mediated by the Hedgehog 
family

 < 7.9E-07  < 1.0E-16 Relates to cancer cell stemness in TNBC cells [51]

Genes encoding collagen proteins

Genes encoding structural ECM glycopro-
teins

STAT6 E-cadherin signaling in keratinocytes  < 2.4E-07  < 1.0E-16 Mediates Interleukin-4 (IL-4) growth inhibi-
tion, induction of apoptosis

[52]

Netrin-mediated signaling events

Genes encoding structural components of 
basement membranes

TEAD3_
TEAD1

Ensemble of genes encoding ECM-asso-
ciated proteins including ECM-affiliated 
proteins, ECM regulators and secreted factors

 < 1.0E-16  < 1.0E-16 Bind with HIPPO pathway co-activators (YAP, 
TAZ) creating oncogenic transformation and 
tumorigenesis

[53]

Genes encoding enzymes and their regula-
tors involved in the remodeling of the ECM

AMB2 Integrin signaling
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SPDEF is a tumor suppressor in triple-negative breast 
cancer (TNBC) inhibiting tumor invasion and decreasing 
epithelial–mesenchymal transformation (EMT) [85]. In 
luminal or HER2 + breast cancer, SPDEF is an oncogene 
[86]. As well FOXA1 proteins enhance hormone-driven 
ER activity and binding to intergenic regions of DNA in 
ER + breast cancer [87]. FOXA1 also inhibits EMT and 
cell growth by modulating E-cadherin, leading to a better 
prognosis [39]. Our results suggest that the potential role 
of these TFs in ILC and IDC merits further investigation.

Conclusions
This study provides the first in-depth characterization of 
the genome-wide chromatin accessibility landscape of 
ER+ ILC and IDC primary tumor samples. We identified 
several differences in the epigenomic profiles between 
ILC and IDC and highlighted potentially clinically rel-
evant pathways. Our deep analyses of ATAC-seq data 
generated a global regulatory network with the corre-
sponding TFs in IDC and ILCs that could provide useful 
clinical insights into the differences between these two 
histological subtypes.

Methods
Data and preprocessing
TCGA breast cancer data
We downloaded TCGA breast cancer (BRCA) ATAC-
seq raw bam files (n = 75) and RNA-seq raw fastq.gz files 
from NCI Genomic Data Commons (GDC) data portal 

(https://​portal.​gdc.​cancer.​gov) [88]. Breast cancer peak 
calls and bigwig files of ATAC-seq profiles were down-
loaded from https://​gdc.​cancer.​gov/​about-​data/​publi​
catio​ns/​ATACs​eq-​AWG. For the hormone receptor sub-
types of TCGA BRCA tumors, we followed the clinical 
annotation data provided by the TCGA ATAC-seq data 
publication, Supplementary Data 1 [23]. For histological 
subtypes, we used clinical data provided by Xena Func-
tional Genomics Explorer (https://​xenab​rowser.​net/​
hub/) TCGA Hub [24]. Sixty-seven tumors have hor-
mone receptor and histological subtype annotations. The 
reverse phase protein array (RPPA, replicate-base nor-
malization) data was downloaded from TCGA hub.

METABRIC breast cancer data
We downloaded METABRIC microarray data from cBio-
Portal (https://​www.​cbiop​ortal.​org/​study/​summa​ry?​id=​
brca_​metab​ric) [89].

ChromHMM reference genomic states
We downloaded the ChromHMM reference genomic 
states from https://​github.​com/​ernst​lab/​full_​stack_​Chrom​
HMM_​annot​ations).

Human protein atlas
The Human Protein Atlas (https://​www.​prote​inatl​as.​org) 
is a public resource that extracts information, including 
images of immunohistochemistry (IHC), protein profil-
ing, and pathologic information, from specimens and 

The p values are from the Kolmogorov–Smirnov (K–S) test between the target and the background distributions for TCGA and METABRIC datasets

Table 1  (continued)

TF symbol Pathways associated with TF target genes 
(top 3)

p value
TCGA​

p value METABRIC Relation to breast cancer Reference

TEAD4 Notch-mediated HES/HEY network  < 8.2E-07  < 1.0E-16 Overexpressed in BC stem cells and correlate 
with poor survival

[53]

PDGFR-beta signaling pathway

Genes encoding structural ECM glycopro-
teins

TP63 Genes encoding secreted soluble factors  < 1.0E-16  < 1.0E-16 Enhances endocrine treatment responses in 
ER + tumors

[54]

Genes encoding structural ECM glycopro-
teins

Genes encoding enzymes and their regula-
tors involved in the remodeling of the ECM

UBP1 RhoA signaling pathway  < 1.0E-16  < 1.0E-16 Overexpressed in breast invasive cancer [55]

Genes encoding collagen proteins

Genes encoding structural ECM glycopro-
teins

ZFHX3 Validated targets of C-MYC transcriptional 
repression

 < 1.4E-03  < 1.0E-16 Promotes proliferation and tumorigenesis in 
ER + cells by increasing stemness of cancer 
cells

[56]

Genes encoding proteins affiliated structur-
ally or functionally to ECM

E-cadherin signaling in keratinocytes

https://portal.gdc.cancer.gov
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://xenabrowser.net/hub/
https://xenabrowser.net/hub/
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=brca_metabric
https://github.com/ernstlab/full_stack_ChromHMM_annotations
https://github.com/ernstlab/full_stack_ChromHMM_annotations
https://www.proteinatlas.org
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Table 2  Candidate TF regulators selected at 5% FDR for IDC. Functional annotations were determined from terms overrepresented 
from the canonical pathway gene sets associated with the candidate regulator 

TF symbol Pathways associated with TF target 
genes (top 3)

p value
TCGA​

p value METABRIC Relation to breast cancer References

ARNT HIF-1-alpha transcription factor network  < 2.1E-04  < 9.1E-10 Downregulation promotes cancer cell 
migration and invasion

[57]

IL2 signaling events mediated by PI3K

EPHA2 forward signaling

ATF4 PI3K Pathway  < 1.1E-01  < 5.9E-10 Critical regulator of the unfolded protein 
response (UPR) pathway and is implicated in 
tumorigenesis

[58, 59]

Osteopontin-mediated events

Validated transcriptional targets of del-
taNp63 isoforms

FOXA1 FOXA1 transcription factor network  < 4.7E-10  < 5.9E-03 Inhibits cell growth via E-cadherin and sup-
pression of ER pathway activation

[40]

FOXA2 and FOXA3 transcription factor 
networks

Regulation of CDC42 activity

FOXA3_
FOXC2

FOXA2 and FOXA3 transcription factor 
networks

 < 1.0E-16  < 9.8E-04 Induces EMT and cancer cell stemness [60]

Signaling events mediated by HDAC Class II

Regulation of CDC42 activity

FOXD3_
FOXI1_
FOXF1

FOXA1 transcription factor network  < 2.2E-16  < 5.7E-06 Downregulation associated with lymph 
node metastasis in IDC. Potential tumor sup-
pressor affecting the cell cycle. Overexpres-
sion associated with EMT

[61–64]

JNK MAPK Pathway

Hedgehog signaling events mediated by Gli 
proteins

FOXJ3 FOXA1 transcription factor network  < 1.0E-16  < 6.4E-05 Protected motif in chromatin landscape in 
drug-resistant cancer cells

[65]

Regulation of CDC42 activity

BMP receptor signaling

FOXK1_
FOXP3

FOXA1 transcription factor network  < 1.0E-16  < 1.8E-05 Promotes cell proliferation, migration, EMT, 
and invasion

[66]

Genes encoding enzymes and their regula-
tors involved in the remodeling of the 
extracellular matrix

Genes encoding proteins affiliated structur-
ally or functionally to extracellular matrix 
proteins

FOXL1 BMP receptor signaling  < 1.0E-16  < 2.1E-11 Functions as a tumor suppressor to inhibit 
cell proliferation and invasion

[67]

FOXA1 transcription factor network

ErbB4 signaling events

HSF4 Calcineurin-regulated NFAT-dependent 
transcription in lymphocytes

 < 1.0E-07  < 1.0E-16 Promotes HIF-1α expression and tumor 
progression

[68]

Genes encoding structural ECM glycopro-
teins

Plasma membrane estrogen receptor 
signaling

PBX3 FOXA1 transcription factor network  < 1.7E-06  < 1.0E-16 Attenuates response to Letrozole by 
potentiating breast cancer cell survival and 
anchorage-independent growth

[69]

Signaling events mediated by hepatocyte 
growth factor receptor
(c-Met)

Regulation of androgen receptor activity

PITX1 Coregulation of androgen receptor activity  < 1.0E-16  < 1.0E-16 Tumor suppressor that is regulated by ERα [70]

LKB1 signaling events

Validated targets of C-MYC transcriptional 
activation

PITX2 ErbB4 signaling events  < 2.9E-04  < 1.0E-16 Hypermethylation of PITX2 promoter 
reduced expression and induced cancer cell 
progression

[70]

Arf6 trafficking events

RXR and RAR heterodimerization with other 
nuclear receptors
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clinical material from cancer patients to determine global 
protein expression [90]. Here, we compared the protein 
expression of available TFs in ILC and IDC tissues by 
IHC image.

Breast cancer cell lines shRNA screen
To identify and validate the TFs essential in ER+ ILC 
and ER+ IDC cell lines, we accessed the data for whole-
genome small hairpin RNA (shRNA) “dropout screens” 
on three ER + ILC and 11 ER + IDC breast cancer cell 
lines [37] (GSE74702).

Differential peak accessibility
Reads aligning to atlas peak regions (hg19) were counted 
using the countOverlaps function of the R packages, 
GenomicAlignments (v1.30) [91] and GenomicRanges 
(v1.46.1) [91]. To remove the bias created by low count 
peaks, we filtered 19,364 peaks with mean counts of less 
than 30 across all samples. Differential accessibility of 
peaks was calculated using DESeq2 (v1.34.0) [92]. DA 
peaks were defined as significant if they had an adjusted 
p value < 0.05 and the magnitude of the DESeq-normal-
ized counts changed by a stringent factor of one or more 
between ER + HER2- ILC and ER + /HER2- IDC. The 

The p values are from the Kolmogorov–Smirnov (K–S) test between the target and the background distributions for TCGA and METABRIC datasets

Table 2  (continued)

TF symbol Pathways associated with TF target 
genes (top 3)

p value
TCGA​

p value METABRIC Relation to breast cancer References

SPDEF ErbB2/ErbB3 signaling events  < 1.3E-01  < 1.6E-13 Expression is enriched in luminal tumors 
and promotes differentiation and survival of 
ER + cells

[71]

Nectin adhesion pathway

Hedgehog signaling events mediated by Gli 
proteins

ZNF35 Notch signaling pathway  < 1.4E-02  < 5.3E-12 Overexpression indicates poor prognosis 
and lymph node metastasis

[72]

E-cadherin signaling in the nascent adher-
ens junction

IL2 signaling events mediated by PI3K

Fig. 4  Gene sets for candidate ILC- and IDC-specific TFs display coherent functional annotations and consistent expression changes in tumors. 
A Targets of EGR1, TEAD4, SOX2, and RUNX3_BCL11A, ILC-specific candidate TFs, showed significant upregulation in ILC tumors relative to IDC 
tumors (p value < 1e − 3, one-sided Kolmogorov–Smirnov test) compared to background genes. The upper panel depicts the upregulation of 
TF target gene expression in TCGA RNA-seq data, and the bottom panel depicts METABRIC microarray data. B Targets of FOXA1, HSF4, PBX3, and 
PITX1, IDC-specific candidate TFs showed significant upregulation of expression in TCGA and METABRIC data. The background genes were all 
genes identified in the gene expression dataset after removing low or non-expression genes. The yellow lines are empirical cumulative distribution 
functions (eCDF) for the target gene log2 fold changes between ILCs and IDCs. The blue lines are CDFs for background gene log2 fold changes 
between ILCs and IDCs. The p values are from the one-sided Kolmogorov–Smirnov (K–S) test between the target and the background distributions
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significant DA peaks were aggregated and represented 
in the hierarchical clustering heatmap using the DESeq 
size-factor-normalized read counts and the “complete” 
distance metric for the clustering algorithm. We used 
ChIiPseeker [93] and clusterProfiler [94] R packages for 
peak region annotation and visualization of peak cover-
age over chromosomes.

ATAC‑seq peak clustering
For visualization of ER+/HER2- ILC, ER+/HER2- IDC, 
and ER+/HER2+ IDC tumors by PCA, we used DESeq2 
(v1.34.0) [92] to fit multifactorial models to ATAC-seq 
read counts in peaks. We used all peak counts and gen-
erated DESeq2 models including factors for hormone 
receptor subtypes (ER ± and HER2 ±) and histological 
classes (ILC vs. IDC). Then, we calculated a variance sta-
bilizing transformation from the DESeq2 model and per-
formed PCA.

De novo TF motif analysis
The HOMER v.4.11.1 utility findMotifsGenome.pl [26] 
was used to identify the top 10 TF motifs enriched in dif-
ferential accessible peaks. We set 100-bp-wide regions 
around the DA peak summits with hg19 as the refer-
ence genome. We generated custom background regions 
with a 150-bp-wide range around the peak summits. The 
top motifs were reported and compared to the HOMER 
database of known motifs and then manually curated to 
restrict them to TFs that are expressed based on RNA-
seq data and to similar motifs from TFs belonging to the 
same family.

Pathway enrichment analysis
We used GREAT (Genomic Regions Enrichment of 
Annotations Tool, v1.26) to associate the subcluster of 
the DA peaks with genes and used pathway analysis to 
identify the functional significance of the DA peaks [27].

TF essentiality analyses in ER+ ILC and ER+ IDC cell lines
We used small interfering RNA (siRNA)/shRNA mixed-
effect model (siMEM) [37] to score the screening results 
of the TFs and identify their significant context-specific 
essentiality between ER+ ILC and ER+ IDC from the 
shRNA screening data. The significantly essential TFs 
had an FDR q value < 0.2 in the siMEM results. The anno-
tation data for ER subtype and histological types in the 
breast cancer cell lines are available at https://​github.​
com/​neell​ab/​simem.

Cis‑regulatory element motif activity analysis
We used the CREMA (Cis-Regulatory Element Motif 
Activities, https://​crema.​unibas.​ch/) to analyze genome-
wide DNA accessibility, calculate TF motif activities, and 

identify active cis-regulatory elements (CREs). CREMA 
first identifies all CREs genome-wide that are accessible 
in at least one sample, quantifies the accessibility of each 
CRE in each sample, predicts TF-binding sites (TFBSs) 
for hundreds of TFs in all CREs, and then models the 
observed accessibilities across samples in terms of these 
TFBS, inferring the activity of each TF in each sample. A 
Wilcoxon rank-sum test was used to compare TF activi-
ties and assess the association between TF and histologic 
subtypes. Then, the resulting p values were adjusted for 
multiple hypothesis testing (across TFs). This analy-
sis was visualized with a scatterplot where the x-axis 
represents mean TF activity difference and the y-axis 
represents FDR-corrected p value. The significant TF 
motifs were selected by absolute mean TF activity differ-
ence > 0.035 and FDR-corrected p value < 0.05.

The TF targets identified by CREMA are CREs, not 
genes directly. After identifying TF target CREs, the 
gene-CRE association probabilities are calculated on 
the basis of distance to transcription start sites (TSSs) 
of gene within ± 1,000,000  bp, using a weighing func-
tion. The weighing function quantifies the prior prob-
ability that a CRE will regulate a TSS at distance d and 
is a mixture of two Lorentzian distributions with length 
scales 150 bp (corresponding to promoter regions) and 
50 Kb (corresponding to enhancer regions). This weigh-
ing function is used to weigh log-likelihood score per 
possible CRE-TSS interaction. The target gene score is a 
sum of the log-likelihood scores of all CREs associated 
with the gene weighted with the association probability. 
Then, the scores were used to predict overrepresented 
canonical pathways in the TF’s target genes.

Differential gene expression analysis
We ran DESeq2 on the TCGA RNA-seq read count data 
between ER+ /HER2- ILCs (n = 100) and ER+/HER2- 
IDCs (n = 297), which include all available tumors for 
hormone receptor and histological subtypes. We used 
the Limma (v3.48) [95] package to calculate the log2 
fold change of differentially expressed genes between 
ER+/HER2- ILCs (n = 121) and ER+/HER2- IDCs 
(n = 1,030) for the METABRIC dataset.

We calculated the cumulative distribution of expres-
sion changes for the target genes and background genes 
and ran the Kolmogorov–Smirnov (K-S) statistic to 
quantify the distance between empirical cumulative 
distribution function (eCDF) of target genes and cumu-
lative distribution function (CDF) of background genes 
and determine its significance. We used all 16,537 
genes as background genes after removing genes with 
low mean counts across samples.

https://github.com/neellab/simem
https://github.com/neellab/simem
https://crema.unibas.ch/
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Statistical analysis and data visualization
All statistical analyses were performed using R ver-
sion 4.1.1 (R Foundation for Statistical Computing, 
Vienna, Austria) [96]. Heatmaps were generated using 
the R package ComplexHeatmap v2.10.0 [97]. Graphs 
were generated using the R package ggplot2 v3.3.5 [98]. 
Genome track images were generated using the IGV 
(v2.11.1) [99]. P values in multiple comparisons were 
adjusted using the Benjamini–Hochberg (BH) method.
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