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Abstract

Background

The importance of randomization in clinical trials has long been acknowledged for avoiding

selection bias. Yet, bias concerns re-emerge with selective attrition. This study takes a

causal inference perspective in addressing distinct scenarios of missing outcome data

(MCAR, MAR and MNAR).

Methods

This study adopts a causal inference perspective in providing an overview of empirical strat-

egies to estimate the average treatment effect, improve precision of the estimator, and to

test whether the underlying identifying assumptions hold. We propose to use Random For-

est Lee Bounds (RFLB) to address selective attrition and to obtain more precise average

treatment effect intervals.

Results

When assuming MCAR or MAR, the often untenable identifying assumptions with respect to

causal inference can hardly be verified empirically. Instead, missing outcome data in clinical

trials should be considered as potentially non-random unobserved events (i.e. MNAR).

Using simulated attrition data, we show how average treatment effect intervals can be tight-

ened considerably using RFLB, by exploiting both continuous and discrete attrition predictor

variables.

Conclusions

Bounding approaches should be used to acknowledge selective attrition in randomized clini-

cal trials in acknowledging the resulting uncertainty with respect to causal inference. As

such, Random Forest Lee Bounds estimates are more informative than point estimates

obtained assuming MCAR or MAR.
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Background

Empirical research is considered most valuable when it aims to answer a specific causal ques-

tion [1], as is the case in a randomized clinical trial. Randomization has the objective to avoid

potential bias in the estimation of causal treatment effects by ensuring that a participant’s treat-

ment status is independent from both observed and unobserved characteristics. If successful,

randomization enables internal validity [2], such that differences between participants in a

clinical trial assigned to different treatment arms can, apart from random error, be attributed

to the treatment under investigation [3].

However, randomized clinical trials often deploy some form of restriction when assigning

participants to treatment arms, for example blocking, stratification or minimization, as to

improve the balance obtained on known confounders [4]. Such restrictions increase the risk of

subversion whenever random allocation sequences are observed or can be–partially- predicted;

introducing pathways for selection bias in a randomized trial [5]. From a causal inference per-

spective, simple randomization is then to be preferred to avoid introducing such bias; thereby

sacrificing some level of precision (i.e. resulting from covariate imbalances).

Yet, even if initial randomization is successful, additional concerns regarding causal infer-

ence arise in the presence of missing data. Missing data problems can introduce subsequent–

and severe- bias when analyzing data from randomized clinical trials and should thus be

acknowledged empirically. Several dimensions of missing data exist, which differ considerably

in terms of their potential for raising causal inference concerns. In this paper, we focus on

these phenomena and consider missing data on either background characteristics, treatment

status or outcomes.

For causal inference, it is important to empirically acknowledge the potential importance of

missing data problems. These issues can introduce bias in subsequent data analyses, thereby

undermining initial randomization. Several dimensions of missing data exist, which differ

considerably in terms of potential causal inference concerns. We consider missing data on

background characteristics, treatment status and outcomes.

Missing data on background characteristics can be addressed relatively easy, either by

means of a missing indicator method or imputation, thereby rendering the sample of random-

ized participants complete. Given that background characteristics are independent from treat-

ment status by virtue of randomization, the resulting causal inferences with respect to the

average treatment effect are internally valid.

Missing data on treatment status occurs when participants discontinue, for whatever rea-

son, the assigned treatment. When gathering data on outcomes for these participants is suc-

cessful, the possibility to estimate an internally valid intent-to-treat effect is retained. This

measure–in itself- is informative regarding treatment policy effects and provides a lower-

bound estimate of the average treatment effect.

Missing data on outcomes is widespread in clinical trials [6]. If such attrition co-varies with

(un)observed characteristics and treatment assignment, this compromise initial randomiza-

tion and causal inferences drawn from clinical trials [7]. While attrition bias may thus render

the results from a study non-informative, the problem of missing outcome data has received

relatively little attention in the clinical trial literature [8]. Missing data is often inadequately

addressed by means of simple fixes [9], but also more advanced methods such as multiple

imputation (MI) can yield biases as big as, or even bigger than, the bias in simple complete

cases analysis results [8].

Based on a widely established categorization of missing outcome data scenarios [10], this

study proposes empirical strategies for each scenario in the context of a randomized clinical

trial and by adopting a causal inference perspective. An empirical solution for obtaining an
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internally valid treatment effect estimate in the presence of missing data is provided for each

scenario. In addition, the underlying identifying assumptions that apply are made explicit,

together with the extent to which–and how- they can be verified empirically.

Three missing data scenarios are distinguished, and each imposes different assumptions

with respect to characterizing the missing data generation process:

1. Missing Completely At Random (MCAR)

2. Missing At Random (MAR)

3. Missing Not At Random (MNAR)

MCAR assumes that the occurrence of a missing outcome is a random event, unrelated to

treatment assignment and–observed and unobserved- background characteristics. MAR

assumes that observed background characteristics can account for the non-random nature of

missing data. Finally, MNAR assumes that the occurrence of a missing outcome is a non-ran-

dom event that can be structurally related to both observed and–importantly- unobserved

background characteristics. From a causal inference perspective, each scenario entails different

empirical strategies to test its underlying identifying assumptions and also to address missing

data concerns.

Addressing selective attrition

This study argues that -from a causal inference perspective- it is most appropriate to assume

that the missing outcome data generating process in a randomized clinical trial is MNAR.

Both MCAR and MAR impose overly restrictive identifying assumptions that are crucial for

claiming that the estimated effect is internally valid, yet often unrealistic and empirically

unverifiable. In the case of MNAR, common empirical bounding approaches rely on exploring

worst-case scenario bounds, often resulting in very wide, uninformative, treatment effect esti-

mate intervals.

Therefore, this study proposes to use a new Random Forest Lee Bounds (RFLB) approach

that can be used to estimate relatively tight average treatment effect intervals, when assuming

MNAR. The potential of exploiting RFLB in the presence of selective attrition is demonstrated

using data from a recent randomized clinical trial which established the treatment effect of vir-

tual reality cognitive behavior therapy (VR CBT) in addressing acrophobia (Donker et al.,

2019). We show how RFLB can considerably increase the statistical power of bias-corrected

treatment effect estimates for randomized clinical trials facing non-random missing outcome

data, by exploiting both continuous and discrete predictor variables for attrition.

Baseline model

Assume a randomized clinical trial conducted with the objective to estimate the effect of treat-

ment T on outcome yi for individual i (with i = 1,. . .,N). The two potential outcomes for indi-

vidual i can then be represented by:

yi ¼
y1i if Ti ¼ 1

y0i if Ti ¼ 0
;

(

and the individual treatment effect for individual i as:

y0i þ ðy1i � y0iÞTi:
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Individuals cannot be randomly assigned to the treatment and control group simulta-

neously, such that only one of both potential outcomes y0i and y1i is observed for each individ-

ual which prevents the estimation of the individual treatment effects [2]. This observation is

referred to as the fundamental problem of causal inference. Yet, the average treatment effect

for these individuals can be estimated empirically using ordinary least squares regression:

yi ¼ aþ b � Ti þ εi; ð1Þ

where α and β are the parameters to be estimated and where ε represents the classical error

term, assumed to be identically and independently distributed (i.i.d) with mean zero (E(εi) =

0). The estimated expected outcome for treated and non-treated individuals is E(yi|T = 1) = α
+β and E(yi|T = 0) = α, respectively, yielding the difference between these expected outcomes,

β, to represent an unbiased estimated average treatment effect. Performing an independent

sample t-test would yield the same average treatment effect.

A more precise estimate of this treatment effect can be obtained empirically by including

observed background characteristics that are related to yi in Eq 1:

yi ¼ aþ b � Ti þ Xi
0δ þ εi: ð2Þ

Vector X represents the vector of observed background characteristics and parameter vec-

tor δ are the associated model parameters to be estimated. The estimated treatment effect is

unbiased in both Eqs 1 and 2, but the inclusion of background characteristics that are signifi-

cantly related with the outcome variable reduces the standard error of β and thus increases the

statistical power of empirically detecting this treatment effect.

Results

Missing completely at random (MCAR)

MCAR assumes that missing outcomes are unrelated with treatment status and all background

characteristics, whether observed or unobserved. Let indicator variable M(issing) denote 1

when outcome yi is missing, and 0 otherwise. This conditional mean zero (CMZ) assumption

of MCAR then implies E(εi|Ti,Xi) = 0, meaning that both observed treatment Ti and back-

ground characteristics X are uncorrelated with the error term εi.
Let Nfs and Nos be the number of observations for, respectively, the full sample and the sam-

ple of individuals for which an outcome is observed and let Nos�Nfs. If the occurrence of miss-

ing outcomes is truly random, then P(T|M) = P(T) and an unbiased estimator of the treatment

effect can be obtained empirically by estimating either Eq 1 or–for precision reasons- Eq 2.

The analysis can then be performed on the ‘complete case’ sample, also referred to as list-

wise deletion. A drawback of this procedure is that the use of the smaller sample Nos can

severely reduce statistical power. More precisely, if the goal was to have 80% statistical power

to empirically detect a treatment effect, this power reduction by using the smaller sample Nos is

reflected by θ, for which holds (see S1 Appendix for a full derivation of θ):

y ¼ 2:8 �

ffiffiffiffiffiffi
Nos

Nfs

s

� 1:96: ð3Þ

A power of 80% is associated with a θ-value of 0.84 (i.e. Nos = Nfs). Eq 3 illustrates that the

statistical power is reduced by attrition as Nos<Nfs. For example, when
ffiffiffiffiffi
Nos
Nfs

q
¼ 0:75, this

implies a value for θ of 0.14, yielding a power of 56% and–thus- a power reduction of 24 per-

centage points (see S1 Appendix).
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Therefore, a-priori knowledge about the extent to which missing outcomes will occur

should be used to make an educated guess on the full-sample size needed (Nfs), as to retain the

ability to perform a complete case analysis on the observed sample (Nos) with 80% statistical

power.

A more fundamental problem with MCAR is that the randomness assumption of missing

outcomes (CMZ) cannot be demonstrated, but merely be assumed. Empirically, this assump-

tion can only be partially validated by two different estimation strategies. The first strategy is

to estimate a (logistic/probalistic) regression model and show that treatment status Ti cannot

be predicted empirically by the set of observed background characteristics X:

Ti ¼ aþ Xi
0δ þ εi: ð4Þ

Generally a logistic or probability model is estimated, given the dichotomous nature of the

dependent variable. Yet, for the validation purpose of causal inference considered here a sim-

ple linear regression model is sufficient to estimate, as we are not interested in the interpreta-

tion of the estimation parameters. The observed background characteristics should not explain

treatment status if the identifying assumption of MCAR holds and the estimated coefficients of

vector δ should all be statistically insignificant and close to zero. A second estimation strategy

is to estimate–and compare- Eqs 5 and 6:

yi ¼ aþ b � Ti þ εi: ð5Þ

yi ¼ aþ b � Ti þ Xi
0δ þ εi: ð6Þ

The estimated parameter β in the Eq 5 provides the t-test or Wald-test estimator of the

treatment effect. The inclusion of observed background characteristics in Eq 6 should not sta-

tistically significantly change the estimated treatment effect β if the MCAR assumption of

CMZ holds. The logic is similar to that of the first estimation strategy: if it is assumed that P(T|
M) = P(T), then P(T|M, X) = P(T) must also hold. However, if missing outcomes are structur-

ally related to relevant background characteristics, then the estimated treatment effect -or

treatment assignment- will depend on whether these background characteristics are included

or not.

A key insight from both strategies is that showing that Ti is independent from observable

characteristics is sufficient to argue this will also hold for all unobserved characteristics. The

estimated treatment effect β can properly be inferred causally if this identifying assumption

holds, but this can thus merely be assumed and not demonstrated unequivocally.

Based on the above, it could be argued that the term missing completely at random is some-

what confusing. It suggests that missing outcomes are not problematic due to its random

nature, yet it is precisely this random nature that cannot be proven. At best, one can show

empirically that the estimated treatment effect is independent from observed characteristics

and–then- to assume that this will also be the case for all unobserved characteristics.

Missing At Random (MAR)

Different from MCAR, MAR assumes that missing outcomes can actually be non-random in

nature, such that the CMZ not hold and Eq 5 will yield a biased treatment effect estimate. Yet,

with MAR it is assumed that the selective nature of missing outcomes can fully be accounted

for by a set of observed background characteristics X. This implies that P(T|M, X) = P(T|X),
such that treatment status Ti-once controlled for observed background characteristics- is unre-

lated to missing observation status. This identifying assumption is referred to as conditional
mean independence (CMI) and implies E(εi|Ti,X) =E(εi|X)6¼0. This is unproblematic as long as
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we are only interested in inferring the causal effect of treatment Ti and not in the causal effect

of background characteristics X. Conditional on X, Ti is as if randomly assigned, such that

treatment Ti is uncorrelated with εi, but X can be correlated with εi. The CMI assumption

then implies that E(εi|Ti = 1,X) = E(εi|Ti = 0,X), yielding E(yi|T = 1,X)−E(yi|T = 0, X) = β and

thus that the treatment effect estimate from Eq 6 is unbiased.

Whereas MAR is different from MCAR in assuming conditional randomness with respect

to the missing outcomes, the underlying identifying assumption necessary to argue that the

estimated treatment effect is causal is similar for both scenarios. As with MCAR, the validity of

the identifying assumption for MAR–conditional mean independence- cannot be demon-

strated. The two estimation strategies outlined before with MCAR can again be pursued, but

are this time performed to show (1) how the probability of The pivotal assumption underlying

MAR is that the inclusion of the set of observed background characteristics X in Eq 6 is suffi-

cient to also account for the potential effects of non-observed background characteristics on

observed treatment status. This assumption is similar to situation described in MCAR, and–

again- it is not possible to empirically validate this conditional mean independence assump-

tion on non-observed background characteristics. In practical terms, this implies that MCAR
and MAR are similar in the identifying assumptions made, with the notable exception that the

inclusion of observed background characteristics in Eq 5 can alter the estimated treatment

effect for MAR, while this is not allowed to be possible with MCAR (and are only included for

precision).

The aforementioned observation that the estimated treatment effect is allowed to change

with MAR due to the inclusion of X is what makes it distinctively different from MCAR.

Whereas the estimation strategy in Eq 5 with MCAR serves to falsify its identifying assumption

of missing outcomes as purely random events, it is used with MAR to empirically control for

the non-random nature of missing outcomes. The identifying assumption for MAR that treat-

ment status is then CMI on unobservables -after having included the observed characteristics

X- is a strong assumption to make and empirically untractable.

Missing Not At Random (MNAR)

Given that randomness of missing outcomes cannot be demonstrated, a more appropriate

point of departure is MNAR and to assume that missing outcomes can result from non-ran-

dom events (Graham, 2009), such that the probability of observing a missing outcome can be

structurally related to both observed and–importantly- unobserved characteristics. In contrast

to MAR, MNAR thus implies that the inclusion of observed background characteristics X can-

not control for the selective nature of missing values, rendering results thus obtained to be

biased.

MNAR thus not assume CMZ or CMI, such that no unbiased point estimate for β can be

generated using Eq 5 or 6. As such, additional assumptions regarding the potential selective

nature of missing outcomes are required to estimate β. Empirically, this often implies perform-

ing a bounding procedure in which two contrasting scenarios regarding attrition (e.g. “worst”-

and “best”-case) are considered; thereby yielding an interval estimate for β instead.

Bounding procedures. Rather than correcting the point estimate of treatment effect β for

potential bias, bounding procedures yield treatment effect interval estimates instead. In their

seminal work on dealing with missing data in randomized experiments, Horowitz and Manski

[11] first provide a general assumption-free framework, with the objective to deal with non-

random missing outcomes in an experimental setting. Their approach places very conservative

bounds around treatment effect estimates. Essentially, this approach implies determining the

worst- and best-case scenario for the missing outcomes, based on the observed data. By
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replacing the missing outcomes with the worst- and best-case outcomes, a lower and upper

bound is constructed for the estimated treatment effect β. While this approach provides an

intuitive benchmark, a major disadvantage is that these conservative bounds in clinical trials

suffering from sizable attrition can often turn out to be largely uninformative, as they tend to

be very wide and (thus) often include zero. Yet, this bounds analysis approach is valuable in

being among the first to (1) acknowledge the potential severity of the imposed bias on the

point estimate due to missing outcome data, and (2) provides an intuitive solution for dealing

with this uncertainty by focusing on bound estimates for β, rather than on a single point

estimate.

By imposing a monotonicity assumption on the selection mechanism of missing outcomes,

Lee [12] provided a -generally- more useful bounds procedure which generates relatively tigh-

ter bounds. This assumption entails that assignment to treatment can only affect the likelihood

of attrition in one direction, such that there is no heterogeneous effect–in terms of sign- of

treatment assignment on attrition.

Let Si be a binary indicator, with Si = 0 indicating that outcome yi is not observed due to

attrition. Furthermore, let 1(�) be the indicator function which counts the number of observa-

tions satisfying status indicated between parenthesis. The proportion of outcomes observed for

treatment (T = 1) and control (T = 0) group can then be written as:

qT¼1 ¼

P
i1 � ðTi ¼ 1; Si ¼ 1Þ
P

i1 � ðTi ¼ 1Þ

qT¼0 ¼

P
i1 � ðTi ¼ 0; Si ¼ 1Þ
P

i1 � ðTi ¼ 0Þ
:

ð7Þ

The bounds procedure first determines which group suffers less from attrition. In accor-

dance with the empirical example presented later in this section, and without loss of generali-

zation, we assume that qT = 0>qT = 1. The Lee bounds procedure then trims the outcome

distribution of the control group by removing q ¼ qT¼0 � qT¼1

qT¼0
observations from the lower

(upper) end of the distribution such that an upper (lower) bound for the treatment effect β is

estimated. Intuitively, the q-value indicates the proportion of control observations that ought

to be removed in order to achieve a similar attrition rate in both the control and treatment

group.

If the monotonicity assumption of sample selection holds, the treatment effect bounds esti-

mated apply to so-called never-attriters. These are participants for whom the outcome will be

observed (Si = 1), irrespective of being assigned to the treatment (T = 1) or control (T = 0)

group. By virtue of randomization, the treatment control difference in means will then provide

bias-corrected bounds estimates of the average treatment effect for this particular group of par-

ticipants. This subpopulation can be characterized by the distribution of X for participants

with non-missing outcome data in the assignment group that remains untrimmed (here: treat-

ment). Also, when the trimming proportion is zero, there is a limited test of whether the

monotonicity assumption holds for observables (Lee, 2009) by estimating Eq 4 on the subsam-

ple of participants selected in the bounding procedure and by verifying that treatment status Ti

cannot be predicted by X. The monotonicity assumption is the only identifying assumption,

and if violated the estimated lower and upper bound may provide biased bounds estimates for

the never attriters.

Empirical example. To showcase the Lee bounds procedure, the randomized clinical trial

data from Donker et al. (2019) is utilized. The objective of this study was to estimate the treat-

ment effect of ZeroPhobia—a virtual reality cognitive behavior therapy (VR CBT)–on acro-

phobia symptoms. In a single-blind randomized clinical trial, 193 participants were randomly
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assigned to the treatment (n = 96) and a wait-list control group (n = 97). To measure acropho-

bia the Acrophobia Questionnaire was used [13] and the mean (SD) AQ-Total outcome scores

for the treatment and control group were 48.46 (24.33) and 74.68 (21.55), respectively.

For 11 (40) participants of the control (treatment) group, no outcome was observed. The

attrition proportion is therefore largest for the wait-list control group, such that the q ¼
qT¼0 � qT¼1

qT¼0
¼
ð86=97Þ� ð56=96Þ

ð86=97Þ
¼ 0:34 (or 34 percent). To generate a lower and upper bound estimate

for treatment effect β, the Lee bounds procedure then trims the outcome distribution of the

wait-list control group by removing consecutively the 34 percent highest and lowest outcome

values observed.

Fig 1 visualizes the Lee bounds, when applied to the data of Donker et al. [14]. Fig 1 shows

three panels in which the blue line represents the untrimmed intervention distribution and the

red line the distribution of the control group, which is either trimmed (i.e. the upper and

Fig 1. Lee bounds trimming procedure.

https://doi.org/10.1371/journal.pone.0234349.g001
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lower panel) or untrimmed (i.e. the middle panel). The middle panel shows the treatment

effect point estimate as a reduction in acrophobia symptoms with 26.22 points (i.e. 74.68–

48.46), when potential attrition bias as a result of MNAR is not taken into account. The distri-

butions associated with the lower bounds estimate display that the upper 34 percent of the con-

trol distribution is trimmed (removed), yielding a lower bound estimate of -22.33. Moreover,

the confidence interval of this lower bound estimate indicates that the mean difference of the

AQ post-score is significantly smaller than zero. This is an important empirical result, as it

indicates that even the most conservative Lee bound estimate indicates that ZeroPhobia signif-

icantly reduced acrophobia symptoms. The upper bound estimate of -47.50 points is obtained

by trimming the lower 34 percent of the control distribution. The Lee bound results thus indi-

cate that the estimated treatment effect is arguably somewhere between this interval of -22.33

and -47.50 points. When the confidence intervals for the point estimates of both bounds are

also taken into consideration, the corresponding interval estimate for the average treatment

effect is [-13.43; -56.90].

The Lee bound procedure can also be performed conditionally on discrete background

characteristic variables, with the objective to further tighten the bounds thus obtained. This

conditioned approach essentially implies that the trimming is performed separately for each

category as defined by the discrete variable(s). In order to illustrate this ‘tightening by condi-

tioning’- effect, suppose that only gender is used as the conditioning variable and that attrition

occurs solely among female participants. In the unconditional bounding procedure, all

extreme values of the control group outcome distribution are trimmed, regardless gender. In

the conditional version, however, extreme observations of male participants in the control

group are not trimmed (i.e. only extreme observations of women are). If we would trim only

the 34 percent for women in the control group, then the conditional and unconditional Lee

bounds are similar only if these trimmed female observations are all located at the extremes of

the distribution. If this is not the case, the bounds will be relatively tight, as the resulting lower

and the upper bound estimates will be closer around the initial point estimate of β.

Random forest lee bounds

When assuming MNAR and estimating corresponding bounds for the average treatment

effect, a limitation of the aforementioned conditioning procedure with Lee bounds is that it

requires discrete groups to perform the trimming procedure. As such, the set of background

characteristics that can be used to tighten the bounds is restricted to include only non-continu-

ous variables. Thus, if attrition can to a large extend be explained by continuous variables, this

information can unfortunately not be optimally exploited by the Lee bounds procedure.

Therefore, we propose a Random Forest Lee Bounds (RFLB) approach, such that also con-

tinuous variables can be used for obtaining tighter bounds around the estimate for treatment

effect β.

The RFLB procedure first classifies data points efficiently into the attrition class they belong

to. For this, a decision tree is used together with an entropy (E) function. The entropy function

measures the purity of the data and -in the context of attrition- this indicates the proportion of

attrition. The decision tree is used to partition data recursively into two groups such as to max-

imize data purity. This recursive data-splitting process can be explained using Fig 2, under the

simplifying assumption that the observed input vector X consists of only two background

characteristics, x1 and x2 (this example is taken from Plak et al. [15]). The red dots in the figure

represent {x1, x2} observations for missing outcomes, while the green dots represent non-miss-

ing outcome observations. In this example, the first algorithmic split occurred at x2� a2,

implying that the two data samples obtained by this split are more pure than the initial data
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sample. The second, third and fourth split occurred at x1� a4, x1� a1, and x2� a3,

respectively.

The algorithm stops when splitting the data does not yield more purified data samples and

avoids further reduction of degrees of freedom for the adjusted residual sum of squares. We

note that the random forest approach can be applied using multiple conditioning variables

and is suitable for both categorical classification problems (such as shown in Fig 2), and con-

tinuous prediction problems. The example explained above can also be represented as a con-

tinuous outcome problem for which the random forest approach builds regression trees

instead of classification trees and indicates–in our case—which characteristics best explain the

observed variation in attrition.

The random forest approach avoids over-fitting by applying k-fold cross-validation and

takes into account that small changes in the data can yield large changes in the final tree

obtained, by selecting the splitting variable at each step from m out of x randomly drawn input

variables [16].

The Random Forest Lee Bounds (RFLB) procedure presented here can be summarized in

four steps. First, a random forest is estimated using a set of background characteristics. Second,

an importance graph is created which indicates how effective each characteristic reduces the

variance (i.e. increases the prediction performance of the model). A random benchmark vari-

able is included as covariate in the model, such that it can be evaluated if a covariate is more

important than a random benchmark variable and–thus- whether it should be used to tighten

the bounds. Third, a decision tree is estimated with only those variables included that were

marked as important by the importance graph in the previous step. Fourth, discrete group

indicator variables are generated using the decision tree from the previous step and used as

conditioning variables in the Lee bounds procedure.

Fig 2. Decision tree data splitting. This is a revised figure, taken from Zou & Schonlau [17].

https://doi.org/10.1371/journal.pone.0234349.g002
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To reiterate, the rationale for using the random forest approach is to ensure that also con-

tinuous variables can be optimally exploited in the bounding procedure, and not to optimize

the out-of-sample predictive power of the model. The obtained bounds will be tighter if these

continuous variables statistically explain attrition. To see whether this is the case, random for-

est lee bounds are estimated applying the aforementioned procedure and using the ZeroPhobia

randomized clinical trial data. The importance graph presented by Fig 3 indicates that the

treatment indicator variable explains most of the attrition variation. This variable therefore

receives an importance value of 1 and all other variables receive a value relative to that of the

most important variable. The random variable receives a value of .3 and–importantly- all other

variables (i.e, gender, age and AQ pre-scores) are considered less important in explaining vari-

ance than this random variable. This implies that the association between attrition and the var-

iables gender, age and AQ pre-scores is not statistically significant and explains why Donker

et al. [14] perform an unconditional Lee bounds procedure. Yet, if the covariation between

attrition and treatment assignment is indeed associated with some background characteristics,

then the bounds can be tightened by conditioning on these variables.

To illustrate that additional conditioning on a continuous variable can further tighten the

bounds, attrition is simulated in the data from Donker et al. [14], such that the selective nature

of the simulated attrition is now associated jointly with treatment status, gender and pre-score,

while leaving the average treatment effect estimate unaffected. The simulation method is out-

lined in more detail in S2 Appendix. Fig 4 shows the importance graph and illustrates that the

attrition is selective and conditional on the simulated characteristics gender and pre-scores.

That attrition is selective with respect to gender and pre-score is a necessary but not suffi-

cient condition for the bounds to be tightened by RFLB. It is only sufficient when the covari-

ance between attrition and treatment assignment is conditional on these background

characteristics as well. Fig 5 shows that these interaction terms are indeed important, which is

why the variables Female and AQ pre-scores are selected for conditioning.

Table 1 summarizes the various bounding estimates obtained when performing uncondi-

tional Lee bounds, conditional Lee bounds and the RFLB introduced here. Columns 2 and 3

show the estimated lower and upper bound. Columns 4 and 5 show the 95% confidence

Fig 3. Importance graph attrition variation.

https://doi.org/10.1371/journal.pone.0234349.g003
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intervals, which can be considered a more appropriate comparison between the different

bounding approaches, as this also acknowledges precision loss resulting from the reduction of

degrees of freedom when conditioning on background characteristics.

The estimation results of Table 1 show that the intervals are most tight when RFLB is per-

formed. The 95% confidence intervals indicate that–relative to unconditional Lee bounds- the

reduction in interval width is 7.2% with conditional Lee bounds, and 26.6% with RFLB. It fol-

lows that RFLB is the preferred bounding approach, as it provides the most precise bias-cor-

rected interval estimate for the average treatment effect of ZeroPhobia.

Fig 4. Importance graph simulated attrition. The relative importance of the intervention variable is excluded from

the figure, as only background characteristics are to be considered for tightening Random Forest Lee Bounds.

https://doi.org/10.1371/journal.pone.0234349.g004

Fig 5. Importance graph simulated attrition interaction terms.

https://doi.org/10.1371/journal.pone.0234349.g005
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To generalize the bounding estimation results we also performed simulations in which the

bounding estimates were again obtained under different treatment sizes: small, medium and

large (i.e. d = 0.2, d = 0.4 and d = 0.8). These bounding results are shown in Table 2 and the

results suggest that the unconditional Lee bounds are tightened by the RFLB approach with

19.8, 16.8 and 16.6 percent for respectively a small, medium and large treatment size. This is

an important result: when the effect size becomes smaller it is more likely that 0 lies and thus

more important to obtain tighter bounds.

More generally, it holds that RFLB will always produce interval widths that are smaller or

similar compared to the other bounding approaches if the importance graph indicates that the

interaction terms explain a significantly amount of the in attrition. This result is intuitive,

since both conditional bounding approaches ensure that similar or less extreme values of the

observed outcome distributions are trimmed, resulting tighter interval estimates. Moreover,

the imposed assumptions by RLFB are equivalent to the Lee bounds procedure, but RFLB

allows for conditioning on continuous variables, which is crucial for precision gains in ran-

domized clinical trials as the pre-treatment scores is–often- the best predictor of the outcome

observed at end point.

Discussion

This study proposes to use a new Random Forest Lee Bounds (RFLB) approach that can be

applied to estimate relatively tight average treatment effect intervals, while allowing for non-

Table 1. Bounding estimation results.

Estimated Treatment Effect

95% conf. interval

Lower Upper Lower Upper

Unconditional Lee- bound -37.33 -17.89 -39.86 -15.44

Width: 19.44 Width: 24.42
Conditional Lee bound -37.70 -19.85 -40.15 -17.49

(Female) Width: 17.85 Width: 22.66
Random forest Lee bound -32.65 -20.39 -35.86 -17.94

(Female, Pre-scores) Width:12.26 Width:17.92

https://doi.org/10.1371/journal.pone.0234349.t001

Table 2. Bounding estimation results for small, medium and large effect sizes.

95% conf. interval

Lower Upper Diff. %-gain Lower Upper Diff. %-gain

Unconditional Lee Bound

Small (d = 0.2) -0.280 -0.162 0.118 . -0.297 -0.145 0.153 .

Medium (d = 0.4) -0.560 -0.325 0.235 . -0.595 -0.289 0.306 .

Large (d = 0.8) -1.119 -0.650 0.470 . -1.189 -0.578 0.610 .

Conditional Lee Bound (Female)

Small (d = 0.2) -0.281 -0.164 0.117 0.825 -0.298 -0.147 0.152 0.655

Medium (d = 0.4) -0.557 -0.326 0.231 1.836 -0.591 -0.291 0.300 1.768

Large (d = 0.8) -1.123 -0.644 0.479 -1.961 -1.193 -0.573 0.620 -1.540

Random Forest Lee Bound (Female, Pre-score)

Small (d = 0.2) –0.269 -0.175 0.094 19.818 -0.287 -0.155 0.132 13.294

Medium (d = 0.4) -0.533 -0.338 0.196 16.802 -0.570 -0.297 0.272 10.933

Large (d = 0.8) -1.069 -0.677 0.392 16.609 -1.142 -0.597 0.545 10.665

https://doi.org/10.1371/journal.pone.0234349.t002
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random missing outcome data (MNAR). An appealing feature of the RFLB procedure is that it

allows for tightening intervals by exploiting the observed associations of attrition with both

categorical and continuous background characteristics, as has been demonstrated empirically

in this study.

In the case of a randomized clinical trial, the internal validity of RFLB entails an additional

identifying monotonicity assumption. In the case of randomized clinical trials, this implies

that if–for example- assignment to treatment induces some participants to drop out, it cannot

simultaneously cause other participants to not drop out. If this assumption holds, RFLB results

are internally valid for the subpopulation of non-attriters.
Missing outcome data are unavoidable in randomized clinical trials and arguably depend

on non-random unobserved data [18]. Bounding approaches serve to accommodate such

selective attrition processes and to acknowledge the resulting uncertainty with respect to causal

inference. Yet, the potential of bounding procedures for generating informative–relatively pre-

cise- interval estimates for the average treatment effect depends crucially on the ability to sta-

tistically predict attrition using pre-treatment characteristics.

Conclusion

The importance of randomization in clinical trials has long been acknowledged for avoiding

selection bias and enabling internal validity of the research results reported. Yet, many clinical

trials suffer from attrition between randomization and follow-up data collection, such that

attrition bias reintroduces concerns with respect to causal inference. This study takes a causal

inference perspective when addressing distinct scenarios of missing outcome data (MCAR,

MAR and MNAR) and provides an overview of empirical strategies that can be applied to esti-

mate the average treatment effect, improve precision of the estimator, and to test whether the

underlying identifying assumptions hold.

While many studies assume MCAR or MAR, the corresponding identifying assumptions

are very restrictive, often untenable [18], and can hardly be verified empirically using the

observed data. It is therefore appropriate to allow missing outcome data in clinical trials to be

the result of non-random unobserved events (i.e. MNAR) and to address this issue accord-

ingly. Yet, existing empirical approaches for dealing with MNAR rely on exploring worst-case

scenario bounds and often result in very wide, uninformative, treatment effect estimate

intervals.

By exploiting information from all observed background characteristics, the RFLB proce-

dure proposed in this paper can considerably increase the statistical power of bias-corrected

treatment effect estimates for randomized clinical trials facing non-random missing outcome

data. As such, RFLB can hopefully facilitate researchers -whether involved in clinical trials or

other disciplines- in allowing for post-assignment attrition to be non-random in nature and in

addressing this accordingly.
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