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Abstract
Effective and efficient spatial normalization of a large population of brain images is critical

for many clinical and research studies, but it is technically very challenging. A commonly

used approach is to choose a certain image as the template and then align all other images

in the population to this template by applying pairwise registration. To avoid the potential

bias induced by the inappropriate template selection, groupwise registration methods have

been proposed to simultaneously register all images to a latent common space. However,

current groupwise registration methods do not make full use of image distribution informa-

tion for more accurate registration. In this paper, we present a novel groupwise registration

method that harnesses the image distribution information by capturing the image distribu-

tion manifold using a hierarchical graph with its nodes representing the individual images.

More specifically, a low-level graph describes the image distribution in each subgroup, and

a high-level graph encodes the relationship between representative images of subgroups.

Given the graph representation, we can register all images to the common space by dynam-

ically shrinking the graph on the image manifold. The topology of the entire image distribu-

tion is always maintained during graph shrinkage. Evaluations on two datasets, one for 80

elderly individuals and one for 285 infants, indicate that our method can yield promising

results.

Introduction
Since the advent of Magnetic Resonance Imaging (MRI), many imaging-based studies have
been initiated to study structural variations within a population, between populations, and
across different times of the same population [1–5]. In these studies, image registration is key
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for removing structural variations that confound the analysis of group differences or changes,
e.g., those associated with brain disorders [6–8]. In particular, subtle changes may be elusive in
cases where image registration is not performed with sufficient accuracy.

Many pairwise registration methods have been developed for registering a group of images
to a template image [9–14]. However, template selection is not a trivial task [15, 16] and, if
done improperly, will bias the subsequent statistical analysis. To deal with this issue, groupwise
registration methods have been recently proposed to align all images jointly onto a common
space, without the need of explicitly specifying the template. The objective function in group-
wise registration aims to minimize either the overall intensity difference [17] or the entropy of
joint intensity distributions across all images [18, 19]. To optimize the large-scale objective
function in groupwise registration, efficient gradient-based Gauss-Newton optimization is pro-
posed in [20]. A hierarchical groupwise registration mechanism is also used in [21] by selecting
the key points in the image and only letting the key points drive the entire groupwise registra-
tion. The advantage of groupwise registration over pairwise registration has been widely dem-
onstrated in the literature [15, 17, 19, 20, 22–24].

Many existing groupwise registration methods require an explicitly defined target of regis-
tration. For example, Joshi et al. [25] proposed an efficient groupwise registration algorithm by
alternating between two steps: (1) register all images, separately, to a tentatively estimated
group-mean image, and (2) update the group-mean image by averaging all registered images.
This groupwise registration method works well with the datasets involving only small struc-
tural variations. However, for the datasets with large and complex variations, this method
could result in a fuzzy group-mean image and thus decrease the registration accuracy. To solve
this problem, Wu et al. (2011) proposed a sharp-mean based groupwise registration method by
using a patch-based weighted-averaging method. However, a common limitation of these
methods is that registration needs to be performed with respect to the group-mean image,
regardless of whether the appearance of an individual image under registration is significantly
different from the group-mean image or not. These methods are hence limited in dealing with
the datasets with large and complex structural variations.

On the other hand, the image distribution information has been shown useful in guiding
groupwise registration. For example, Wang et al. (2010) has demonstrated that the improved
registration accuracy can be obtained by clustering the images in a population into several sub-
groups and then registering each of the subgroups with groupwise registration. Since images in
a subgroup are similar in appearance, accurate registration can be obtained with relative ease.
After within-subgroup registration, a representative image from each subgroup can be used for
between-subgroup registration. However, one limitation of this method is that the within-sub-
group distribution information is not specifically used for groupwise registration.

We developed an approach, called ABSORB (Atlas Building by Self-Organized Registration
and Bundling) [17], to leverage image distribution information to guide groupwise registration.
In ABSORB, each image is registered to a small number (e.g.,m = 3*5) of neighboring images,
which are similar in appearance. Each image is then spatially transformed using the average of
them resulted deformations. This procedure is applied to all images iteratively. In this way,
ABSORB avoids the need to register two images with large structural differences. However, the
value ofm is empirically determined in ABSORB and then fixed throughout the whole registra-
tion process. In addition, ABSORB is not aware of the image distribution of the entire dataset,
but only a few neighbors.

To combine the advantages of above-mentioned hierarchical registration framework and
ABSORB, we further proposed an approach called HUGS (Hierarchical Unbiased Graph
Shrinkage) for groupwise registration [23]. In HUGS, we characterize the image distribution of
the entire dataset by using a graph with its nodes representing the images and its edges
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representing the degree of similarity between the images. Only similar images are connected on
the graph. The registration of all images to a hidden common space is formulated as a dynamic
graph shrinkage problem, where all nodes move closer to each other along the edges. Since
both global and local image distribution information is encoded in the graph, the topology of
the entire image manifold can be preserved more accurately throughout registration.

Despite being more accurate, HUGS is still limited in dealing with heterogeneous datasets
since a single simple graph is often insufficient in modeling complex image distributions.
HUGS uses a simple threshold-based method to construct the graph by connecting image pairs
with distances smaller than the given threshold. Given a heterogeneous dataset, the threshold
has to be significantly relaxed in order to ensure that all images are connected on the graph,
which often results in an over-connected and less-efficient graph. This will also cause many
unnecessary registrations between dissimilar image pairs, which not only significantly increases
the computation time but also results in considerable registration errors.

In this paper, we present a novel groupwise registration method that inherits the advantages
of all our previously developed methods but, at the same time, addresses their limitations. Specifi-
cally, we introduce an improved version of HUGS, called enhanced HUGS or eHUGS, to deal
with the registration of heterogeneous datasets by constructing a hierarchical graph to model the
complex image distribution. The main idea is that we first represent the manifold of the popula-
tion of brain images by a graph that characterizes the affinity or similarity between any two
images. If two images are structurally similar, they are connected by an edge on the graph. This
graph is used to help avoid the need to register two images with large difference. Since on the
graph the images are represented as nodes and the distances between images are represented as
edges, the groupwise registration problem then becomes a graph shrinkage problem, where the
goal is to shrink the edges of the graph by progressively registering images adjacent on the graph.
To construct a hierarchical graph, the images are first clustered into several subgroups via affinity
propagation [26], which can group images into subgroups based on a set of automatically deter-
mined representative images. A representative image is identified to represent each subgroup,
and the distribution in each subgroup is modeled using a graph. Then, the distribution of all
these “low-level” graphs is captured by using “high-level” graphs that model the distribution of
the representative images from all subgroups. After building the hierarchal graph, dynamic graph
shrinkage is finally employed to register all images to the common space.

In the experiments, we first tuned the parameters and validated the registration performance
of eHUGS by using 20 longitudinal series of images [27], each with 4 time points. After that, we
applied eHUGS to 285 images of infants with ages ranging from 2 weeks to 2 years. We evaluated
the quality of infant atlases generated by averaging those registered images in the common space.
The results indicate that eHUGS yields greater registration accuracy than other groupwise regis-
tration methods, reflected by its built infant atlases with much clearer anatomical details.

Ethics Statement
This study does not involve human subjects or samples. The individuals in this manuscript
have given written informed consent at the time of enrollment for imaging and completed
questionnaires approved by each participating sites. The authors have obtained approval from
the ADNI Data Sharing and Publications Committee to use the data. The authors confirm that
the data was analyzed anonymously.

Materials and Methods
Given a large dataset of heterogeneous brain MR images, our goal is to simultaneously register
all images to a hidden common space. The group-mean image does not need to be explicitly
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specified, thus avoiding concerns of how the low quality of group-mean images might under-
mine registration accuracy [22]. At the same time, the topological distribution of the entire
image dataset will also be preserved throughout registration.

To achieve the above goal, we propose a hierarchical graph to model the distribution of all
images in the dataset, and then attain groupwise registration by shrinking the graph dynami-
cally until all images are warped to the hidden common space. For clarity and conciseness, we
use I = {Ii|i = 1, . . ., N} to denote a group of N images that are distributed on the manifold. The
term di,j denotes the distance between image Ii and image Ij. Since our focus is on deformable
image registration, all images in the dataset are first affine-registered using FLIRT [28].

Overview of eHUGS
An overview of eHUGS is provided in Fig 1. eHUGS is an iterative method to deform all images
together gradually as the graph shrinks. First, image similarity is computed based on a current
set of deformed (or initially the affine transformed) images. Then, a hierarchical graph repre-
senting the distribution of the deformed images is built based on manifoldM, which is deter-
mined using image clustering. In contrast to HUGS, eHUGS partitions the heterogeneous
image group into several subgroups. Here, each subgroup contains only the homogeneous data
with images of similar appearance. A low-level graph is then constructed to capture the distri-
bution of images in each subgroup. These low-level graphs are further connected using the
high-level graphs. Each image is allowed to deform only towards its connected counterparts in
this hierarchical graph, progressively bringing the images closer to each other.

Groupwise registration is carried out by shrinking the graph gradually to deform all images to
the hidden common space. Graph shrinkage is accomplished by dynamically and synchronously
warping each image towards its connected neighbors in the graph. To cater to the hierarchical

Fig 1. An illustration of Enhanced Hierarchical Unbiased Graph Shrinkage (eHUGS) method. In this
example, the images are clustered into 5 subgroups based on their similarity. Then a hierarchical graph is
constructed with each low-level graph (indicated by solid lines) describing the image distribution in each
subgroup, and each high-level graph (indicated by dashed lines) encodes the interaction between the
subgroups. Groupwise registration is formulated as the dynamic shrinkage of this hierarchical graph.

doi:10.1371/journal.pone.0146870.g001
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structure of the graph, we apply graph shrinkage sequentially for different levels. It is worth not-
ing that more levels may be used to better represent the image distribution if needed, but will
increase the computation time significantly. For our datasets, we found that using two levels is
sufficient for reasonable representation of data, as well as for reasonable registration accuracy.
More specifically, in the low level, each subgroup shrinks as all member images agglomerate. In
the high level, the representative images of the subgroups are used to drive each subgroup closer
to the common space. Graph shrinkage is executed alternatively throughout different levels until
all images are registered to the common space. In what follows, details for both constructing the
hierarchical graph and executing graph shrinking are provided.

Construction of Hierarchical Graph
Graph construction is key to the success of eHUGS. As shown by Ying et al. [23], the graph
needs to satisfy three criteria: (1) all images must be connected by the graph to guarantee that
all images can be warped to a common space; (2) the number of edges in the graph needs to be
minimized to reduce the computation load and also make graph shrinkage efficient; (3) the
graph needs to capture the image distribution sufficiently well to ensure good registration
accuracy.

We employ the hierarchical graph to capture the distribution of heterogeneous image data
more accurately. Our graph reflects the relatively small variation within each subgroup as well
as the large variation between subgroups. This is inspired by the work of Wang et al. [29],
where the entire dataset of images are clustered into several subgroups based on the similarity
between images. We follow a similar approach and derive the hierarchical graph based on the
outcome of image clustering. First, the whole dataset of images are separated into several sub-
groups, each comprising similar images. Second, a representative image is selected from each
subgroup to produce a high-level graph.

As illustrated in Fig 2, a set of N images I = {Ii|i = 1, . . ., N} reside in a manifoldM. The
distance di,j for each pair of images Ii and Ij is defined as the sum of squared differences (SSD)

Fig 2. Illustration of images residing on a high dimensional manifold and connected via the geodesic
paths. The geodesic distances between image Ii and other images are shown by dash arrows.

doi:10.1371/journal.pone.0146870.g002
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di,j = kIi − Ijk2. Note that there are many other choices for defining image similarity/distance,
such as mutual information (MI) [30] and normalized mutual information (NMI) [31]. Our
choice of SSD is simply for the sake of computational efficiency. Images with greater similarity
tend to be spatially close to each other on the manifold. Since it is easier to register images with
similar anatomical structures, the graph is constructed by arranging similar images into the
common subgroups. The construction of the graph is accomplished by data-driven clustering
as detailed next.

Data-Driven Image Clustering. A data-driven approach is used to cluster images into dif-
ferent subgroups based on their distances on the manifold. Image pairs with small distances
tend to be clustered into the same subgroup, while images with large distances tend to be clus-
tered into different subgroups. Methods such as k-means clustering [32] and affinity propaga-
tion [26] can be used. We opt for affinity propagation because, unlike k-means clustering, it
does not require the explicit specification of the number of clusters.

An affinity matrix of similarities between all pairs of images is required by affinity propagation.
We first apply affine registration to align all images to a common space, and then populate theN ×
N affinity matrix Swhose elements si,j are defined as the negative SSD, i.e., si,j = −di,j = −kIi − Ijk2.
We also set the preference value p in affinity propagation as below, which controls the likelihood
of an image as a subgroup exemplar (representative image) and also eventually influences the
number of exemplars:

p ¼ 1

N2

PN
j¼1

PN
i¼1si;j ¼

1

N2

PN
j¼1

PN
i¼1�di;j ¼

1

N2

PN
j¼1

PN
i¼1 � kIi � Ijk2: ð1Þ

In general, small preference value results in the small number of representative images.
Since we do not have any priori knowledge on the observed images, we use the same value of p
for all images, so that all images have equal possibility of becoming the representative image in
each subgroup.

We further construct a N × N symmetric connection matrix E to encode the graph. If image
Ii and image Ij is connected, we set the connection matrix E’s element ei,j = 1; otherwise, ei,j = 0.
All diagonal entries in E are set to 0 so that no image is self-connected.

Specifically, we apply the following steps to build the graph:

1. Cluster the N images I = {Ii|i = 1, . . ., N} into Ω subgroups Gα (α 2 {1, . . ., Ω} andSO
a¼1 Ga ¼ I) by using affinity propagation.

2. Determine the global center image Io of the dataset,

Io ¼ arg min
I2I

PN
i¼1kIi � Ik2; ð2Þ

to approximate the hidden common space.

3. Within each subgroup Gα, a representative image Iia is determined as the one nearest to
the global center image Io. Thus, with Ω subgroups, we have Ω representative images:
fIia ja ¼ 1; . . . ;Og. Particularly, when the subgroup includes the global center image Io,
its representative image which is the nearest to the global center image Io is the global cen-
ter image Io itself. Thus, we have Io 2 fIia ja ¼ 1; . . . ;Og. The advantage of choosing the
image nearest to the global center for delegating the whole subgroup is that this (represen-
tative) image can make all other images in the whole subgroup deform easily towards the
global center.
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4. For each subgroup Gα, intra-group connections are made between image Iia and all other
member images. For any pair of images Ii and Ij 2 Gα with j 6¼ i, we have ei,j = 1 if i = iα or
j = iα, and ei,j = 0 otherwise.

5. For the high-level connections between subgroups, the global center image Io is con-
nected to all other representative images Iia that are determined in Step (3). For any pair
of images Ii and Ij 2 fIia ja ¼ 1; . . . ;Og and j 6¼ i, the conclusion can be drawn that ei,j = 1
if i = o or j = o, and ei,j = 0 otherwise. An example graph is shown in Fig 1.

We can assume that all images within each subgroup are structurally similar. Thus, the
image closest to the global center can be chosen as the representative image to guide deforma-
tions of all images in the subgroup to the global center image.

Graph-Shrinking-Guided Image Normalization
We assure that all images are connected, and therefore the graph has a total of N − 1 edges.
Based on this graph, all images in the manifold can be warped in accordance to their connected
images. The registration process can then be viewed as a dynamic graph shrinkage process, as
described in our previous HUGS (Hierarchical Unbiased Graph Shrinkage) for groupwise reg-
istration [23]. A brief description of HUGS is given here.

In general, we can assume the deformation of each individual image as a dynamic procedure
of time variable t. Thus, Ii(t) can be used to represent the deformed image Ii at time t. Next, we

use a graph defined in the brain image manifold as follows. Let IðtÞ ¼ fIiðtÞgNi¼1 be the graph
nodes and E = {eij: i,j = 1, . . ., N} be the edges between two nodes in the graph. eij = 1 means
existence of a link between Ii(t) and Ij(t). Otherwise, there is no direct link between Ii(t) and
Ij(t) in the graph. Also, we define a N × N weighted adjacency matrix where each element exp
(vij(t)) describes the geodesic pathway between two images, such that vij(t)> 0 if eij = 1 and
vij(t) =1 otherwise. Note that vij(t) denotes the velocity vector of geodesic pathway, which
indicates the distance between Ii(t) and Ij(t). Here, deformable image registration [12] is per-
formed to estimate each velocity vector vij(t) and further calculate the deformation pathway
between Ii(t) and Ij(t) by exp (vij(t)), where ‘exp’ is the exponential map [33]. Intuitively, the
goal of our graph-based groupwise registration is to minimize the velocity vectors along all
graph edges, as defined below:

FðtÞ ¼ PN
i;j¼1eijkvijðtÞk2

: ð3Þ

The principle behind F(t) is demonstrated in Fig 3. First, all images are assumed to be sitting
in a high-dimensional manifold. Then, the topology of their distribution is described by a
graph, where the graph edges denote the local connectivity between graph nodes. Specifically,
the velocity vector vij(t) is associated with each graph edge, where the integration along vij(t)
forms the geodesic distance from Ii(t) to Ij(t). Thus, the minimization of F(t) can be regarded
as a dynamic graph shrinking procedure, which deforms each image from Ii(t) to Ii(t + Δt) with
the decreased overall geodesic distance, while keeping the topology of the entire graph. As time
t increases, all Ii(t)s are supposed to meet at the population center, with properly determined
velocity vector vij(t) and time increment Δt.

As we formulate the problem of groupwise registration as the dynamic shrinkage of graph, it
is critical to determine the deformation of each image Ii(t) at time t, which can minimize energy
function F(t). Suppose each image has been deformed from Ii(t0) to Ii(tk), where {tk} is the discre-
tization of time t (k = 0, . . . K, t0 = 0, tK!1). Regarding the local connectivity of each node
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Ii(tk) in the graph, it is reasonable to move Ii(tk) along the average direction according to its con-
nected nodes. Since the velocity vector sits on the tangent space of Ii(tk) on the manifold, it can be

efficiently calculated by linear averaging as v̂ i tkð Þ ¼ 1
Ni

PN
j¼1eijvijðtkÞ, whereNi ¼

PN
j¼1eij is the

number of connections for Ii(tk). Given the direction of each velocity vector v̂ iðtkÞ at time point tk,
it can be proven that the entire energy function F(t) is strictly and monotonously decreased if each
node Ii(tk) moves along the direction of velocity vector v̂ iðtkÞ from tk to tk + Δtk, where the time

increment Δtk is bounded byDtk ¼ min 1
maxikv̂ iðtkÞk ;

PN

i¼1
Nikv̂ iðtkÞk2PN

i¼1
ðNiþ1Þkv̂ iðtkÞk2 g

�
. Eventually, the

geodesic pathway φi from each image Ii to the population center can be obtained by concatenating
the deformation segments from t0 to tK, i.e., φi ¼ expðv̂ iðtKÞ � DtKÞ � . . . � expðv̂ iðt0Þ � Dt0Þ,
where ‘�’ denotes the deformation composition [34]. During graph shrinkage, all images are
gradually deformed to the hidden common space with preservation of graph topology. For numer-
ical implementation, we discretize t using tk (k = 0,1,2,. . ., with t0 = 0 and tk!1 as k!1)
based on the interval Δt. Then we use Iki as the new deformed image at time tk, and also v̂k

i as the
composited deformation field of image Iki at time tk.

Summary of Our Method
Our method is briefly summarized as follows:

1. Perform affine registration to obtain a set of N affine-aligned images I = {Ii|i = 1, . . ., N}.

2. Compute all distances di,j = kIi − Ijk2, 8i,j 2 {1, . . ., N}.

Fig 3. Registration via graph shrinkage. At time t, all the images in the graph (denoted by blue points) are connected to each other by the geodesic path
(denoted by blue dash lines). At time t+Δt, all the images are deformed according to their connected images through geodesic paths (denoted by purple dash
lines). The deformed images (denoted by red points) become closer to each other and a new graph describing their relationship is generated (denoted by red
dash lines).

doi:10.1371/journal.pone.0146870.g003
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3. Cluster images I into Ω subgroups Gα (a 2 f1; . . . ;Og; and SO
a¼1 Ga ¼ I) by using affinity

propagation.

4. Construct a null connection matrix E with elements ei,j = 0, 8i,j 2 {1, . . ., N}.

5. Obtain the global center image Io by Eq 2.

6. Determine in each subgroup Gα the image nearest to the global center image Io as the repre-
sentative image Iia .

7. Establish intra-subgroup connections in the same subgroup by connecting all images Ii {Ii 2
Gα and i 6¼ iα} with the representative image Iia . Then, establish inter-subgroup connections
by connecting all representative images fIia ja ¼ 1; . . . ;O and ia 6¼ og and the global center
image Io.

8. Perform registration via graph shrinkage iteratively until convergence.

Results and Discussion
eHUGS offers an efficient and accurate solution to tackle heterogeneous image datasets (We
found eHUGS did not achieve significant improvement over HUGS on small dataset such as
IXI (30 subjects) and NIREP (16 subjects) since single graph is sufficient to describe the image
distribution for small number of subjects). We evaluate the proposed method on both adult
and infant datasets. Specifically, we tune the parameters of our eHUGS registration method
using the 4-time-point longitudinal brain MR scans of 20 elderly normal subjects, obtained
from the ADNI dataset [27]. Then, using these tuned parameters, we apply eHUGS to the
infant dataset, which includes 285 MR brain images of infant subjects with 2 weeks to 2 years
of age. The proposed method is compared with the standard group-mean method [25],
ABSORB [17], and HUGS [35].

Experiments on Elderly Brains
In this experiment, 20 normal subjects are chosen from the ADNI database. In addition to the
baseline scan, each subject was also scanned after 6 months, 1 year, and 2 years. Sample base-
line scans are shown in Fig 4. This dataset is preprocessed using the following steps. First,

Fig 4. Image samples of elderly subjects obtained from the ADNI database. In this figure, large variations across subjects can be observed.

doi:10.1371/journal.pone.0146870.g004
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anterior commissure (AC) posterior commissure (PC) correction is applied to all images,
which are further resampled to size 256×256×256 with voxel resolution 1mm×1mm×1mm.
After applying the N3 algorithm [36] for intensity inhomogeneity correction, Brain Surface
Extractor (BSE) [37] and Brain Extraction Tool (BET) [38] are used for skull stripping. Next,
each image is segmented into three types of tissues: white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF) by using FAST [39] in FSL software package (http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/). We further visually inspect and manually correct the segmentation results.
Hence, we can regard these segmentation results as the ground truth in evaluating the registra-
tion accuracy. Finally, affine registration using FLIRT [28] is applied.

In eHUGS, the distance matrix is calculated using the pre-processed brain images and then
affinity propagation is applied to cluster all the images. In this way, we obtain 20 subgroups
based on the observed image dataset. The clustering result is shown in Fig 5 (A), where all
images have been projected to a 3-dimensional space. Each dimension of the projected space
denotes one of the 3 largest eigenvectors obtained by performing Principal Component Analy-
sis (PCA) on the image distribution. Both intra- and inter-subgroup connections are also
shown in Fig 5 (B).

Fig 5. Clustering and graph construction. (a) Images are clustered into 20 subgroups, represented with
different markers and colors, by using affinity propagation. (b) Intra-subgroup (black color) and inter-subgroup
(orange color) connections in the graph.

doi:10.1371/journal.pone.0146870.g005

Robust Groupwise Registration for Large Population Dataset

PLOS ONE | DOI:10.1371/journal.pone.0146870 January 22, 2016 10 / 21

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/


Evaluations of eHUGS, HUGS, ABSORB, and the standard group-mean method are per-
formed on a Dell workstation with 2 Xeon E74850, 2.0Ghz, 10 core CPU, and 256GB/1066Mhz
RAM. The computation times of all methods are summarized in Table 1. There are in total 79
edges in the graph constructed in eHUGS, compared with 1265 edges in the graph given by
HUGS. This causes HUGS to be nearly 20 times slower than eHUGS. The standard group-
mean method gives 79 edges, and ABSORB gives more than 79 edges. Generally, in terms of
computation time, eHUGSffi group-mean< ABSORB< 1-week computation time<HUGS
(~1 month).

To quantitatively measure registration accuracy, the Dice ratio is used to measure the degree
of overlap of a specific type of tissue between different images after registration. The Dice ratio
is defined as

DiceðA;BÞ ¼ 2� jA \ Bj
jAj þ jBj : ð4Þ

Here, | � | is the voxel count within the region-of-interest. A and B denote the regions
spanned by a specific type of tissue, respectively, in the two images. Better registration should
yield higher Dice ratios [40]. Since no explicit template image is selected in groupwise registra-
tion, the ground-truth segmentation in the common space is obtained by majority voting from
all aligned images. Then, the Dice ratio associated with each tissue type (WM, GM, and CSF) is
computed with respect to the estimated ground-truth segmentation.

Before (non-rigid) groupwise registration, the average Dice ratios of WM, GM, CSF, and all
tissues in overall (after affine registration) are 70.01±2.99%, 55.20±3.00%, 60.64±2.81%, and
61.95±2.93%, respectively. Table 2 shows the average Dice ratios of each tissue type given by
the standard group-mean method, ABSORB, HUGS, and eHUGS, respectively. The lower
quartiles, medians, and upper quartiles of Dice ratios onWM, GM and CSF are also shown in
Fig 6(A)–6(C), respectively, for different registration approaches. It can be observed that our
eHUGS achieves the highest Dice ratio for each tissue type. Since the conventional group-

Table 1. Computation times of the standard group-meanmethod, ABSORB, HUGS, and eHUGS on the
elderly brain image dataset, obtained from ADNI.

Time (hour)

Group-mean 40

ABSORB 72

HUGS 640

eHUGS 48

doi:10.1371/journal.pone.0146870.t001

Table 2. Dice ratios of WM, GM, CSF and all tissues, obtained by the standard group-meanmethod, ABSORB, HUGS, and eHUGS, respectively, for
the elderly brain dataset (ADNI).

WM GM CSF Overall

Before Non-linear Registration 70.01±2.99% 55.20±3.00% 60.64±2.81% 61.95±2.93%

Group-mean 82.62±1.64%* 66.18±2.77%* 74.07±2.14%* 74.29±2.18%

ABSORB 86.32±1.15%* 71.18±2.48%* 78.32±1.86%* 78.61±1.83%

HUGS 86.57±4.91%* 75.27±6.80%* 80.20±6.37%* 80.68±6.03%

eHUGS 88.58±3.53% 77.23±3.44% 82.64±2.04% 82.82±3.01%

doi:10.1371/journal.pone.0146870.t002
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Fig 6. The box plots of Dice ratios of WM, GM and CSF for the elderly brain dataset (ADNI). (a) Dice
ratio produced by the standard group-mean method. (b) Dice ratio produced by ABSORB. (c) Dice ratio
produced by HUGS. And (d) Dice ratio produced by eHUGS.

doi:10.1371/journal.pone.0146870.g006
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mean registration method independently registers each individual image to the population cen-
ter, such outlier images undermine the group mean and also mislead the registration result of
whole group. On the contrary, our graph-based groupwise registration method adaptively
deforms each image based on the neighbouring images in the high-dimensional image mani-
fold, with the goal to improve the overall registration accuracy while minimize the influence
from the outlier images.

The average Dice ratios of WM, GM and CSF obtained by the proposed method (eHUGS),
HUGS, ABSORB, and the standard group-mean method in each iteration are shown in Fig 7
(A)–7(D), respectively. For each method, the Dice ratio becomes stable after a certain number
of iterations. From Fig 7(A)–7(D), we can observe that the average Dice ratios for WM, GM,
CSF and all tissues in overall given by eHUGS are higher than any other method. We apply the
paired t-test between our eHUGS and all other three counterpart methods, and our eHUGS
achieves significant improvement over all three methods in terms of Dice ratio with p< 0.01.
More strictly, we further apply Mann-Whitney U-test, after the false discovery rate (FDR) cor-
rection, and also find that the improvements by eHUGS over all other three groupwise registra-
tion methods are still statistically significant (p< 0.01) in all tissue types, as indicated by the
red ‘�’ in Table 2.

It is worth noting that our graph-based groupwise registration is very flexible to work with
other similarity measurements. Here, we also use mutual information (MI) to compute the
pairwise similarity and construct the hierarchical graph. The Dice ratios in WM, GM, and CSF

Fig 7. Changes of Dice ratios with progress of groupwise registration for the elderly brain dataset (ADNI).

doi:10.1371/journal.pone.0146870.g007
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after groupwise registration using MI are 88.54%, 77.24%, and 82.49%, respectively, which are
comparable to the results using SSD (last row in Table 2).

Experiments on 285 Infant Brains (Aged from Birth to 2-year-old)
In this experiment, we evaluate the groupwise registration result on 95 longitudinal infant
image series. Each infant subject has been scanned at birth, 1 year old, and 2 years old. All
these images were acquired using a Siemens head-only 3T scanner for 95 subjects. Due to WM
myelination, we use T2-weighted images for neonates and T1-weighted images for 1–2 year(s)
old infants. For neonatal subjects (scanned at birth), we use T2-weighted images with the fol-
lowing parameters: TR = 7380ms, TE = 119ms, flip angle = 150°, acquisition matrix = 256×128,
and voxel resolution = 1.25×1.25×1.95mm3. For 1-year-old and 2-year-old subjects, we use
T1-weighted images, with the following imaging parameters: TR = 1900ms, TE = 4.38ms, flip
angle = 7°, acquisition matrix = 256×192, and voxel resolution = 1×1×1mm3. T2-weighted
images are affine aligned onto the respective 1-year-old T1-weighted images of the same sub-
ject and further resampled to 1×1×1mm3. All images are cropped to the size 256×256×198.
Then skull stripping, inhomogeneity correction are performed to all T1- and T2-weighted MR
images. Since we have each infant subjects scanned in 0-year-old, 1-year-old, and 2-year old,
we employ the state-of-the-art infant segmentation method [41] to obtain reasonable segmen-
tation results for infant images by letting the segmentation of later time points guide the
challenging segmentation in the 0 year old. We further manually inspect and correct the

Fig 8. Sample images of two subjects from the infant database.We can observe large structural variation across subjects, and also large appearance
variation across different images of same subject.

doi:10.1371/journal.pone.0146870.g008
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segmentation result, in order to guarantee the segmentation quality in evaluating the registra-
tion accuracy. After that, we perform FLIRT in FSL package to linearly register all infant sub-
jects to the common space. As shown in Fig 8, structural variations across different infants are
large, and also the appearances across different times of same infant are also large.

In eHUGS, again the distance matrix is calculated for the pre-processed brain images, and
then affinity propagation is applied to cluster the images, resulting in 2 subgroups. As can be
seen from Fig 8, the images of 1-year-olds and 2-year-olds are relatively similar, especially
when compared with their differences with those of neonates. This is consistent with the fact
that the total brain volume increases 101% in the first year of life, in contrast to only 15% in the
second year (Knickmeyer, et al., 2008). The clustering result is shown in Fig 9 (A), where all
images are projected to a 3-dimensional space. Again, each dimension denotes one of the 3
largest eigenvectors by performing PCA on the image distributions. The intra- and inter-sub-
group connections are also shown in Fig 9 (B).

There are in total 284 edges in the graph constructed by eHUGS, compared with 24,494
edges in the graph given by HUGS. This causes HUGS to be nearly 84 times slower than

Fig 9. Clustering and graph construction. (a) Images are clustered into 2 subgroups, represented with
different markers and colors, by using affinity propagation. (b) Intra-subgroup (black color) and inter-subgroup
(orange color) connections in the graph.

doi:10.1371/journal.pone.0146870.g009
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eHUGS. In fact, for this dataset, based on our estimation, HUGS needs more than a year to
complete the registration. In this case, we only compare eHUGS with the standard group-mean
method and ABSORB. For all methods, the computation times are summarized in Table 3.

Before (non-rigid) groupwise registration, the average Dice ratios of WM, GM, CSF, and all
tissues in overall are 60.93±9.15%, 72.29±11.11%, 39.19±7.57%, and 57.47±9.28%, respectively.
Table 4 shows the average Dice ratio of each tissue type. The lower quartiles, medians, and
upper quartiles of Dice ratios on WM, GM and CSF are shown in Fig 10(A)–10(C), respec-
tively, for different registration approaches. It can be observed that eHUGS again achieves the
highest Dice ratio in all comparisons.

The average Dice ratios of WM, GM and CSF obtained by the proposed method (eHUGS),
the standard group-mean method, and ABSORB in each iteration are shown in Fig 11(A)–11
(D). From Fig 11(A)–11(D), we can draw similar conclusions as for the elderly brain dataset.
That is, the average Dice ratios on WM, GM, CSF and the overall by the proposed method are
higher than any other method. Under paired t-test, we find that our eHUGS achieves signifi-
cant improvements (p< 0.01) over group-mean, and ABSORB in terms of Dice ratio on all tis-
sue types. By considering all 285 aligned images together, we also perform the Mann-Whitney
U test between the Dice ratios of eHUGS and all other methods. After FDR correction, the mul-
tiple comparison tests show that eHUGS achieves significant improvement in CSF with
p< 0.01, as indicated by the red ‘�’ in Table 4. Similarly, we also replace the SSD measurement
with MI in constructing the graph. The final groupwise registration results by using two image
similarity measurements are comparable, where the tissue overlap ratios in WM, GM, and CSF
are (77.44%, 78.88%, 52.79%) by using SSD and (77.96%, 78.64%, 52.96%) by using MI.

Since the infant atlas is very important in many brain development studies, we specifically
evaluate the registration accuracy by inspecting the quality of the infant atlases, constructed from
all aligned infant images. Here, we use a simple averaging to get the mean image, and use major-
ity voting to generate the tissue probability maps forWM, GM, and CSF, respectively. From top
to bottom, in Fig 12, we show the constructed atlas (mean image, WM, GM, and CSF probability
maps) by the standard group-mean method, ABSOB, and eHUGS. Through visual inspection,
the atlases constructed by eHUGS show greater anatomical details than any other method.

Table 4. Dice ratios of WM, GM, CSF and all tissues, obtained by the standard group-meanmethod, ABSORB, and eHUGS, respectively, for the
infant dataset.

WM GM CSF Overall

Before Non-linear Registration 60.93±9.15% 72.29±11.11% 39.19±7.57% 57.47±9.28%

Group-mean 68.18±10.24% 74.53±11.57% 43.16±7.61%* 61.96±9.81%

ABSORB 76.69±14.97% 78.79±12.78% 48.47±10.44%* 67.98±12.73%

eHUGS 77.44±13.12% 78.88±13.56% 52.79±9.59% 69.70±12.09%

doi:10.1371/journal.pone.0146870.t004

Table 3. Computation times of the standard group-meanmethod, ABSORB, HUGS, and eHUGS for
the infant brain image dataset.

Time (hour)

Group-mean 170

ABSORB 236

HUGS 185×84 (estimate)

eHUGS 185

doi:10.1371/journal.pone.0146870.t003
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Fig 10. The box plots of the Dice ratios of WM, GM and CSF for the infant dataset. (a) By the standard
group-mean method. (b) By ABSORB. (c) By eHUGS.

doi:10.1371/journal.pone.0146870.g010
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Conclusion
In this paper, we have presented an effective and efficient method for unbiased groupwise reg-
istration of large dataset of images. Specifically, we propose an enhanced version of HUGS,
namely eHUGS, to model the complex image distribution by using the hierarchical graph and
thus overcome the limitation of using a single graph in HUGS. Experiments using both elderly
and infant brain images indicate that eHUGS gives the improved registration performance. In
all experiments, eHUGS yields the best Dice ratio when compared with the standard group-
mean method, ABSORB, and HUGS.

In our proposed eHUGS, our main idea is to use hierarchical graph for representing image
distribution, and then register images progressively to each other for avoiding direct registra-
tion between different images. For our current datasets, using simple image similarity metric,
we found that 2 levels are enough to represent the image distribution. But, for other datasets,
more levels may be needed for representing more complex image distribution. On the other
hand, when affine aligning all images to the comment space, although we select a population

Fig 11. Changes of Dice ratios with progress of groupwise registration for the infant brain dataset.

doi:10.1371/journal.pone.0146870.g011
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center as a template, pairwise registration is still used. Potentially, we can use groupwise affine
registration for alignment of the whole dataset, which could improve the registration results of
all affine-aligned images. All these will be our future work.

Besides, our other future work also includes (1) evaluating the registration performance of
eHUGS on large datasets; (2) applying eHUGS to other applications, such as group comparison
for discovering AD imaging biomarkers.
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Fig 12. Illustration of the atlases of infant brains. A-C are obtained by the standard group-meanmethod, ABSORB, and eHUGS, respectively. In each
panel, from left to right are the mean image, and tissue probability maps for CSF, GM andWM, respectively.

doi:10.1371/journal.pone.0146870.g012

Robust Groupwise Registration for Large Population Dataset

PLOS ONE | DOI:10.1371/journal.pone.0146870 January 22, 2016 19 / 21



References
1. Toga AW, Thompson PM. The role of image registration in brain mapping. Image and Vision Comput-

ing. 2001; 19(1–2):3–24. PMID: 19890483

2. Toga AW, Thompson PM. TEMPORAL DYNAMICS OF BRAIN ANATOMY. Annual Review of Biomed-
ical Engineering. 2003; 5:119–45. PMID: 14527311

3. Zitova B. Image registration methods: a survey. Image and Vision Computing. 2003; 21(11):977–1000.
PMID: citeulike:494149.

4. Auzias G, Colliot O, Glaunes JA, Perrot M, Mangin JF, Trouve A, et al. Diffeomorphic brain registration
under exhaustive sulcal constraints. IEEE Trans Med Imaging. 2011; 30(6):1214–27. doi: 10.1109/TMI.
2011.2108665 PMID: 21278014.

5. Jia H, Yap P-T, Wu G, Wang Q, Shen D. Intermediate templates guided groupwise registration of diffu-
sion tensor images. NeuroImage. 2011; 54(2):928–39. doi: 10.1016/j.neuroimage.2010.09.019 PMID:
20851197

6. Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Physics in Medicine and
Biology. 2001; 46:R1–R45. PMID: 11277237

7. Durrleman S, Fillard P, Pennec X, Trouve A, Ayache N. Registration, atlas estimation and variability
analysis of white matter fiber bundles modeled as currents. Neuroimage. 2011; 55(3):1073–90. doi: 10.
1016/j.neuroimage.2010.11.056 PMID: 21126594.

8. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL. Unbiased average age-appropri-
ate atlases for pediatric studies. NeuroImage. 2010; 54(1):313–27. doi: 10.1016/j.neuroimage.2010.07.
033 PMID: 20656036

9. Shen D, Davatzikos C. HAMMER: Hierarchical attribute matching mechanism for elastic registration.
Medical Imaging, IEEE Transactions on. 2002; 21(11):1421–39.

10. Beg F, Miller M, Trouve A, Younes L. Computing large deformation metric mappings via geodesic flows
of diffeomorphisms. International Journal of Computer Vision. 2005; 61(2):139–57. PMID: Beg05.

11. Avants B, Epstein CL, GrossmanM, Gee JC. Symmetric diffeomorphic image registration with cross-
correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image
Analysis. 2008; 12(1):26–41. PMID: 17659998

12. Vercauteren T, Pennec X, Perchant A, Ayache N. Symmetric log-domain diffeomorphic registration: a
demons-based approach. Medical Image Computing and Computer-Assisted Intervention–MICCAI
20082008. p. 754–61.

13. Vercauteren T, Pennec X, Perchant A, Ayache N. Diffeomorphic demons: efficient non-parametric
image registration. NeuroImage. 2009; 45(1, Supplement 1):S61–S72. doi: 10.1016/j.neuroimage.
2008.10.040 PMID: 19041946

14. Cootes TF, Twining CJ, Petrovic VS, Babalola KO, Taylor CJ. Computing accurate correspondences
across groups of images. IEEE Trans Pattern Anal Mach Intell. 2010; 32(11):1994–2005. doi: 10.1109/
TPAMI.2009.193 PMID: 20847389.

15. Joshi S, Davis B, Jomier M, Gerig G. Unbiased diffeomorphic atlas construction for computational anat-
omy. Neuroimage. 2004; 23 Suppl 1:S151–60. PMID: 15501084.

16. Park H, Bland PH, Hero AO, Meyer CR. Least biased target selection in probabilistic atlas construction.
Medical Image Computing and Computer-Assisted Intervention–MICCAI 20052005. p. 419–26.

17. Jia H, Wu G, Wang Q, Shen D. ABSORB: Atlas building by self-organized registration and bundling.
NeuroImage. 2010; 51(3):1057–70. doi: 10.1016/j.neuroimage.2010.03.010 PMID: 20226255

18. Learned-Miller EG. Data driven image models through continuous joint alignment. Pattern Analysis and
Machine Intelligence, IEEE Transactions on. 2006; 28(2):236–50.

19. Spiclin Z, Likar B, Pernus F. Groupwise Registration of Multimodal Images by an Efficient Joint Entropy
Minimization Scheme. IEEE Transactions on Image Processing. 2012; 21(5):2546–58. doi: 10.1109/
TIP.2012.2186145 PMID: 22294031

20. Wachinger C, Navab N. Simultaneous Registration of Multiple Images: Similarity Metrics and Efficient
Optimization. IEEE Trans on Pattern Anal and Mach Intell. 2013; 35(5):1221–33.

21. WuG,Wang Q, Jia H, Shen D. Feature-based Groupwise Registration by Hierarchical Anatomical Cor-
respondence Detection. Human Brain Mapping. 2012; 33(2):253–71. doi: 10.1002/hbm.21209 PMID:
21391266

22. WuG, Jia H, Wang Q, Shen D. SharpMean: Groupwise Registration Guilded by Sharp Mean Image
and Tree-based Registration. NeuroImage. 2011; 56(4):1968–81. doi: 10.1016/j.neuroimage.2011.03.
050 PMID: 21440646

Robust Groupwise Registration for Large Population Dataset

PLOS ONE | DOI:10.1371/journal.pone.0146870 January 22, 2016 20 / 21

http://www.ncbi.nlm.nih.gov/pubmed/19890483
http://www.ncbi.nlm.nih.gov/pubmed/14527311
http://www.ncbi.nlm.nih.gov/pubmed/citeulike:494149
http://dx.doi.org/10.1109/TMI.2011.2108665
http://dx.doi.org/10.1109/TMI.2011.2108665
http://www.ncbi.nlm.nih.gov/pubmed/21278014
http://dx.doi.org/10.1016/j.neuroimage.2010.09.019
http://www.ncbi.nlm.nih.gov/pubmed/20851197
http://www.ncbi.nlm.nih.gov/pubmed/11277237
http://dx.doi.org/10.1016/j.neuroimage.2010.11.056
http://dx.doi.org/10.1016/j.neuroimage.2010.11.056
http://www.ncbi.nlm.nih.gov/pubmed/21126594
http://dx.doi.org/10.1016/j.neuroimage.2010.07.033
http://dx.doi.org/10.1016/j.neuroimage.2010.07.033
http://www.ncbi.nlm.nih.gov/pubmed/20656036
http://www.ncbi.nlm.nih.gov/pubmed/Beg05
http://www.ncbi.nlm.nih.gov/pubmed/17659998
http://dx.doi.org/10.1016/j.neuroimage.2008.10.040
http://dx.doi.org/10.1016/j.neuroimage.2008.10.040
http://www.ncbi.nlm.nih.gov/pubmed/19041946
http://dx.doi.org/10.1109/TPAMI.2009.193
http://dx.doi.org/10.1109/TPAMI.2009.193
http://www.ncbi.nlm.nih.gov/pubmed/20847389
http://www.ncbi.nlm.nih.gov/pubmed/15501084
http://dx.doi.org/10.1016/j.neuroimage.2010.03.010
http://www.ncbi.nlm.nih.gov/pubmed/20226255
http://dx.doi.org/10.1109/TIP.2012.2186145
http://dx.doi.org/10.1109/TIP.2012.2186145
http://www.ncbi.nlm.nih.gov/pubmed/22294031
http://dx.doi.org/10.1002/hbm.21209
http://www.ncbi.nlm.nih.gov/pubmed/21391266
http://dx.doi.org/10.1016/j.neuroimage.2011.03.050
http://dx.doi.org/10.1016/j.neuroimage.2011.03.050
http://www.ncbi.nlm.nih.gov/pubmed/21440646


23. Ying S, Wu G, Wang Q, Shen D. Hierarchical unbiased graph shrinkage (HUGS): A novel groupwise
registration for large data set. Neuroimage. 2014; 84:626–38. doi: 10.1016/j.neuroimage.2013.09.023
PMID: 24055505.

24. Orchard J, Mann R. Registering a multisensor ensemble of images. IEEE Transactions on Image Pro-
cessing. 2010; 19(5):1236–47. doi: 10.1109/TIP.2009.2039371 PMID: 20040419

25. Joshi S, Davis B, Jomier M, Gerig G. Unbiased diffeomorphic atlas construction for computational anat-
omy. PMID: NeuroImage. 2004; 23(Supplement 1):S151–S60.

26. Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007; 315:972–6.
PMID: 17218491

27. ADNI. http://www.loni.ucla.edu/ADNI/.

28. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Medi-
cal Image Analysis. 2001; 5(2):143–56. PMID: 11516708

29. Wang Q, Chen L, Yap PT, Wu G, Shen D. Groupwise registration based on hierarchical image cluster-
ing and atlas synthesis. Human Brain Mapping. 2010; 31(8):1128–40. PMID: 20063349. doi: 10.1002/
hbm.20923

30. Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: a sur-
vey. IEEE Transactions on Medical Imaging. 2003; 22(8):986–1004. PMID: 12906253

31. Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image align-
ment. Pattern Recognition. 1999; 32(1):71–86. PMID: WOS:000078298000006.

32. MacQueen J, editor Somemethods for classification and analysis of multivariate observations. Pro-
ceedings of the fifth Berkeley symposium on mathematical statistics and probability; 1967: California,
USA.

33. Helgason S. Differential Geometry, Lie Groups and Symmetric Space: Academic Press; 2001.

34. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007; 38(1):95–113.
PMID: 17761438

35. Ying S, Wu G, Wang Q, Shen D. Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise
registration for large data set. NeuroImage. 2014; 84(1):626–38.

36. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity non-
uniformity in MRI data. Medical Imaging, IEEE Transactions on. 1998; 17(1):87–97.

37. Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM. Magnetic resonance image
tissue classification using a partial volume model. NeuroImage. 2001; 13(5):856–76. PMID: 11304082

38. Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002; 17(3):143–55. PMID:
12391568

39. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field
model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging. 2001; 20
(1):45–57. PMID: 11293691

40. Rohlfing T. Image Similarity and Tissue Overlaps as Surrogates for Image Registration Accuracy:
Widely Used but Unreliable. IEEE Transactions on Medical Imaging. 2012; 31(2):153–60. doi: 10.1109/
TMI.2011.2163944 PMID: 21827972

41. Shi F, Shen D, Yap P-T, Fan Y, Cheng J, An H, et al. CENTS: Cortical Enhanced Neonatal Tissue Seg-
mentation. Human Brain Mapping. 2011; 32(2):382–96.

Robust Groupwise Registration for Large Population Dataset

PLOS ONE | DOI:10.1371/journal.pone.0146870 January 22, 2016 21 / 21

http://dx.doi.org/10.1016/j.neuroimage.2013.09.023
http://www.ncbi.nlm.nih.gov/pubmed/24055505
http://dx.doi.org/10.1109/TIP.2009.2039371
http://www.ncbi.nlm.nih.gov/pubmed/20040419
http://www.ncbi.nlm.nih.gov/pubmed/NeuroImage
http://www.ncbi.nlm.nih.gov/pubmed/17218491
http://www.loni.ucla.edu/ADNI/
http://www.ncbi.nlm.nih.gov/pubmed/11516708
http://www.ncbi.nlm.nih.gov/pubmed/20063349
http://dx.doi.org/10.1002/hbm.20923
http://dx.doi.org/10.1002/hbm.20923
http://www.ncbi.nlm.nih.gov/pubmed/12906253
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000078298000006
http://www.ncbi.nlm.nih.gov/pubmed/17761438
http://www.ncbi.nlm.nih.gov/pubmed/11304082
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://www.ncbi.nlm.nih.gov/pubmed/11293691
http://dx.doi.org/10.1109/TMI.2011.2163944
http://dx.doi.org/10.1109/TMI.2011.2163944
http://www.ncbi.nlm.nih.gov/pubmed/21827972

