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Abstract
Background: Since autophagy remains an important topic of investigation, the RNA-
sequence profiles of autophagy-related genes (ARGs) can provide insights into pre-
dicting low-grade gliomas (LGG) prognosis.
Methods: The RNA-seq profiles of autophagic genes and prognosis data of LGG 
were integrated from the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome 
Atlas (CGGA). Univariate Cox analysis and the least absolute shrinkage and selection 
operator (LASSO) regression model were carried out to identify the differentially ex-
pressed prognostic autophagy-related genes. Then, the autophagic-gene signature was 
formed and verified in TCGA test set and external CGGA cohorts. Time-dependent 
receiver operating characteristic (ROC) was examined to test the accuracy of this sig-
nature feature. A nomogram was conducted to meet the needs of clinicians. Sankey 
diagrams were performed to visualize the relationship between the multigene signa-
tures and clinic-pathological features.
Results: Twenty-four ARGs were finally identified most relevant to LGG progno-
sis. According to the specific prediction index formula, the patients were classified 
into low-risk or high-risk groups. Prognostic accuracy was proved by time-dependent 
ROC analysis, with AUC 0.9, 0.93, and 0.876 at the survival time of 2-, 3-, and 
5-year, respectively, which was superior to the AUC of the isocitrate dehydrogenase 
(IDH) mutation. The result was confirmed while validated in the TCGA test set and 
external validation CGGA cohort. A nomogram was constructed to meet individual 
needs. With a visualization approach, Sankey diagrams show the relationship of the 
histological type, IDH status, and predict index. In TCGA and CGGA cohorts, both 
low-risk groups displayed better survival rate in LGG while histological type and 
IDH status did not show consistency results.
Conclusions: 24-ARGs may play crucial roles in the progression of LGG, and LGG 
patients were effectively divided into low-risk and high-risk groups according to 
prognostic prediction. Overall, our study will provide novel strategies for clinical 
applications.
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1 |  INTRODUCTION

Gliomas are the most frequently diagnosed brain tumors and 
account for over 30% of all primary brain and central ner-
vous system (CNS) tumors in adults.1 Low-grade gliomas 
(LGG), known as grade II glioma according to World Health 
Organization (WHO) classification, include three histolog-
ical subtypes: astrocytoma, oligodendroglial, and oligoas-
trocytoma.2 Although LGGs are well-differentiated, slowly 
growing and less aggressive, nearly half of the patients died 
after surgery due to recurrence or metastasis.3 In recent 
years, the prognosis of LGG patients has been improved sig-
nificantly because of the developments of multidisciplinary 
treatments.2 However, great heterogeneity in prognosis has 
also been observed.4 It has been proposed that the survival 
of patients with LGG varies greatly, likely stems from the 
different genetic background. Therefore, it is very essential 
to identify molecular biomarkers to predict the prognosis and 
perform appropriate and individualized therapies.

IDH mutation is a recognized prognostic biomarker for LGG 
patients. Patients with IDH1 or IDH2 mutation tend to have su-
perior survival than others.5 However, approximately 80%–90% 
of LGG patients harbor IDH1 and less than 1% harbor IDH2 
mutations, which means that only a fraction of patients with 
poor or good prognosis can be identified based on IDH mu-
tation status. MGMT promoter methylation level in initial 
tumors may be used to anticipate future aggressive clonal out-
growths of hypermutated and malignantly transformed tumor 
cells, while not exactly to predict the prognostic of LGG.6 NF-
kB-p65 protein was identified as an independent predictor of 
both overall survival and malignant progression-free survival in 
grade II LGG.7 Above all, a comprehensive and precise tool is 
expected to assist clinical procedure. The multigene signatures 
prediction classifier is an important method, which is currently 
used in the prediction of recurrence of multiple tumors, includ-
ing colorectal cancer,8–11 bladder cancer,12 laryngeal cancer,13 
Lower Grade Glioma,14 etc.

Autophagy is an important mechanism in the processes of 
transporting damaged, denatured or aging proteins, digestion, 
and degradation of organelles.15 These processes are medi-
ated by autophagy-related genes (ARGs). Previous studies 
have identified more than 200 ARGs, directly or indirectly 
participating in the process of autophagy.16 Recently, it has 
also been demonstrated that autophagy is strongly related to 
tumor occurrence, inflammatory, therapeutic resistance, and 
cell death. Autophagy could inhibit migration and invasion of 
glioblastoma cells.17 Autophagy may be a paradigm of dual-
ity in hepatocarcinogenesis.18 Downregulated p62, which is a 
selective substrate for autophagy, related to the development 
of CRC.19 Moreover, several studies have demonstrated that 
some ARGs also related to the survival of patients with tumor 
and ARG-based signatures could accurately predict the prog-
nosis of patients.16,20

However, the relationship between autophagy and low-grade 
glioma has been rarely reported. More recently, it has been 
found that autophagy proteins were reduced and correlated with 
progression-free survival in LGG.21,22 Therefore, with the hy-
pothesis that the malignancy-risk gene signatures has prognostic 
and predictive value for LGG, the RNA-seq profiles of ARGs 
and prognosis data of LGG were integrated from the Cancer 
Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas 
(CGGA). Then, a predict risk formula was developed to pre-
dict the clinical outcome of patients with LGG. A total of 728 
samples were used for statistical analysis. Clinical parameters 
included age, gender, IDH mutation status, histopathological 
types, and overall survival (Table 1). Utilizing the sample-split-
ting method and Cox regression analysis, the prognostic predicts 
associated with 24-ARGs can be determined from the TCGA 
training cohort and verified in the TCGA test cohort and CGGA 
cohort. Finally, according to the recurrence-free survival rate, a 
nomogram was constructed as a quantitative prediction tool to 
assess clinical prognosis and assist clinical procedures.

2 |  MATERIALS AND METHODS

2.1 | Data acquisition

The ARGs were obtained from the Human Autophagy 
Database (HADb, http://autop hagy.lu/clust ering/ index.html).

The RNA-sequencing (RNA-seq) data of LGG cohorts as 
well as clinicopathological information were obtained from 
the TCGA (https://tcga-data.nci.nih.gov/) and CGGA (http://
www.cgga.org.cn) databases. The TCGA data set was ran-
domly split into the training and internal test sets, and the 
CGGA data set severed as the external test set.

2.2 | Construction of the ARGs 
prognostic model

Univariate Cox proportional hazards regression model was 
used in the training set to identify ARGs that were signifi-
cantly correlated with overall survival for LGG patients and 
a total of 276 prognostic ARGs were identified. Then, the 
prognostic model based on these ARGs was constructed 
through LASSO regression, using the “glmnet” package in 
R 3.5.3.23 The penalty coefficient, namely lambda, was op-
timized through 10-fold cross-validation in the training set.

2.3 | Evaluation of the prognostic model

Linear predict indexes (PIs) were calculated based on the 
model for all samples. The “survminer” package in R 3.5.3 
was used to determine the cutoff value of the PI, which was 

http://autophagy.lu/clustering/index.html
https://tcga-data.nci.nih.gov/
http://www.cgga.org.cn
http://www.cgga.org.cn
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used to classified patients into the high-risk group and low-
risk group in the training, internal, and external test sets. The 
Log-rank test was used to compare the overall survival be-
tween the patients in the high-risk group and those in the low-
risk group. The univariate and multivariate Cox proportional 
hazard regression analysis, and time-dependent receiver oper-
ating characteristic (ROC) curve were also used to access the 
predictive ability of the model. Finally, the subgroup analyses 
were performed to evaluate the robustness of the model. In 
addition, we developed a prognostic nomogram based the PI 
and clinicopathological characteristics using the “rms” pack-
age in R 3.5.3, and validated it through calibration curves.

2.4 | Functional enrichment analysis

Exploration of the prognostic model to explore the potential 
mechanisms of the model, we identified the co-expressed 
genes of ARGs in the model by the Pearson’s correlation 
test. Then, functional enrichment analyses including GO 
and KEGG annotations were performed based on the co-ex-
pressed genes. Additionally, we also analyzed the correlations 
between the model and clinicopathological characteristics.

2.5 | The correlation between predict 
index and clinic-pathological parameters

The relationship between predict index and clinic-patho-
logical parameters were analyzed via box plots and Sankey 
diagrams by independent samples nonparametric tests in 
the TCGA cohort and CGGA cohort. Sankey diagrams 

were plotted using “ggforce” package in R.24 Kaplan–Meier 
survival curve analysis were performed to investigate the 
potential of predict index as prognostic factors in clinic-path-
ological parameters based on TCGA and CGGA cohorts.

2.6 | Statistical analysis

All statistical analysis involved were performed using R (ver-
sion 3.5.1, www.r-proje ct.org). All statistical tests was two-
sided, and p < 0.05 was considered statistically significant.

3 |  RESULTS

3.1 | Preparation of data sets

About 504 cases of LGG (low-grade glioma) from the TCGA 
cohort were randomized into training and test sets by 0.7:0.3. 
Mortality differential in the two sets was the same. Two ex-
ternal validation series mRNAseq_693 and mRNAseq_325 
involving 224 cases of LGG (low-grade glioma) were from 
the CGGA cohort. Sva package was used for removing batch 
effects and other unwanted variations. All the cases with sur-
vival status or follow-up information missing were excluded.

3.2 | Derivation of the gene expression 
signatures from TCGA data sets

Altogether RNA-seq and clinical data of 504 LGG samples 
were downloaded from TCGA. Clinicopathological features 

Variables

TCGA cohort N=504

CGGA cohort 
N = 224

Training set
N = 352

Test set
N = 152 p-value

Age (mean, range) 41 (17–87) 39 (14–75) 0.162

Gender

Male 199 81 0.565 134

Female 153 71 90

IDH

Mutation 277 128 0.263 175

Wild 95 24 49

Histopathological

Astrocytoma 128 63 0.525 66

Oligodendroglioma 131 54 49

Oligoastrocytoma 93 35 109

Overall survival status

Alive 261 118 0.472 164

Death 91 34 60

T A B L E  1  Clinicopathological features 
of LGG (low-grade glioma) cases in TCGA 
and CGGA cohorts

http://www.r-project.org
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of these patients were described, especially IDH status and 
histopathological type (Table 1). After PS matching, there 
was no significant difference in age, gender, IDH status, 
histopathological type, and survival rate between training 
and test sets (Table 1). About 276 of 483 ARGs were found 
related to prognosis using Cox proportional hazards regres-
sion modeling, p < 0.05 was perceived as statistically sig-
nificant (Supplementary Material S1 and S2). Furthermore, 
24 out of 276 ARGs were found related to prognosis by 
performing LASSO method for a quantile regression 
model. This method possesses the oracle property and 
outperforms available existing approaches in many of the 
operating characteristics (Figure 1A,B). Maximum likeli-
hood estimation picked 24 ARGs as significant covariates, 
and the coefficient estimated from the proposed shrinkage 
method- LASSO (Table 2). We derived a 24 ARGs signa-
tures to calculate the predict index for each patient based 
on the expression levels of the 24 genes weighted by their 
regression coefficients: predict index = (−0.16347996*ex-
pression level of BAG1)  +  (0.31938936*expression 
level of LRRK2)  +  (0.09780923*expression level of 
ITGA3)  +  (0.05410868* expression level of DIRAS3)  +   
(0.74255987*expression level of FGF7) + (−0.18145619* 
expression level of KCNK3)  +  (−0.03412787*expres-
sion level of BNIP3)  +  (0.06458334*expression level of 
CAPN1)  +  (0.06828578*expression level of DLC1)  +   
(0.13859764* expression level of NFE2L2) +  (−0.31072756* 
expression level of PTK6)  +  (−0.01122885* expression 
level of ACBD5)  +  (0.03437062*expression level 
of HIST1H3D)  +  (−0.89303388*expression level 
of SAR1A)  +  (0.30253164*expression level of 
SMURF1)  +   (0.00364621*expression level of 
HIST1H3H)  +   (−0.18239344 *expression level of RNF
185)  +  (0.02510785* expression level of ANXA5)  +  (−
0.03842213* expression level of PEA15)  +  (−0.109244
60* expression level of RRAGA)  +  (−0.10734054*ex-
pression level of NRG3)  +  (0.34811122*expression 
level of ERBB2)  +  (0.07805519*expression level of 
TP73) + (0.03900696*expression level of RBM18).

3.3 | Validation of prognostic signatures

Patients in the TCGA training set use the median predict 
index as a cut-off point to divide them into the low-risk or 
high-risk groups. The 24 ARGs expression is correlated 
with risk status in the heatmap (Figure 2A). The distribu-
tion of risk status and survival status were shown in Figure 
2B, which suggested that low-risk patients generally have 

F I G U R E  1  Analysis of autophagy-
related gene signatures in the TCGA cohort. 
(A) Tuning parameter (lambda) selection 
by the partial likelihood deviance, the 
lower partial likelihood deviance the better 
number of features in the LASSO regression 
model. (B) The penalty coefficient of 276 
ARGs was optimized through 10-fold cross-
validation in the training set

T A B L E  2  Coefficients of the 24 ARGs signatures

Gene symbol Coefficients

BAG1 −0.163479961

LRRK2 0.319389362

ITGA3 0.097809235

DIRAS3 0.054108684

FGF7 0.742559877

KCNK3 −0.181456197

BNIP3 −0.034127878

CAPN1 0.06458334

DLC1 0.068285784

NFE2L2 0.138597645

PTK6 −0.310727562

ACBD5 −0.011228855

HIST1H3D 0.034370624

SAR1A −0.893033889

SMURF1 0.302531649

HIST1H3H 0.003646218

RNF185 −0.182393445

ANXA5 0.025107853

PEA15 −0.038422135

RRAGA −0.109244609

NRG3 −0.107340544

ERBB2 0.348111222

TP73 0.078055191

RBM18 0.039006969
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better survival rates than high-risk patients based on log-
rank test. Time-dependent ROC analysis was conducted at 
2, 3, and 5 years to assess the prognostic accuracy of the 
classifier based on 24-ARGs. In TCGA training set, the 
AUC was 0.9, 0.93, and 0.876 at the survival time of 2, 3, 
and 5 years, respectively, which was better than the AUC 
of IDH mutation status (Figures 2C). The 24-gene signa-
ture was tested for its prognostic significance in TCGA 
test cohort for internal verification. Using the established 
predict index formula, each case was divided into high-
risk or low-risk group. We compared the ARGs expression 
between high-risk and low-risk groups in training and test 
sets. In both sets, the expression levels of LRRK2, ITGA3, 
DIRAS3, FGF7, CAPN1, DLC1, NFE2L2, HIST1H3D, 
SMURF1, HIST1H3H, ANXA5, ERBB2, TP73, and 
PRBM18 in the high-risk group were higher than those in 
the low-risk group, while BAG1, KCNK3, BNIP3, PTK6, 
ACBD5, SAR1A, RNF185, PEA15, RRAGA, and NRG3 

were opposite (Figure 2D). Consistent with the above find-
ings, log-rank test analysis found that there were signifi-
cantly different outcomes between the high-risk group and 
the low-risk group. The HR of overall survival rate of the 
high-risk group and the low-risk group were 3.569 (95% 
CI: 2.912–4.374, p  <  0.001) and 2.82 (95% CI: 2.073–
3.835, p < 0.001) in the training (Figure 2E) and test sets 
(Figure 2F), respectively. In the test set time-dependent 
ROC analysis showed that at 2-, 3-, and 5-year survival 
time, the AUC was 0.87, 0.816, and 0.857, respectively, 
better than the IDH mutation status AUC (Figures 2F).

3.4 | External validation of the signatures in 
CGGA data sets

In addition to the original test cohort (TCGA), the external 
cohort CGGA met the inclusion criteria. The expression 

F I G U R E  2  FIGUREDetermination and verification of 24-autophagy-related signatures in the TCGA and CGGA independent cohorts. The 
heatmap showed 24 differentially expressed autophagy genes in LGG between low and high groups of predict index in training set (A), test set (D) 
and validation set (G). Kaplan–Meier survival curves of overall survival rate between two clusters via Log-rank in training set (B), test set (E), and 
validation set (H). Time dependent ROC curves between predict index and IDH mutation at 2, 3, and 5 years in training set (C), test set (F), and 
validation set (I). mOS: median overall survival

(B)(A)

(D)(C)

(F)(E)
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data of the 24 ARGs from these RNA-seq data sets were 
extracted and the prognostic signatures based on the afore-
mentioned formula were calculated. The heatmap that 
showing the relationship between 24 ARGs and risk groups 
was also displayed, which supported the findings of the 
testing cohort (Figure 2G). Survival differences between 
the high-risk group and low-risk group were assessed via 
the log-rank test. In consistent with the above findings, 
patients from low-risk and high-risk groups showed sig-
nificantly different outcomes (HR: 95% CI: –, p < 0.001) 
(Figure 2H). ROC analysis was used to investigate the 
prognostic or predictive accuracy of the signatures, which 
suggested that AUC was 0.881, 0.835, and 0.711, respec-
tively, at 2-, 3-, and 5-year survival time, while the IDH 
mutation status AUC was less than 0.7 at 2, 3, and 5 years. 
(Figure 2I).

3.5 | Predict index was an independent 
prognostic factor

In order to improve the robustness, predict index from 24 
prognosis-related ARGs were analyzed with clinicopatho-
logical features by univariate Cox (Table 3) and multivari-
ate Cox regression model using SPSS 24.0. Furthermore, 
predict index and IDH1 mutation showed significant prog-
nostic value with p < 0.001 in training, test and validation 
sets. However, predict index and age remained as inde-
pendent prognostic indicator for the three sets in multivari-
ate analysis, while IDH1 mutation and histological type 
were inconsistent in the three sets (Figure 3A-C). Besides 
the parameters that we investigated, 1p19q codeletion and 

radiation were inconsistent in the three sets (Supplementary 
Material S3).

3.6 | Construction of a nomogram for 
predicting prognosis model

To provide a quantitative method for predicting prognosis, 
integrating the predicted index and four clinicopathological 
risk factors, a nomogram was constructed to meet the needs 
of clinicians. The nomogram can be interpreted by summa-
rizing the points of the five variables, which were indicated at 
the top of the scale. The total points can be converted to pa-
tients with 2-, 3-, and 5-year survival rates (Figure 4A). The 
predictive accuracy of the nomogram is investigated via the 
time-dependent ROC, which suggested that the nomogram 
had amazing prognostic accuracy. Calibration curves for the 
nomogram revealed no deviations from the reference line and 
recalibration was out of consideration, whether it is in the 
training set, test set, or validation set. (Figure 4B–D).

3.7 | Identification of the biological 
pathways associated to 24 ARGs

The GO terms function and KEGG pathway enrichment of 
these genes were analyzed to the biological understanding of the 
24 ARGs (p < 0.05, |r| > 0.7). For GO terms of the biological 
process (BP), the top three terms were “regulation of apoptotic 
signaling pathway,” “regulation of macroautophagy,” and “pro-
tein localization to cell periphery” (Figure 5A). For GO terms 
of the molecular function (MF), the most important terms were 

T A B L E  3  Univariate Cox regression analysis of predict index and clinical parameters in TCGA and CGGA

Variables

TCGA cohort

CGGA cohortTraining set Test set

Hazard 
ratio Z-score p-value

Hazard 
ratio Z-score p-value

Hazard 
ratio Z-score p-value

Predict index 3.568 12.265 <0.001 2.819 6.604 <0.001 1.815 4.329 <0.001

Age 1.056 6.343 <0.001 1.073 4.898 <0.001 1.029 1.949 0.051

Gender

Female — — — — — — — — —

Male 1.254 1.051 0.293 0.779 −0.721 0.470 0.748 −1.101 0.270

IDH

Mutation — — — — — — — — —

Wild 6.849 8.676 <0.001 5.009 4.111 <0.001 2.147 2.396 0.016

Histological type

Astrocytoma — — — — — — — — —

Oligodendroglioma 0.499 −2.84 0.004 0.844 −0.453 0.650 0.064 −3.741 <0.001

Oligoastrocytoma 0.711 −1.24 0.211 0.534 −1.216 0.223 0.454 −2.939 0.003
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F I G U R E  3  Multivariate Cox regression analysis of predict index and clinical parameters in TCGA and CGGA sets. Forest plot of HR in 
training set (A), test set (B), and validation set (C). HR: hazard ratio

F I G U R E  4  The construction and verification of Nomogram for predicting OS of patients of LGG patients using the predict index and four 
clinicopathological characteristics to convey the results of prognostic models. (A) Each parameter got the point at the top scale, and the total points 
can be converted to predict 2-, 3-, and 5-year probability of OS in the lowest scale. The x-axis is nomogram-predicted survival and y-axis is fraction 
survival. The reference line is 45◦ and indicates perfect calibration, in training set (B), test set (C), and validation set (D)
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“purine nucleoside binding,” “ribonucleoside binding,” “nucle-
oside binding,” “uanyl nucleotide binding,” “GTPase activity,” 
“guanyl ribonucleotide binding,” and “purine ribonucleoside 
binding” (Figure 5B). And for GO terms of the cellular com-
ponent (CC), the tops terms were “nucleosome,” “site of polar-
ized growth,” “axon part,” “growth cone,” “distal axon,” and 
“transport vesicle membrane” (Figure 5C). Accordingly, genes 
related to KEGG pathways included “Protein processing in en-
doplasmic reticulum” and “Alcoholism” activity (Figure 5D).

3.8 | Correlation between predict index and 
clinic-pathological features

To investigate the correlations between predict index and 
clinicopathological parameters in LGG, multiple independent 

samples of nonparametric tests were used. IDH mutation and 
histological types were correlated with predict index, sig-
nificantly, both in TCGA and CGGA cohorts (p < 0.001). 
Wild IDH and histological type with astrocytoma linked 
with higher predict index (Figure 6A,B). To visualize clin-
icopathological parameters and predict index calculated from 
24 ARGs expression as one unified system, Sankey diagrams 
constructed to descript the relationship of histological type, 
IDH mutation and predict index. Most oligodendroglioma 
and oligoastrocytoma carried IDH mutation with low-predict 
index, while most IDH wild type correspondence with high-
predict index both in the TCGA and CGGA cohorts (Figure 
6C,D). However, patients with the same histological type 
or IDH status may have different predict index, which in-
dicated that histological type and IDH status cannot predict 
prognostic effectively. Furthermore, differences between 

F I G U R E  5  Network of the 24-ARGs associated biological pathways. The size and redness of the circle represents the degree of connection. 
(A) Biological process. (B) Molecular function. (C) Cellular components. (D) KEGG
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the high-risk and low-risk groups in different histological 
typed or IDH status were assessed via the log-rank test. In 
TCGA cohort patients with oligoastrocytoma, astrocytoma, 
oligodendroglioma as well as IDH wild or mutation, showed 
significantly different outcomes between low-risk and high-
risk groups (Figure 7A–E), while in CGGA cohort patients 
just with oligoastrocytoma, astrocytoma, and IDH mutation 
showed significantly different outcomes. In CGGA cohort, 
patients with oligodendroglioma and IDH wild did not show 
statistically difference in overall survival rate between low-
risk and high-risk groups, which were not like TCGA cohort. 
To analyze potential mechanism, less than 50% death and 
small patients involved in oligodendroglioma and IDH wild 
cohorts were to blame(Figure 7F–J).

4 |  DISCUSSION

The role of autophagy in tumors has gradually been revealed, 
however, the expression of autophagy-related genes in LGG 
is still a continuing controversy.12,19,25,26 In the present 
study, ARGs expressions were analyzed from the TCGA and 
CGGA cohorts, and then, the prognostic value was subse-
quently examined. Finally, a predict index formula was con-
stituted by using the 24 prognostic ARGs. Furthermore, the 
nomogram based on predict index and clinic-pathological 
characteristics could well predict the clinical prognosis of 
patients in LGG. Given the clinical significance of these 
prognostic ARGs in LGG, if more aggressive treatment or 
drugs targeting gene expression were carried out, it may 

F I G U R E  6  The correlation between predict index and clinicopathological parameters in LGG. Predict index across different 
clinicopathological parameters via independent samples nonparametric tests in TCGA cohort (A) and CGGA cohort (B). Data are presented as box 
plots where the box indicates percentiles 25th and 75th. Box line represents sample median and diamonds sample mean, notches mark the half-
width. Sankey diagrams in TCGA cohort (C) and CGGA cohort (D). Left column of Sankey diagrams: histological type (red: predict index high, 
green: predict index low). Middle column: IDH status. Right column of Sankey diagrams: predict index



   | 1857CHEN Et al.

provide novel directions for LGG treatment. With the assis-
tance of the TCGA training cohort, the expression of all 483 
ARGs in LGG was evaluated. Univariate Cox analysis iden-
tified 276 prognostic ARGs, which indicated that autophagy 
plays an essential role in the process of LGG and influence 
the outcome of LGG patients. When performing the LASSO 
regression model, 24 out of 276 ARGs which were believed 
most relevant to prognostic were identified. Then, we built a 
predict index formula based on 24 autophagy-related genes. 
When applying the 24-ARGs signatures to LGG patients, a 
significance separation was observed in the Kaplan–Meier 
survival curves between low-risk and high-risk patients. 
Besides, it has been successfully verified in the TCGA test 
set and the external cohort of CGGA database, indicating 
good reproducibility. Furthermore, the time-dependent ROC 
suggested that the 24-ARGs signatures have a relatively high-
prognostic accuracy in predicting tumor relapse in the sec-
ond, third, and fifth years of LGG patients’ survival. Further 
investigation found that predict index was an independent 
prognostic factor via multivariate Cox regression analysis. 
Meeting the needs of clinicians, a nomogram was conducted 
based on various parameters that we believed important in 
LGG's overall survival. To confirm whether the nomogram 
can be expanded to more patients, validation analysis was 
performed in the TCGA test set and the external cohort of 
CGGA database. In addition to autophagy, multiple extra 
functions of ARG have also been discovered, analyzed by 
GO and KEGG pathway, which including “purine nucleo-
side binding,” “ribonucleoside binding,” “nucleosome,” and 

“site of polarized growth.” For KEGG pathways, the “pro-
tein processing in endoplasmic reticulum” and “alcoholism 
activity” was identified. It has been documented that there 
was a close connection between protein processing in en-
doplasmic reticulum signaling and autophagy, and between 
alcoholism signaling and autophagy. When coming to the 
endoplasmic reticulum stress (ERS), the damaged endoplas-
mic reticulum can be engulfed by the autophagic vesicles.27 
Ethanol-induced neuron apoptosis by activating autophagy 
in the developing brain.28 In general, the signaling pathway 
of autophagy activation is still unclear. In this work, we 
conduct a set of visualization design requirements relating 
to Sankey diagrams. With a visualization approach, the re-
lationship of the histological type, IDH status, and predict 
index were shown clearly. From the Sankey diagrams, pa-
tients with the same histological type or IDH status may 
have different predict indexes. High-predict index indicates 
high-risk shown shorter survival rate in the same histological 
typed or IDH status except in oligodendroglioma and IDH 
wild of CGGA cohorts. For most LGG accompanied with 
IDH mutation, sample size of IDH wild patients were small 
in the CGGA cohort, overall survival rate did not show sta-
tistically difference between low-risk and high-risk groups 
which was not like TCGA cohort. Besides, since low-risk 
groups linked with longer survival rates, patients in the low-
risk group always prone to have less than 50% death, that is 
the main reason why there were no statistically differences 
between low-risk and high-risk groups in CGGA cohort with 
oligodendroglioma or IDH wild.

F I G U R E  7  Kaplan–Meier survival curves of overall survival rate between two clusters (high-risk and low-risk) in different clinicopathological 
parameters. Kaplan–Meier plots summarize results from analysis of overall survival rate between high risk and low risk in oligoastrocytoma in the 
TCGA cohort (A), high-risk and low-risk in astrocytoma in TCGA cohort (B), high-risk and low-risk in oligodendroglioma in TCGA cohort (C), 
high-risk and low-risk in IDH mutation in TCGA cohort (D), high-risk and low-risk in IDH wild in TCGA cohort (E), high-risk and low-risk in 
oligoastrocytoma in CCGA cohort (F), high-risk and low-risk in astrocytoma in CCGA cohort (G), high-risk and low-risk in oligodendroglioma in 
CCGA cohort (H), high-risk and low-risk in IDH mutation in CCGA cohort (I), high-risk and low-risk in IDH wild in CCGA cohort (J). NA: not 
available. mOS: median overall survival
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Since prognostic evaluations are performed based on 
24 ARGs, our knowledge of the general overall survival 
has greatly improved, leading to a better-personalized esti-
mation of prognosis. It should be noted that this study was 
examined based on public data lacking several important 
clinicopathological features, such as specific tumor location, 
tumor size, extent of resection, KPS score, seizures, etc., and 
has not been prospectively tested in clinical trials.3 Besides, 
the underlying mechanism of how the identified 24-ARGs 
play a role in the poor prognosis of LGG still requires fur-
ther research.

5 |  CONCLUSION

In conclusion, we have developed a 24-ARGs signatures that 
can effectively divide LGG patients into low-risk and high-
risk groups for prognostic prediction. The signatures should 
be further applied in the clinic to verify our findings.

ACKNOWLEDGMENTS
We would like to offer my particular thanks to the GEO and 
TCGA database and the contributors for their valuable data sets.

CONFLICT OF INTEREST
The authors declare that the research was conducted without 
any potential conflict of interest.

AUTHOR CONTRIBUTIONS
Jian Chen and Xiaojun Qian had the idea for this study. 
Yuntian Li supervised the acquisition of the data. Xinghua 
Han and Yueyin Pan undertook the statistical analysis. All 
authors contributed to interpretation of the results. Jian Chen 
and Xiaojun Qian wrote the article and other authors contrib-
uted to the content. All authors approved the final version of 
the manuscript.

DATA AVAILABILITY STATEMENT
The data of LGG in this study were downloaded from TCGA 
and CGGA databases. All autophagy-related genes were ob-
tained from the Human Autophagy Database.

ORCID
Xiaojun Qian   https://orcid.org/0000-0002-0883-0987 

REFERENCES
 1. Binello E, Germano IM. Targeting glioma stem cells: a novel 

framework for brain tumors. Cancer Sci. 2011;102:1958–1966.
 2. Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus procarba-

zine, CCNU, and vincristine in low-grade glioma. N Engl J Med. 
2016;374:1344–1355.

 3. Shan X, Fan X, Liu X, Zhao Z, Wang Y, Jiang T. Clinical char-
acteristics associated with postoperative seizure control in adult 

low-grade gliomas: a systematic review and meta-analysis. Neuro 
Oncol. 2018;20:324–331.

 4. Darlix A, Goze C, Rigau V, Bauchet L, Taillandier L, Duffau H. 
The etiopathogenesis of diffuse low-grade gliomas. Crit Rev Oncol 
Hematol. 2017;109:51–62.

 5. Karpel-Massler G, Nguyen TTT, Shang E, Siegelin MD. Novel 
IDH1-targeted glioma therapies. CNS Drugs. 2019;33:1155–1166.

 6. Mathur R, Zhang Y, Grimmer MR, et al. MGMT promoter meth-
ylation level in newly diagnosed low-grade glioma is a predictor of 
hypermutation at recurrence. Neuro Oncol. 2020.

 7. Ius T, Ciani Y, Ruaro ME, et al. An NF-kappaB signature predicts 
low-grade glioma prognosis: a precision medicine approach based 
on patient-derived stem cells. Neuro Oncol. 2018;20:776–787.

 8. Dai W, Li Y, Mo S, et al. A robust gene signature for the prediction of 
early relapse in stage I-III colon cancer. Mol Oncol. 2018;12:463–475.

 9. Mo S, Dai W, Xiang W, et al. Prognostic and predictive value of an 
autophagy-related signature for early relapse in stages I-III colon 
cancer. Carcinogenesis. 2019;40:861–870.

 10. Dai W, Feng Y, Mo S, et al. Transcriptome profiling reveals an 
integrated mRNA-lncRNA signature with predictive value of early 
relapse in colon cancer. Carcinogenesis. 2018;39:1235–1244.

 11. Mo S, Dai W, Xiang W, Li Q, Wang R, Cai G. Predictive factors 
of synchronous colorectal peritoneal metastases: development of a 
nomogram and study of its utilities using decision curve analysis. 
Int J Surg. 2018;54:149–155.

 12. Wang SS, Chen G, Li SH, et al. Identification and validation of 
an individualized autophagy-clinical prognostic index in bladder 
cancer patients. Onco Targets Ther. 2019;12:3695–3712.

 13. Xiang Y, Li C, Liao Y, Wu J. An integrated mRNA-lncRNA sig-
nature for relapse prediction in laryngeal cancer. J Cell Biochem. 
2019;120:15883–15890.

 14. Zhang M, Wang X, Chen X, Zhang Q, Hong J. Novel immune-re-
lated gene signature for risk stratification and prognosis of survival 
in lower-grade glioma. Front Genet. 2020;11:363.

 15. Zhu FX, Wang XT, Zeng HQ, Yin ZH, Ye ZZ. A predicted risk 
score based on the expression of 16 autophagy-related genes for 
multiple myeloma survival. Oncol Lett. 2019;18:5310–5324.

 16. Moussay E, Kaoma T, Baginska J, et al. The acquisition of re-
sistance to TNFalpha in breast cancer cells is associated with 
constitutive activation of autophagy as revealed by a tran-
scriptome analysis using a custom microarray. Autophagy. 
2011;7:760–770.

 17. Feng F, Zhang M, Yang C, Heng X, Wu X. The dual roles of au-
tophagy in gliomagenesis and clinical therapy strategies based 
on autophagic regulation mechanisms. Biomed Pharmacother. 
2019;120:109441.

 18. Lin P, He RQ, Dang YW, et al. An autophagy-related gene 
expression signature for survival prediction in multiple co-
horts of hepatocellular carcinoma patients. Oncotarget. 
2018;9:17368–17395.

 19. Zhou Z, Mo S, Dai W, et al. Development and validation of an 
autophagy score signature for the prediction of post-operative sur-
vival in colorectal cancer. Front Oncol. 2019;9:878.

 20. Lin P, He Y, Wen DY, et al. Comprehensive analysis of the clinical 
significance and prospective molecular mechanisms of differen-
tially expressed autophagy-related genes in thyroid cancer. Int J 
Oncol. 2018;53:603–619.

 21. Zhang H, Lu X, Wang N, et al. Autophagy-related gene expres-
sion is an independent prognostic indicator of glioma. Oncotarget. 
2017;8:60987–61000.

https://orcid.org/0000-0002-0883-0987
https://orcid.org/0000-0002-0883-0987


   | 1859CHEN Et al.

 22. Giatromanolaki A, Sivridis E, Mitrakas A, et al. Autophagy and 
lysosomal related protein expression patterns in human glioblas-
toma. Cancer Biol Ther. 2014;15:1468–1478.

 23. Cui Q, Tang J, Zhang D, et al. A prognostic eight-gene expression 
signature for patients with breast cancer receiving adjuvant chemo-
therapy. J Cell Biochem. 2019.

 24. Huang CW, Syed-Abdul S, Jian WS, et al. A novel tool for visualiz-
ing chronic kidney disease associated polymorbidity: a 13-year co-
hort study in Taiwan. J Am Med Inform Assoc. 2015;22:290–298.

 25. Ulasov IV, Lenz G, Lesniak MS. Autophagy in glioma cells: 
an identity crisis with a clinical perspective. Cancer Lett. 
2018;428:139–146.

 26. Qiu J, Sun M, Wang Y, Chen B. Identification and validation of an 
individualized autophagy-clinical prognostic index in gastric can-
cer patients. Cancer Cell Int. 2020;20:178.

 27. Cui Y, Parashar S, Zahoor M, et al. A COPII subunit acts with an 
autophagy receptor to target endoplasmic reticulum for degrada-
tion. Science. 2019;365:53–60.

 28. Luo J. Autophagy and ethanol neurotoxicity. Autophagy. 
2014;10:2099–2108.

SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

How to cite this article: Chen J, Li Y, Han X, Pan Y, 
Qian X. An autophagic gene-based signature to predict 
the survival of patients with low-grade gliomas. Cancer 
Med. 2021;10:1848–1859. https://doi.org/10.1002/
cam4.3748

https://doi.org/10.1002/cam4.3748
https://doi.org/10.1002/cam4.3748

