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Abstract
Several biomarkers such as tumor mutation burden (TMB), neoantigen load (NAL), 
programmed cell-death receptor 1 ligand (PD-L1) expression, and lactate dehydro-
genase (LDH) have been developed for predicting response to immune checkpoint 
inhibitors (ICIs) in melanoma. However, some limitations including the undefined 
cut-off value, poor uniformity of test platform, and weak reliability of prediction 
have restricted the broad application in clinical practice. In order to identify a clini-
cally actionable biomarker and explore an effective strategy for prediction, we devel-
oped a genetic mutation model named as immunotherapy score (ITS) for predicting 
response to ICIs therapy in melanoma, based on whole-exome sequencing data from 
previous studies. We observed that patients with high ITS had better durable clini-
cal benefit and survival outcomes than patients with low ITS in three independent 
cohorts, as well as in the meta-cohort. Notably, the prediction capability of ITS was 
more robust than that of TMB. Remarkably, ITS was not only an independent predic-
tor of ICIs therapy, but also combined with TMB or LDH to better predict response 
to ICIs than any single biomarker. Moreover, patients with high ITS harbored the 
immunotherapy-sensitive characteristics including high TMB and NAL, ultraviolet 
light damage, impaired DNA damage repair pathway, arrested cell cycle signaling, 
and frequent mutations in NF1 and SERPINB3/4. Overall, these findings deserve 
prospective investigation in the future and may help guide clinical decisions on ICIs 
therapy for patients with melanoma.
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1 |  INTRODUCTION

The treatment and prognosis of metastatic melanoma has 
shifted dramatically since the advent of immune checkpoint 
inhibitors (ICIs). Immunotherapeutic antibodies directed 
at programmed cell-death protein 1 (PD-1) and cytotoxic 
T-lymphocyte-associated antigen-4 (CTLA-4) are standard 
therapies for metastatic melanoma.1 However, huge disparity 
in response rates across different populations has reduced the 
efficacy and accuracy of ICIs therapy, promoting the identifica-
tion of predictive biomarkers as a hot spot of intense research.2 
Tumor mutation burden (TMB) has been identified as a prom-
ising biomarker of ICIs therapy in diverse cancers.3–5 High 
TMB, along with the associated high neoantigen load (NAL), 
indicates the increased T cell activity and improved response 
to ICIs.6,7 However, several challenges have limited the clinical 
application of TMB. First, a reliable cut-off value is still un-
defined so that high TMB populations cannot be screened out 
accurately in clinical practice.8 Second, the best measurement 
for TMB is whole-exome sequencing (WES), not yet applied 
in clinical practice due to huge cost, intensive time and chal-
lenging technology.9,10 Besides, the accuracy of measurement 
for TMB is always influenced by several key factors, includ-
ing depth of sequencing, length of sequencing reads, choice of 
aligners, and so on.8 Programmed cell-death receptor 1 ligand 
(PD-L1) expression is another primary biomarker of response 
to ICIs. However, several challenges including the poor reli-
ability for prediction of response, lack of uniformed antibodies 
for immunohistochemistry, and different thresholds for PD-L1 
positivity have limited the broad application of PD-L1 expres-
sion in clinical practice.11 In melanoma, other biomarkers such 
as lactate dehydrogenase (LDH) and driver mutations in NRAS 
and NF1, cannot become independent prognostic indicators for 
patients treated with ICIs,12 although these are associated with 
response to ICIs as previously reported.13,14

In order to identify a clinically actionable biomarker and 
explore an effective strategy for prediction, we developed 
a genetic mutation model named as immunotherapy score 
(ITS) for predicting response to ICIs in melanoma based on 
three independent cohorts.15–17 The prediction capability of 
TMB was also evaluated and compared with that of ITS. In 
addition, we explored the feasibility and clinical significance 
of biomarker-combination strategy based on ITS, TMB, and 
LDH for predicting response to ICIs. Moreover, we charac-
terized the distinctive genomic patterns associated with ITS.

2 |  MATERIALS AND METHODS

2.1 | Study design

We conducted a systematic literature search on PubMed, 
EMBASE, and Web of Science. As a result, three eligible 

studies were included in this study (Figure S1). Subsequently, 
we collected and analyzed WES data and clinicopathologic 
information of 318 melanoma patients treated with ICIs from 
the included studies, including the Allen cohort,15 Snyder co-
hort,16 and Liu cohort.17 Based on WES data of the Allen 
cohort, we performed multivariate logistic regression to con-
struct a genetic mutation model name as immunotherapy score 
(ITS) for predicting durable clinical benefit (DCB) from ICIs 
therapy. Then we evaluated the association between ITS and 
overall survival (OS) or progression-free survival (PFS) in 
melanoma patients treated with ICIs. The prediction capabil-
ity of ITS was validated in the Snyder cohort and Liu cohort. 
The summary predictive effect and between-cohort heteroge-
neity were further estimated by meta-analysis. Moreover, the 
prediction capability of TMB was also evaluated and com-
pared with that of ITS. Remarkably, we explored the feasibil-
ity and significance of biomarker combination based on ITS, 
TMB, and LDH for predicting DCB and survival outcomes 
in melanoma patients with ICIs therapy. Importantly, we 
characterized distinctive genomic patterns associated with 
ITS, based on somatic mutation and copy number variation 
(CNV) data in the Allen cohort, Snyder cohort, and Liu co-
hort. Besides, we analyzed the association between ITS and 
prognosis of melanoma patients without ICIs therapy using 
TCGA-SKCM cohort and ICGC-MELA cohort.

2.2 | Literature search

Systematic literature search was conducted on PubMed, 
EMBASE, and Web of Science up to June 1, 2020. The 
search term was as follows: (Melanoma OR Melanomas 
OR “Malignant Melanoma” OR “Malignant Melanomas” 
OR “Melanoma, Malignant” OR “Melanomas, Malignant”) 
AND (PD-1 OR PD-L1 OR CTLA-4 OR “immune check-
point inhibitor” OR “immune checkpoint inhibitors” OR 
“ICI” OR “ICIs” OR “immune checkpoint blocker” OR 
“immune checkpoint blockers” OR “ICB” OR “ICBs” 
OR Ipilimumab OR Avelumab OR Tremelimumab OR 
Atezolizumab OR Nivolumab OR Durvalumab OR 
Pembrolizumab OR Lambrolizumab) AND (WES OR 
“Whole Exome*” OR “Whole-exome” OR “Whole 
Exome Sequencing” OR “Whole Exome Sequencings” OR 
“Complete Exome Sequencing”). The inclusion criteria 
for eligible studies were as follows: (a) clinical trials or 
cohort studies associated with inhibitor of PD-1/PD-L1, 
CTLA-4, or their combination, in patients with melanoma; 
(b) Clinical outcomes of patients were available, includ-
ing objective response, OS, and/or PFS; (c) whole-exome 
sequencing(WES) was performed in the original study and 
the corresponding WES data were available from the data-
bases or the articles; (d) the number of patients accessible 
for evaluation was more than 50; (e) studies were published 
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in English. Reviews, case reports, editorials, meeting com-
ments, abstracts, and letters were excluded. As a result, the 
Allen cohort, Snyder cohort, and Liu cohort were included 
in this study. The workflow of the literature search is shown 
in Figure S1. Furthermore, we collected two clinical co-
horts of non-small-cell lung cancer (NSCLC) patients with 
the ICIs therapy, Miao cohort, and Hellmann cohort,18,19 
for evaluating the applicability of ITS for NSCLC.

2.3 | Data collection and preprocessing

We downloaded the clinical information, WES, and RNA-
seq data of the Allen cohort, Snyder cohort, TCGA-SKCM 
cohort, and Hellmann cohort from the cBioPortal database 
(https://www.cbiop ortal.org/). Data of the Liu cohort and 
Miao cohort were acquired from supplemental materials of 
the reported articles.17,18 The clinical information and WES 
data of the ICGC-MELA cohort were downloaded from the 
International Cancer Genome Consortium (https://icgc.
org/). A total of 955 melanoma and 132 NSCLC patients 
were included in this study. The Allen cohort consisted of 
110 melanoma patients treated with Ipilimumab for model 
construction.15 The Snyder cohort consisted of 64 mela-
noma patients treated with Ipilimumab or Tremelimumab 
as a validation dataset.16 The Liu cohort consisted of 
144 melanoma patients treated with Nivolumab or 
Pembrolizumab as a validation dataset.17 The clinicopatho-
logical information of the Allen cohort, Snyder cohort, and 
Liu cohort included age, gender, tumor primary site, M 
stage, LDH, received drugs, best objective response, OS, 
and PFS. Meta-cohort was composed of the Allen cohort, 
Snyder cohort, and Liu cohort for multivariate regression 
and genomic analysis. TCGA-SKCM cohort and ICGC-
MELA cohort consisted of 355 and 282 melanoma patients 
without ICIs therapy, respectively.20,21 The Hellmann co-
hort and Miao cohort consisted of 75 and 57 NSCLC pa-
tients with ICIs therapy, respectively.18,19 We divided the 
NSCLC patients into squamous and nonsquamous types 
after merging the Hellmann cohort and Miao cohort. The 
detailed clinical and genomic characteristics of the cohorts 
are shown in Table S1-S3.

As stated in the previous studies,15–17 whole-exome cap-
ture libraries were constructed using the Agilent SureSelect 
All Exon v2 or 50-Mb kit. The exome libraries were se-
quenced on the Illumina HiSeq 2000 or 2500 platform 
to generate paired-end reads (2 × 76 bp) and reach 178X 
mean target coverage (range 32–380). The synonymous 
mutation was excluded in the variants of gene mutation. 
The nonsynonymous mutation in gene-coding regions in-
cluded missense, nonsense, deletion, insertion, and splice 
mutations. RNA-seq data were the type of fragments per 
kilobase of exon per million fragments mapped (FPKM), 

then normalized to transcripts per million (TPM) and 
Z-score for further analysis.

2.4 | Definition of clinical end points

In this study, DCB, OS, and PFS were adopted as clini-
cal endpoints to evaluate the response to ICIs for patients. 
DCB was defined as a composite endpoint of complete re-
sponse (CR) or partial response (PR) to ICIs by RECIST 
criteria v.1.122 or stable disease (SD)22 with PFS more than 
6 months. No clinical benefit (NCB) was defined as pro-
gressive disease (PD) by RECIST criteria v.1.122 or SD 
with PFS less than 6 months. Particularly, due to lack of 
data on PFS and best objective response in the Snyder co-
hort, DCB was defined by radiographic evidence of free-
dom from disease or evidence of a stable or decreased 
volume of disease for more than 6  months according to 
the original article.16 NCB was defined by tumor growth 
on every computed tomographic scan after the initiation 
of treatment or a clinical benefit lasting 6 months or less 
according to the original article.16

2.5 | Construction and validation of genetic 
mutation model

The frequently mutated genes (mutation rate ≥10%) were 
screened out from the Allen cohort based on the WES data. 
Subsequently, the association between the frequently mutated 
genes and DCB of patients with melanoma was determined 
by χ2 test. The genes reaching the statistical significance 
of p < .05 were regarded as candidate variables to perform 
multivariate logistic regression analysis by the Backward 
Elimination (Wald) strategy. As a result, four mutated genes 
(THSD7B, SYNE2, GRM3, and FLNC) were included in the 
multivariate logistic regression model (Figure 1). The im-
munotherapy score (ITS) formula was established based on 
the coefficient (coef) combined with corresponding mutation 
status of genes as follows: ITS = ∑ (coefi × statusi), where 
coef was derived from the multivariate logistic model and 
the mutation status was equal to 1, whereas wild type was 0. 
Patients were divided into low (ITS = 0) and high (ITS > 0) 
group, where the low group showed no nonsynonymous mu-
tation in the genes and the high group showed at least one 
nonsynonymous mutation in the genes. Moreover, ITS was 
calculated using the same formula in the Snyder cohort, 
Liu cohort, Hellmann cohort, and Miao cohort for valida-
tion. Receiver operating characteristic (ROC) analysis was 
performed to assess the predictive accuracy using “pROC” 
package23 with the R software (version 3.6.1). The value of 
area under the ROC curve (AUC) was used to evaluate the 
predictive accuracy for DCB from ICIs therapy.

https://www.cbioportal.org/
https://icgc.org/
https://icgc.org/
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F I G U R E  1  Construction of the genetic mutation model for predicting durable clinical benefit from ICIs therapy in melanoma using 
multivariate logistic regression analysis. (A) The frequently mutated genes (mutation rate ≥10%) ranked by p value. p value was calculated to 
evaluate the association between the frequently mutated genes and durable clinical benefit by a two-sided χ2 test. (B) Genetic mutation model 
was constructed by multivariate logistic regression analysis for predicting DCB from ICIs therapy. (C) Waterfall plot showing the characteristics 
associated with the genetic mutation model in the Allen cohort, Snyder cohort, and Liu cohort. The immunotherapy score formula was as follows: 
ITS = 1.234 × THSD7B + 1.640 × SYNE2 + 0.948 × GRM3 + 1.636 × FLNC. The mutation status was regarded as 1, whereas wild type is 0. ICIs, 
immune checkpoint inhibitors; ITS, immunotherapy score; DCB, durable clinical benefit; PFS, progression-free survival; CR, complete response; 
PR, partial response; SD, stable disease; PD, progressive disease; MR, mixed response; NA, not available; Coef, coefficient; CI, confidence 
interval; SE, standard error
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2.6 | Survival analysis

We explored the impact of TMB and ITS on survival outcomes 
(OS and PFS) of melanoma patients treated with ICIs in the 
Allen cohort, Snyder cohort and Liu cohort. In addition, we 
performed Kaplan–Meier survival analysis for NSCLC patients 
treated with ICIs. The association between ITS and overall sur-
vival of melanoma patients without ICIs therapy was also eval-
uated in TCGA-SCKM cohort and ICGC-MELA cohort. We 
calculated the median overall survival time and the 95% con-
fidence interval and performed log-rank test. Log-rank p < .05 
was considered as statistically significant.

2.7 | Logistic and Cox regression analysis

Patients were divided into high ITS and low ITS group ac-
cording to whether the value of ITS is more than 0. Zero 
represented no mutation in the four genes, whereas 1 repre-
sented at least one mutation. We classified the patients into 
high and low TMB using the median value and upper quar-
tile as thresholds, respectively. We performed univariate lo-
gistic regression analysis to evaluate the association between 
DCB and ITS or TMB by calculating Odds ratios (OR) and 
95% confidence interval (CI). Multivariate logistic regres-
sion analysis was applied to investigate the independently 
predictive effect of ITS and TMB on DCB. In addition, we 
performed univariate Cox regression analysis to assess the 
effect of ITS and TMB on OS and PFS by calculating haz-
ards ratio (HR) and 95% CI. Multivariate Cox regression 
analysis was applied to evaluate the independent effect of 
ITS and TMB on OS and PFS. ITS and TMB were adjusted 
by gender, M stage, LDH, TMB, mutational signatures, and 
mutations in BRAF, NRAS, and NF1 in multivariate logistic 
and Cox regression models. The logistic and Cox regression 
model were visualized using “forestplot” R package. The 
summary predictive effect and between-cohort heterogene-
ity were estimated using “meta” R package.24 The value of 
I2 was used to evaluate the degree of heterogeneity between 
the cohorts and the criteria were as follows: low (25%-50%), 
moderate (50%-75%), and high (75%-100%).25

2.8 | Subgroup and combination analyses

We explored the feasibility and significance of biomarker 
combination based on ITS, TMB, and LDH for predicting 
response to ICIs. Considering the correlation between ITS 
and TMB, we first divided the meta-cohort into subgroups 
with high and low TMB according to the median value of 
TMB. Then we evaluated the association of ITS with DCB, 
OS, and PFS in high and low TMB subgroups, respectively. 
In addition, considering the negligible association between 

ITS and LDH, we combined ITS and LDH as a composite 
biomarker for predicting DCB, OS, and PFS in melanoma 
patients treated with ICIs. The overall distribution of ITS, 
TMB, LDH, and clinical benefit in the meta-cohort was visu-
alized by “ggalluvial” R package.

2.9 | Genomic analysis associated with 
response to ICIs

In this study, we defined TMB as (nonsynonymous mutation 
counts)/(the whole length of exons). The correlation analysis 
of ITS with TMB and NAL was performed and visualized 
using “ggplot2” R package. The correlation degrees were 
defined as follows: negligible (0.00-0.10), weak (0.10-0.39), 
0.40-0.69 (moderate), 0.70-0.89 (strong), and very strong 
(0.90-1.00).26 We used “deconstructSigs” R package to ex-
tract mutational signatures from the WES data. The decon-
structSigs approach determined the linear combination of 
predefined signatures which accurately reconstruct the mu-
tational profile by establishing a multiple linear regression 
model.27 In this study, Alexandrov signatures were taken as 
predefined signatures.28 Melanoma-related signatures mainly 
included signature 1 (age), 7 (ultraviolet exposure) and 11 
(pretreated alkylating agent).28 The value of signature 1, 7, 
and 11 was converted into percentage in a single tumor sam-
ple (Table S4). The lower third was selected as the cutoff of 
signatures for multivariate logistic and Cox regression analy-
sis. We integrated somatic mutation and CNV data to charac-
terize genomic alterations in several key signaling pathways 
associated with response to ICIs in the meta-cohort. The 
waterfall plot was visualized using “ComplexHeatmap” R 
package.29

2.10 | Gene-set enrichment analysis

To further investigate the distinctive signaling pathways as-
sociated with ITS, we integrated RNA-seq data of the Allen 
cohort, Snyder cohort, and Liu cohort, then performed gene 
set enrichment analysis (GSEA) based on the java GSEA 
3.0 Desktop Application (http://softw are.broad insti tute.org/
gsea) and hallmark genesets downloaded from the Molecular 
Signatures Database.30 The normalized enrichment score 
(NES) and false discovery rate (FDR) were the primary sta-
tistics for examining gene set enrichment results. FDR < 0.05 
was considered as statistically significant.

2.11 | Statistical analysis

Kaplan–Meier analysis, correlation analysis, logistic, 
and Cox regression analyses were conducted using SPSS 

http://software.broadinstitute.org/gsea
http://software.broadinstitute.org/gsea
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T A B L E  1  Clinical characteristics of patients treated with ICIs in three cohorts

Characteristic

Allen cohort Snyder cohort
Liu 
cohort

(N = 110) (N = 64) (N = 144)

Age—y

Median 61.5 62.5 NA

Range 18-86 18-90 NA

Gender—no. (%)

Female 32 (29.1) 25 (39.1) 60 (41.7)

Male 78 (70.9) 39 (60.9) 84 (58.3)

Primary melanoma—no. (%)

Cutaneous 92 (83.6) 44 (68.8) 105 (72.9)

Mucosal 4 (3.6) 0 (0.0) 10 (6.9)

Acral 0 (0.0) 5 (7.8) 10 (6.9)

Occult 14 (12.7) 7 (10.9) 19 (13.2)

NA 0 (0.0) 8 (12.5) 0 (0.0)

Stage—no. (%)

M0 10 (9.1) 3 (4.7) 10 (6.9)

M1 100 (90.9) 61 (95.3) 134 (93.1)

M1a 6 (5.5) NA 8 (5.6)

M1b 16 (14.5) NA 18 (12.5)

M1b 78 (70.9) NA 108 (75.0)

LDH—no. (%)

Normal 58 (52.7) 33 (51.6) 70 (48.6)

Elevated 48 (43.6) 13 (20.3) 71 (49.3)

NA 4 (3.6) 18 (28.1) 3 (2.1)

TMB—muts/Mb

Median 6.9 11.9 6.5

Range 0.4-188.7 0.11-97.8 0.3-255.5

Drug received—no. (%)

Ipilimumab 110 (100.0) 60 (93.8) 0 (0.0)

Tremelimumab 0 (0.0) 4 (6.3) 0 (0.0)

Nivolumab 0 (0.0) 0 (0.0) 59 (41.0)

Pembrolizumab 0 (0.0) 0 (0.0) 85 (59.0)

Best response—no. (%)

Complete response 3 (2.7) 0 (0.0) 17 (11.8)

Partial response 14 (12.7) 0 (0.0) 38 (26.4)

Stable disease 12 (10.9) 0 (0.0) 20 (13.9)

Progressive disease 76 (69.1) 0 (0.0) 65 (45.1)

Mixed response 0 (0.0) 0 (0.0) 4 (2.8)

Not available 5 (4.5) 64 (100.0) 0 (0.0)

Overall survival—mos

Median 9.1 25.3 19.4

Range 1.1-54.4 2.5-94.6 1.3-56.4

Progression-free survival—mos

Median 2.8 NA 5.5

(Continues)
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software (version 21.0, IBM Corp). The log-rank test was 
used to compare Kaplan–Meier curves. The correlation 
between ranked variables was determined by Spearman 
rank correlation coefficient. The OR and its 95% CI were 
calculated by logistic regression analysis. The HR and its 
95% CI were calculated by Cox regression analysis. The 
comparison between continuous variables was dealt with 
Student's t test, whereas the comparison between ranked 
variables was dealt with the Mann–Whitney test using 
GraphPad Prism (version 6.01, GraphPad Software). The 
categorical variables were compared by chi-squared (χ2) 
test or Fisher's exact test in the appropriate situation. All 
reported P values were two-tailed and p < .05 was consid-
ered as statistically significant.

3 |  RESULTS

3.1 | Clinical characteristics in cohorts

We collected clinical characteristics of total 318 patients 
diagnosed with melanoma and treated with anti-CTLA-4 
or anti-PD1 therapy from previous studies. The Allen 
cohort,15 Snyder cohort,16 and Liu cohort17 consisted of 
110, 64, and 144 patients, respectively. In the Allen co-
hort, 52.7% (58/110) was at the normal level of LDH, 
whereas 43.6% (48/110) was elevated. Overall the me-
dian TMB was 6.9 mutations per Mb. All of them were 
treated with ipilimumab. Best objective response to anti-
CTLA-4 using RECIST v.1.1 criteria included 2.7% 
(3/110) with CR, 12.7% (14/110) with PR, 10.9% (12/110) 

with SD, and 69.1% (76/110) with PD. The median OS was 
9.1 months and the median PFS was 2.8 months. Overall, 
24.5% (27/110) was with DCB, whereas 70.9% (78/110) 
was with NCB. In the Snyder cohort, 51.6% (33/64) was 
at normal level of LDH, whereas 20.3% (13/64) was el-
evated. Overall, the median TMB was 11.9 mutations 
per Mb. 93.8% (60/64) was treated with ipilimumab and 
6.3% (4/64) was with tremelimumab. The median OS was 
25.3 months. Data of best objective response and PFS were 
not available from the Snyder cohort. 42.2% (27/64) was 
with DCB, whereas 57.8% (37/64) was with NCB. In the 
Liu cohort, 48.6% (70/144) was at normal level of LDH, 
whereas 49.3% (71/144) was elevated. The median TMB 
was 6.5 mutations per Mb. 41.0% (59/144) was treated with 
nivolumab and 59.0% (85/144) was with pembrolizumab. 
Best objective response included 11.8% (17/144) with CR, 
26.4% (38/144) with PR, 13.9% (20/144) with SD, 45.1% 
(65/144) with PD, and 2.8% (4/144) with mixed response 
(MR). The median OS was 19.4  months and the median 
PFS was 5.5  months. Overall, 50.0% (72/144) was with 
DCB and 47.2% (68/144) was with NCB. Detailed clinical 
characteristics are shown in Table 1.

3.2 | Construction of genetic mutation 
model for predicting durable clinical benefit 
from ICIs therapy in melanoma.

Firstly, based on the WES data of the Allen cohort, we 
screened out the 425 frequently mutated genes (mutation 
rate ≥10%). Subsequently, we evaluated the association 

Characteristic

Allen cohort Snyder cohort
Liu 
cohort

(N = 110) (N = 64) (N = 144)

Range 0.5-49.6 NA 0.4-56.0

Durable Clinical Benefit

Yes 27(24.5) 27(42.2) 72(50.0)

No 78(70.9) 37(57.8) 68(47.2)

Not available 5(4.5) 0(0.0) 4(2.8)

Abbreviations: ICIs, immune checkpoint inhibitors; LDH, Lactate dehydrogenase; Mb, megabase; mos, months; muts, mutations; yrs, years.

T A B L E  1  (Continued)

F I G U R E  2  The prediction of durable clinical benefit from ICIs therapy by ITS and TMB. (A) Clinical benefit from ICIs therapy stratified by ITS 
and TMB in the Allen cohort, Snyder cohort and Liu cohort. (B) ROC curve analysis for prediction of durable clinical benefit from ICIs therapy by ITS, 
TMB, THSD7B, SYNE2, GRM3, and FLNC in the Allen cohort, Snyder cohort, and Liu cohort, respectively. P value was calculated by the comparison 
between tested AUC and reference AUC (equal to 0.5). (C) Forest plot showing univariate logistic regression and meta-analysis for durable clinical 
benefit, taking TMB as the input variable in the Allen cohort, Snyder cohort, and Liu cohort. (D) Forest plot showing univariate logistic regression and 
meta-analysis for durable clinical benefit, taking ITS as the input variable in the Allen cohort, Snyder cohort, and Liu cohort. ICIs, immune checkpoint 
inhibitors; ITS, immunotherapy score; TMB, tumor mutation burden; DCB, durable clinical benefit; NCB, no clinical benefit; ROC, receiver operator 
characteristic; AUC, area under curve; CI, confidence interval; OR, odds ratio; ***p < .001, **p < .01, *p < .05; ns, no significance
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between the frequently mutated genes and DCB of mela-
noma patients receiving ICIs therapy by conducting χ2 test 
(Figure 1A). As shown in Table S5, 25 frequently mutated 
genes were significantly associated with DCB, then identi-
fied as candidate genes for multivariate logistic regression 
analysis. Considering the low applicability in clinical prac-
tice for a complex model with 25 variables, we adopted the 
Backward Elimination (Wald) strategy to control the number 
of the variable in the multivariate logistic regression model. 
As a result, four frequently mutated genes (THSD7B, SYNE2, 
GRM3, and FLNC) were included in the model after running 
24 steps (Table S6). Then, we obtained the coefficient of 
each gene from the model and calculated the immunotherapy 
score (ITS) formula as follows: ITS = 1.234 × THSD7B + 1.
640 × SYNE2 + 0.948 × GRM3 + 1.636 × FLNC (Figure 1B, 
Table S6). In the Allen cohort, 22% (24/110) had THSD7B 
mutations, 20% (22/110) had GRM3 mutations, 11% (12/110) 
had SYNE2 mutations, and 10% (11/110) had FLNC muta-
tions (Figure 1C). Overall, 54.5% (60/110) was with low ITS, 
whereas 45.5% (50/110) was with high ITS. In the Snyder 
cohort, 31% (20/64) had THSD7B mutations, 25% (16/64) 
had FLNC mutations, 14% (9/64) had SYNE2 mutations, and 
14% (9/64) had GRM3 mutations (Figure 1C). Overall, 43.8% 
(28/64) was with low ITS, whereas 56.2% (36/64) was with 
high ITS. In the Liu cohort, 26% (38/144) had THSD7B mu-
tations, 15% (22/144) had SYNE2 mutations, 15% (21/144) 
had FLNC mutations, and 12% (17/144) had GRM3 muta-
tions (Figure 1C). Overall, 56.3% (81/144) was with low ITS 
group, whereas 43.7% (63/144) was with high ITS.

3.3 | Prediction of durable clinical benefit 
from ICIs therapy by ITS and TMB

ITS was established based on the 4-gene mutations as men-
tioned previously. Interestingly, TMB, a promising bio-
marker of ICIs therapy by clinical evidences,3–5 was also 
derived from tumor somatic mutation. Thus, we further 
analyzed the association between TMB and DCB from ICIs 
therapy and compared the prediction accuracy between TMB 
and ITS. First, we evaluated the impact of ITS and TMB on 
DCB by χ2 test, respectively. As a result, the proportions 
of DCB were all significantly higher in high ITS than low 
ITS group (Allen cohort, p < .001; Snyder cohort, p < .01; 
Liu cohort, p  <  .05; Figure 2A). However, the difference 
in DCB between high and low TMB was not significant 

(Allen cohort, p = .271; Snyder cohort, p = .128; Liu cohort, 
p = .128; Figure 2A). Then we performed ROC analysis and 
calculated AUC to evaluated the prediction accuracy of DCB 
from ICIs therapy by single gene, ITS, and TMB. As shown 
in Figure 2B, according to the corresponding AUCs in three 
cohorts, TMB was a better biomarker than each single gene 
for prediction. However, the AUC of ITS was higher than 
that of TMB in the Allen cohort and Snyder cohort (0.749 
vs. 0.608; 0.761 vs. 0.696; Figure 2B). In the Liu cohort, the 
AUCs of ITS were slightly less than the AUC of TMB (0.601 
vs. 0.618; Figure 2B). Furthermore, we performed univari-
ate logistic regression analysis for DCB to calculate the ORs 
stratified by TMB and ITS, respectively. Subsequently, we 
evaluated the summary predictive effect and between-cohort 
heterogeneity by meta-analysis. It was found that patients 
with high TMB tended to take large ratio of DCB, but the 
difference was not significant in the individual cohort (Allen 
cohort: OR = 1.70, 95%CI = [0.70,4.12], p = 0.243; Snyder 
cohort: OR = 2.49, 95%CI = [0.90,6.91], p = .079; Liu co-
hort: OR = 1.78, 95%CI = [0.91,3.48], p = .092; Figure 2C). 
In the meta-cohort, TMB was a significant predictor of DCB 
(OR = 1.89, 95%CI = [1.18,3.03], p = .010; heterogeneity: 
I2 = 0, p = .83; Figure 2C). Remarkably, ITS was capable 
of predicting DCB significantly in the independent cohorts 
(Allen cohort: OR = 4.83, 95%CI = [1.82,12.81], p = .002; 
Snyder cohort: OR = 5.13, 95%CI = [1.67,15.82], p = .004; 
Liu cohort: OR = 2.07, 95%CI = [1.05,4.09], p = .037; Figure 
2D). Meta-analysis further illustrated that the prediction of 
ITS for DCB was robust. (OR = 3.30, 95%CI = [1.76,6.18], 
p < .001; heterogeneity: I2 = 31%, p = .23; Figure 2D).

3.4 | Prognostic impact of TMB and ITS on 
overall survival in melanoma patients treated 
with ICIs

We performed Kaplan–Meier analysis to evaluate the im-
pact of TMB and ITS on overall survival (OS). We found 
that the impact of TMB on OS was inconsistent when strat-
ified by high and low TMB in three independent cohorts. 
High TMB group was significantly associated with better 
OS in the Liu cohort (log-rank p =  .001; Figure 3A) but 
the similar impact was not observed in the Allen cohort 
and Snyder cohort (Allen cohort: log-rank p = .484; Snyder 
cohort: log-rank p  =  .086; Figure 3A). However, com-
pared with low ITS group, high ITS group dramatically 

F I G U R E  3  Kaplan–Meier analysis for overall survival stratified by TMB and ITS in the Allen cohort, Snyder cohort, and Liu cohort. (A) The 
Kaplan–Meier curves for overall survival stratified by TMB and ITS in the Allen cohort, Snyder cohort, and Liu cohort, respectively. (B) Forest 
plot showing univariate Cox regression and meta-analysis for overall survival taking TMB as the input variable in the Allen cohort, Snyder cohort, 
and Liu cohort. (C) Forest plot showing univariate Cox regression and meta-analysis for overall survival taking ITS as the input variable in the 
Allen cohort, Snyder cohort, and Liu cohort. TMB, tumor mutation burden; ITS, immunotherapy score; OS, overall survival; HR, hazard ratio; CI, 
confidence interval
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improved OS, which was consistently significant in the co-
horts (Allen cohort: log-rank p = .007; Snyder cohort: log-
rank p = .006; Liu cohort: log-rank p = .001; Figure 3A). 
Univariate Cox regression analysis revealed that patients 
with high TMB presented a tendency toward better OS in 
the cohorts, which was inconsistent in the cohorts (Allen 
cohort: HR = 0.86, 95%CI = [0.56,1.32], p = .485; Snyder 
cohort: HR  =  0.54, 95%CI  =  [0.27,1.10], p  =  .091; Liu 
cohort: HR = 0.46, 95%CI = [0.28,0.74], p = .002; Figure 
3B). Meta-analysis showed that TMB was significantly 
associated with overall survival in meta-cohort, but the 
heterogeneity was close to moderate degree (HR = 0.61, 
95%CI =  [0.41,0.93], p <  .001; heterogeneity: I2 = 47%, 
p  =  .15; Figure 3C). Compared with TMB, ITS was a 
more robust predictor of OS in melanoma patients treated 
with ICIs (Allen cohort: HR = 0.55, 95%CI = [0.35,0.85], 
p = .008; Snyder cohort: HR = 0.38, 95%CI = [0.19,0.77], 
p  =  .008; Liu cohort: HR  =  0.44, 95%CI  =  [0.27,0.73], 
p  =  .002; Figure 3B). Meta-analysis also showed that 
ITS was significantly associated with overall survival 
(HR = 0.48, 95%CI = [0.35,0.64], p < .001; heterogeneity: 
I2 = 0%, p = .66; Figure 3C).

3.5 | Prognostic impact of TMB and ITS on 
progression-free survival in melanoma patients 
treated with ICIs

We further examined the impact of TMB and ITS on PFS in 
melanoma patients treated with ICIs. Due to lack of data on 
PFS in the Snyder cohort, we performed the Kaplan–Meier 
analysis in the Allen cohort and Liu cohort. We observed 
that the differences in PFS between high and low TMB 
group were not significant in the cohorts (Allen cohort: log-
rank p =  .975; Liu cohort: log-rank p =  .102; Figure 4A). 
However, high ITS group showed improved PFS signifi-
cantly (Allen cohort: log-rank p = .009; Liu cohort: log-rank 
p  =  .023; Figure 4A). Univariate Cox regression analysis 
and meta-analysis also indicated that ITS was an effective 
predictor of PFS in the cohorts (Allen cohort: HR  =  0.58, 
95%CI  =  [0.39,0.88], p  =  .010; Liu cohort: HR  =  0.63, 
95%CI = [0.43,0.94], p =  .025; meta-analysis: HR = 0.61, 
95%CI  =  [0.46,0.81], p  =  .007; heterogeneity: I2  =  0%, 
p  =  .78; Figure 4C), whereas TMB was not associated 
with PFS (Allen cohort: HR = 1.01, 95%CI =  [0.68,1.49], 
p  =  .976; Liu cohort: HR  =  0.72, 95%CI  =  [0.49,1.07], 

p =  .104; meta-analysis: HR = 0.85, 95%CI = [0.62,1.18], 
p = .186; heterogeneity: I2 = 26%, p = .25; Figure 4B).

3.6 | Univariate and multivariate 
logistic and Cox regression for DCB, 
OS, and PFS

In order to corroborate whether ITS was an independent 
predictor of DCB, OS, and PFS, we performed the uni-
variate and multivariate logistic regression for DCB and 
the univariate and multivariate Cox regression for OS 
and PFS. Data were adjusted by gender, M stage, LDH, 
TMB, mutations in BRAF, NRAS, and NF1, and muta-
tional signatures. In the univariate logistic regression 
model, signature 1 was identified as a significantly nega-
tive factor (OR = 0.55, p = .030; Figure 5A), whereas ITS 
(OR = 2.81, p < .001; Figure 5A) and TMB (OR = 1.83, 
p =  .010; Figure 5A) were positive. The multivariate lo-
gistic regression analysis revealed that ITS was an in-
dependently positive predictor of DCB (OR  =  2.38, 
p = .004; Figure 5A), but the prediction of TMB was not 
independent (OR = 0.98, p = .939; Figure 5A). Univariate 
Cox regression for OS showed that M stage (HR = 2.99, 
p = .008; Figure 5B), LDH (HR = 1.89, p < .001; Figure 
5B) and signature 1 (HR = 1.58, p = .004; Figure 5B) were 
significant risk factors, whereas signature 7 (HR = 0.64, 
p = .005; Figure 5B), TMB (HR = 0.55, p < .001; Figure 
5B) and ITS (HR = 0.47, p < .001; Figure 5B) were signif-
icantly protective factors. The multivariate Cox regression 
analysis for OS revealed that ITS (HR =0.63, p =  .015; 
Figure 5B) was one of the independent indicators for OS, 
others including M stage (HR = 2.49, p = .046; Figure 5B) 
and LDH (HR = 1.74, p <  .001; Figure 5B). Univariate 
Cox regression for PFS showed that LDH (HR  =  1.45, 
p  =  .010; Figure 5C) was identified as significant risk 
factor, whereas ITS (HR  =  0.65, p  =  .003; Figure 5C) 
was protective for PFS. The multivariate Cox regression 
analysis revealed that LDH (HR = 1.39, p = .024; Figure 
5C) and ITS (HR = 0.66, p =  .032; Figure 5C) were the 
independent indicators of PFS. TMB was not significantly 
associated with PFS (HR = 0.80, p = .108; Figure 5C) in 
the univariate Cox regression model. These findings sug-
gested that ITS was a relatively independent biomarker 
of DCB, OS, and PFS in melanoma patients treated with 
ICIs.

F I G U R E  4  Kaplan–Meier analysis for progression-free survival stratified by TMB and ITS in the Allen cohort and Liu cohort. (A) The 
Kaplan–Meier curves for progression-free survival stratified by TMB and ITS in the Allen cohort and Liu cohort, respectively. (B) Forest plot 
showing univariate Cox regression and meta-analysis for progression-free survival taking TMB as the input variable in the Allen cohort and Liu 
cohort. (C) Forest plot showing univariate Cox regression and meta-analysis for progression-free survival taking ITS as the input variable in the 
Allen cohort and Liu cohort. TMB, tumor mutation burden; ITS, immunotherapy score; PFS, progression-free survival; HR, hazard ratio; CI, 
confidence interval
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3.7 | Biomarker combination based on ITS, 
TMB, and LDH for predicting response to ICIs

We investigated the compatibility of ITS with other biomark-
ers (TMB and LDH) and the potential of joint prediction for 
response to ICIs. We observed that a part of patients with low 
TMB or elevated LDH level harbored DCB, some of whom 
showed high ITS (Figure 6A). Besides, some patients with 
high TMB and normal LDH showed NCB, who were in low 
ITS group (Figure 6A). In order to understand the association 
of ITS with TMB, LDH, and clinical benefit, we further eval-
uated the relevance of ITS to TMB and LDH as a predictive 
biomarker of response to ICIs in melanoma. We observed 
that the high ITS group harbored significantly higher TMB 
(p < .001; Figure 6B), whereas the association between ITS 
and LDH was insignificant (p = .402; Figure 6E). Subgroup 
analysis showed that both the median OS and PFS of patients 
with high ITS were significantly superior to those of patients 
with low ITS in the TMB-low subgroup (OS, p = .007; PFS, 
p = .042; Figure 6D). High ITS also improved DCB in the 
TMB-low subgroup, although a significant P value was not 
reached (p = .067; Figure 6C). In the TMB-high subgroup, 
both the DCB and median OS were significantly improved 
in patients with high ITS (DCB, p =  .0022; OS, p =  .029; 
Figure 6C-D), whereas the difference in PFS was insignifi-
cant (p  =  .125; Figure 6D). Furthermore, lacking of asso-
ciation between ITS and LDH (Figure 6B), plus independent 
prognostic merits (Figure 5B-C), indicated that the combina-
tion of ITS and LDH might become a better biomarker than 
ITS or LDH alone. Patients in the meta-cohort were stratified 
into four groups by ITS and LDH. Encouragingly, patients 
with high ITS and normal LDH showed the best DCB (Figure 
6F) and the longest median OS and PFS (OS, p < .001; PFS, 
p = .002; Figure 6G) in the four subgroups. These findings 
suggested that the biomarker-combination strategy of ITS, 
TMB, and LDH will be laying the foundation for further re-
search in predicting response to ICIs in melanoma.

3.8 | Distinctive genomic patterns associated 
with ITS

We characterized the distinctive genomic patterns associated 
with ITS, based on integrating somatic mutation and CNV 

data. First, we performed correlation analysis to examine the 
correlation between TMB and ITS. NAL was also included 
in the correlation analysis. It was shown that the correla-
tions of ITS with TMB and NAL were at moderate degrees 
(ITS with TMB: Spearman's R = 0.59, p <  .001; ITS with 
NAL: Spearman's R = 0.51, p < .001; Figure 7A). Compared 
with low ITS group, high ITS group had significantly higher 
TMB (p < .001; Figure 6B) and NAL (p < .001; Figure S2). 
The extracted mutational signatures in melanoma includ-
ing signature 1 (Age), signature 7 (ultraviolet exposure) 
and signature 11 (pretreated alkylating agent) were signifi-
cantly distinct between high and low ITS groups (signature 
1, 38.2% vs. 7.6%; signature 7, 56.5% vs. 84.8%; signature 
11, 5.4% vs. 7.6%; p < .001; Figure 7B). Then we character-
ized several key pathways associated with response to ICIs 
as previously reported.31–34 As was shown in Figure 7C, high 
ITS group showed more frequently alterations than low ITS 
group in DNA damage repair (48% vs. 15%, p < .001), cell 
cycle (33% vs. 20%, p  <  .001), PI(3)K/Akt and RTK/RAS 
pathways (90% vs. 72%, p  <  .001), and SERPIN family 
(25% vs. 8%, p < .001). In the DNA damage repair pathway, 
multiple genes involved in homologous recombination were 
more frequent mutated in high ITS than low ITS group, in-
cluding FANCA (8% vs. 1%, p < .001), FANCM (9% vs. 2%, 
p  <  .01), FANCD2 (11% vs. 1%, p  <  .001), BRCA1 (11% 
vs. 3%, p  <  .01), and BRCA2 (12% vs. 4%, p  <  .05). The 
core genes in the mismatch repair pathway were also more 
frequently altered in high ITS group, including MLH3 (9% 
vs. 0%, p < .001), MSH6 (8% vs. 1%, p < .001), and MSH2 
(9% vs. 1%, p < .01). ATM (13% vs. 4%, p < .01) and ATR 
(13% vs. 4%, p <  .01) were significant altered in high ITS 
group, which were master controllers of cell cycle check-
point pathways responding to DNA damage. Besides, we ob-
served frequent aberrations in RTK/RAS signaling and PI(3)
K/Akt signaling, including mutations in NF1 (26% vs. 9%, 
p < .001), ERBB2 (8% vs. 2%, p < .05), PI3KCA (7% vs. 2%, 
p < .01), and amplification in BRAF (11% vs. 3%, p < .01). 
Notably, ITS was not associated with deletion of PTEN (7% 
vs. 5%, p  =  .475), a key factor leading to immunotherapy 
resistance as previously reported.33 Moreover, mutations in 
SERPINB3 (16% vs. 3%, p < .001) and SERPINB4 (13% vs. 
4%, p < .01) were more frequent in high ITS than low ITS 
group, which might promote serpin protein misfolding to in-
crease tumor immunogenicity.34

F I G U R E  5  Univariate and multivariate logistic and Cox regression analysis to evaluate the independent effect of ITS on durable clinical 
benefit and survival outcomes (overall survival and progression-free survival) in meta-cohort. (A) Univariate and multivariate logistic regression 
analysis for durable clinical benefit. (B) Univariate and multivariate Cox proportional hazards regression analysis for overall survival. (C) 
Univariate and multivariate Cox proportional hazards regression model for progression-free survival. The value of 1 represented positive, whereas 
0 represented negative in Signature. The median value was taken as the cutoff of TMB. Meta-cohort was composed of the Allen cohort, Snyder 
cohort, and Liu cohort. Data were adjusted by gender, M stage, LDH, TMB, mutational signatures and mutations in BRAF, NRAS, and NF1. LDH, 
lactate dehydrogenase; TMB, tumor mutation burden; ITS, immunotherapy score; OR, odds ratio; HR, hazard ratio; CI, confidence interval; Mut, 
mutation; Wt, wild type
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In addition, we performed gene set enrichment analysis 
(GSEA) on hallmark gene sets based on the RNA-seq data of 
the meta-cohort. Genes involved in inflammatory response 
pathways were significantly enriched in high ITS group, in-
cluding TNF-α Signaling Via NF-ΚB, Interferon-γ Response, 
Allograft Rejection, Interferon-αResponse, IL-2/STAT5 
Signaling, and IL-6/JAK/STAT3 Signaling (Figure S3A-F). 
Besides, cell cycle pathways including G2M Checkpoint, 
E2F Targets, Apoptosis, and UV Response Up pathway were 
also associated with high ITS (Figure S3G-J). No hallmark 
pathway was significantly enriched in low ITS group.

4 |  DISCUSSION

Despite a number of studies have shown the powerfully pre-
dictive capability of TMB on response to ICIs,3–5 however, 
the limitations of TMB may restrict the clinical application. 
For example, the best TMB threshold is still a mystery so that 
different studies adopt diverse cutoff values.5,35,36 Besides, 
WES takes intensive time and huge cost.9 In order to avoid 
these limitations, we developed a novel genetic mutation 
model named as immunotherapy score (ITS) for predicting 
response to ICIs in melanoma. Besides, we compared the pre-
diction capabilities of TMB and ITS for response to ICIs in 
melanoma.

Most studies supported TMB as a promising predictor 
of clinical benefit and survival in immunotherapy.3,5,37 
However, Morrison et al reported that TMB had no statis-
tically significant impact on OS in melanoma patients.38 
The debatable association with OS and PFS might induce 
doubts on the forecasting value of TMB identified as an 
independent biomarker in clinical practice.38 Our findings 
demonstrated that when taking median or upper quartile 
(Figure S4) as the cut-off value, TMB both failed to con-
sistently predict DCB, OS and PFS in different cohorts. 
However, ITS was identified as a more robust biomarker 
of response to ICIs in melanoma. To our knowledge, in 
the field of melanoma, it is firstly reported that the 4-gene 
mutation model is associated with clinical benefit and sur-
vival outcomes from immunotherapy. Notably, we did not 
observe the significant association between ITS and sur-
vival outcomes of patients without ICIs therapy in TCGA-
SKCM and ICGC-MELA cohort (Figure S5), suggesting 

that ITS was a predictor of response to ICIs instead of a 
prognostic biomarker. Encouragingly, ITS is only depen-
dent on the mutational status of THSD7B, SYNE2, GRM3, 
and FLNC, making it more convenient to identify the cut-
off value than TMB. Moreover, a customized targeted se-
quencing panel containing THSD7B, SYNE2, GRM3, and 
FLNC can be designed, and the targeted next-generation 
sequencing (NGS) can be conducted to determine ITS accu-
rately, which is less-cost and more convenient than WES.9 
Similarly, a previous study constructed a 24-gene mutation 
model for predicting cancer immunotherapy response and 
recommended the NGS gene panel as the testing method in 
clinical practice.39 Although TMB could also be estimated 
by NGS, hundreds of genes should be employed in the 
panel,40 which may take higher cost and longer time than 
the four-gene panel in clinical tests. Importantly, biomarker 
selection for ICIs in clinical practice is diverse and per-
sonalized. Multibiomarker predictive system may be able 
to better capture the likelihood of response to ICIs than 
any single biomarker.12 Liu et al reported that the combi-
nation of TMB and CNV stratified predictive response to 
ICIs across metastatis cancer.41 Cristescu et al assessed the 
potential for a T-cell–inflamed gene expression profile and 
TMB to jointly predict response to ICIs in solid tumors.42 
Cona et al found that the combination of baseline LDH 
serum level, performance status, and age provided better 
prediction of response to ICIs in solid tumors compared 
with LDH alone.43 In this study, we also evaluated the 
potential for combining ITS with TMB or LDH to jointly 
predict response to ICIs in melanoma. Interestingly, our 
findings indicated that a specific population with high ITS 
might benefit from ICIs therapy even if TMB was low or 
LDH was elevated. Our study suggested that the combi-
nation of ITS with other biomarkers may produce syner-
gic and complementary effects on ICIs efficacy in clinical 
practice. Moreover, considering the frequent alterations of 
THSD7B, SYNE2, GRM3, and FLNC in lung squamous cell 
carcinoma and lung adenocarcinoma (Figure S6), we inves-
tigated the applicability of ITS to NSCLC patients treated 
with ICIs. Encouragingly, both DCB and PFS in high ITS 
group were significantly improved in nonsquamous type 
of NSCLC patients. However, the difference was insignif-
icant in squamous type of NSCLC patients (Figure S7). 
Whatever, the applicability of ITS for predicting response 

F I G U R E  6  Association between ITS and response to ICIs by subgroup and combination analyses in the meta-cohort. (A) Sankey diagram 
showing the overall distribution of ITS, TMB, LDH, and clinical benefit. (B) Comparison of TMB between high and low ITS groups. (C) 
Comparison of durable clinical benefit between high and low ITS groups stratified by TMB. (D) Kaplan–Meier survival curves of OS and PFS 
comparing the high and low ITS groups stratified by TMB. (E) Comparison of LDH between high and low ITS groups. (F) Comparison of durable 
clinical benefit in different subgroups stratified by the combination of ITS and LDH. (G) Kaplan–Meier curves of overall survival and progression-
free survival according to different subgroups of ITS and LDH. Meta-cohort was composed of the Allen cohort, Snyder cohort, and Liu cohort. ITS, 
immunotherapy score; TMB, tumor mutation burden; LDH, lactate dehydrogenase; DCB, durable clinical benefit; NCB, no clinical benefit; OS, 
overall survival; PFS, progression-free survival; ***p < .001, **p < .01, *p < .05; ns, no significance
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to ICIs in NSCLC needs to be further validated in some 
independent cohorts.

One of the reasons that melanoma is considered to be 
immunologically active is the high TMB associated with 
ultraviolet light damage.12 A leading explanation is that 
high TMB increases the formation and presentation of im-
munological neoantigen to induce an effective anti-tumor 
immune response.44 Interestingly, we observed that pa-
tients with high ITS harbored abundant signature 7 (ultravi-
olet light damage) (Figure 7B) and presented significantly 
increased TMB and NAL (Figure S2). It was suggested 
that melanoma with high ITS showed genomic instabil-
ity, which might influence genomic signaling pathways 
associated with immunotherapy sensitivity and resistance. 
Numerous genomic biomarkers correlated with response to 
ICIs have been reported over the past years. Several lines 
of evidence suggested that DNA damage repair represented 
important biomarkers of ICIs therapy, including comuta-
tions in homologous recombination repair and mismatch 
repair,31 mutations in BRCA245 and POLE.46 In addition, 
RAS/MAPK pathway was associated with immunotherapy 
in melanoma. Patients with NRAS or NF1 mutations had 
high response rates.9,14 Another mutational event associ-
ated with response to ICIs in melanoma were mutations 
in SERPINB3 and SERPINB4, which might promote the 
formation of immunologically significant neoepitopes.34 
Besides, Peng et al observed that loss of PTEN promoted 
resistance to T-cell-mediated immunotherapy by increas-
ing activation of the PI3K-AKT pathway.33 In this study, 
we found that patients with high ITS had a wide range of 
mutations in DNA damage repair and cell cycle pathway 
(Figure 7C), including homologous recombination repair 
(BRCA1/2, FANCD, FANCA, and FANCM), mismatch 
repair (MSH6, MLH3, and MSH2), and cell cycle check-
points (ATM and ATR). More frequent mutations in NF1, 
SERPINB3, and SERPINB4 were also observed in the high 
ITS group compared to low ITS group. However, we did 
not find the association between ITS and loss of PTEN or 
mutations in NRAS. Moreover, GSEA analysis revealed 
that tumors with high ITS showed active inflammatory re-
sponse and impaired cell cycle, which were favorable for 
ICIs therapy. These findings could partly explain why ITS 
could serve as an independently genetic biomarker of ICIs 
therapy in melanoma. However, the biological mechanisms 
how the ITS-related genes (THSD7B, SYNE2, GRM3, and 
FLNC) impact ICIs response are still unclear at present. 
In order to preliminarily establish a biologic hypothesis, 

we performed a literature review and investigated the bio-
logical functions of these genes from the previous studies 
(Table S7). Lüke et al reported that SYNE2 giant main-
tained nuclear envelope architecture and composition 
in skin.47 Warren et al reported that SYNE2-dependent 
pathway regulated the DNA damage response in vascular 
smooth muscle cell aging.48 Thus, we assumed that non-
synonymous mutation in SYNE2 may impair the DNA 
damage response pathway and increase TMB. Interestingly, 
Krauthammer et al identified GRM3 as one of the genes 
with a high mutation burden in sun-exposed melanomas.49 
It may be one of the reasons that signature 7 (ultraviolet 
exposure) is enriched in the high ITS group in our study. 
Besides, Qian et al found that blood-based mutation of 
GRM3 was associated with response to immunotherapy in 
NSCLC.50 Combining these previous findings with our re-
sults, we considered that mutations in GRM3 may also play 
a key promotor in high TMB to increase the potential of 
response to ICIs in melanoma. However, the mechanism of 
how GRM3 takes impact on TMB is still unclear at present. 
As for THSD7B and FLNC, it has been reported that they 
are associated with tumor progression and/or prognosis of 
multiple tumors, such as NSCLC,51 gastric cancer,52 and 
hepatocellular carcinoma,53 where the mechanism is still a 
mystery. It is worth exploring other potential mechanisms 
of how these genes impact immunotherapy. Whatever, we 
consider that the biological mechanism of how THSD7B, 
SYNE2, GRM3, and FLNC take impact on the immunother-
apy requires more evidences in vitro/in vivo. Understanding 
the role of these genes in immunotherapy will be an im-
portant area of cancer research in the future.

The identification of predictive biomarkers for ICIs 
therapy has become a hot spot of intense research. For 
example, a previous study identified the Tumor Immune 
Dysfunction and Exclusion (TIDE) as a reliable ICIs bio-
marker and developed a web application for calculating 
the TIDE of transcriptional samples.54 In this study, we 
compared the difference in predictive power between ITS 
and TIDE. As a result, the predictive power for clinical 
benefit of the TIDE was weaker than that of ITS in the 
cohorts (AUC: 0.693 vs. 0.749 in the Allen cohort; 0.558 
vs. 0.761 in the Snyder cohort; 0.554 vs. 0.601 in the Liu 
cohort; Figure S8A, Figure 2). Survival analysis revealed 
that patients with high TIDE harbored poor survival out-
comes in the Allen cohort (OS: HR = 2.80, p = .006; PFS: 
HR = 4.14, p < .001; Figure S8B-C). However, the associa-
tion of the TIDE with survival outcomes was not significant 

F I G U R E  7  Distinctive genomic patterns associated with ITS. (A) Scatter plots of TMB vs ITS and NAL versus ITS. (B) Proportions of 
mutational signatures in subgroups with high and low ITS. Signature 7 was mainly associated with ultraviolet exposure. Signature 1 exhibited 
strong positive correlations with age. Signature 11 was found in melanoma patients treated with the alkylating agent. (C) Genomic alterations in 
the pathways associated with response to immunotherapy. ITS, immunotherapy score; TMB, tumor mutation burden; NAL, neoantigen load; R, 
Spearman correlation coefficient. Amp, amplification; Mut, somatic mutation; Del, homozygous deletion; ***p < .001
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in the Snyder cohort (OS: HR = 1.02, p = .006; PFS: not 
available; Figure S8B) and the Liu cohort (OS: HR = 1.06, 
p = .885; PFS: HR = 1.00, p = .999; Figure S8B-C). It was 
indicated that the selection bias of the validating cohorts 
may impact the prediction power of the TIDE in this study. 
Besides, according to the cut-off value of TIDE in the orig-
inal article,54 patients in the Liu cohort were divided into 
two groups with hugely different numbers (105 cases in 
low group vs. 16 cases in high group), which may bring the 
bias in this study (Figure S8B-C). However, in the same 
cohorts as mentioned before, melanoma patients with high 
ITS consistently harbored better treatment outcomes (DCB, 
OS, and PFS) from ICIs therapy. These findings suggested 
that the predictive power of ITS was more effective and 
robust than that of TIDE in this study, which required more 
validations in other clinical cohorts.

It was worth noting that our study had several lim-
itations. First, WES data from the different cohorts were 
based on the different platforms lacking of uniformed cri-
teria, which may limit the definition of the cut-off value 
of TMB, therefore we adopted the median and upper 
quartile value rather than a specific value as the threshold 
to decrease the bias on TMB from the different cohorts. 
Second, some data such as PFS were not available in the 
specific cohort obtained from recent publications, mak-
ing the analysis incomplete in part of this study. Third, we 
did not differentiate whether the genes (THSD7B, SYNE2, 
GRM3, and FLNC) mutations were functional. In other 
words, we did not explore the mechanism of how mu-
tations in these genes made impact on TMB, NAL, key 
pathways as mentioned, and other factors associated with 
ICIs therapy. In addition, this retrospective study may be 
affected by potential confounding factors, such as the se-
lection bias of the cohorts. It would be ideal if other inde-
pendent cohorts support our investigation. Whatever the 
genetic mutation model requires validation in prospective 
clinical cohorts.

In conclusion, this study provided evidences that the 
genetic mutation model identified a melanoma population 
with multiple genetic patterns of sensitivity to ICIs, who 
might potentially benefit from ICIs therapy. Preliminary 
data from three independent cohorts strongly suggested 
better treatment outcomes from ICIs therapy in melanoma 
patients with high ITS. Remarkably, the combination strat-
egy of ITS and TMB or LDH showed better prediction ef-
ficacy compared with any single biomarker. These findings 
deserve prospective investigation in the future and may 
help guide clinical decisions on ICIs therapy for patients 
with melanoma.
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