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Abstract

Tartary buckwheat (Fagopyrum tataricum Gartn.) is a highly functional crop that is poised to

be the target of many future breeding efforts. The reliable ex situ conservation of various

genetic resources is essential for the modern breeding of tartary buckwheat varieties. We

developed PCR-based co-dominant insertion/deletion (InDel) markers to discriminate tar-

tary buckwheat genetic resources. First, we obtained the whole genome from 26 accessions

across a superscaffold-scale reference genome of 569.37 Mb for tartary buckwheat cv.

“Daegwan 3–7.” Next, 171,926 homogeneous and 53,755 heterogeneous InDels were

detected by comparing 26 accessions with the “Daegwan 3–7” reference sequence. Of

these, 100 candidate InDels ranging from 5–20 bp in length were chosen for validation, and

50 of them revealed polymorphisms between the 26 accessions and “Daegwan 3–7.” The

validated InDels were further tested through the assessment of their likelihood to give rise to

a single or a few PCR products in 50 other accessions, covering most tartary buckwheat

genome types. The major allele frequencies ranged from 0.5616 at the TB42 locus to

0.9863 at the TB48 locus, with the average PIC value of 0.1532 with a range of 0.0267–

0.3712. To create a user-friendly system, the homology of the genotypes between and

among the accessions were visualized in both one- (1D) and two-dimensional (2D) barcode

types by comparing amplicon polymorphisms with the reference variety, “Daegwan 3–7.” A

phylogenetic tree and population structure of the 76 accessions according to amplicon poly-

morphisms for the 50 InDel markers corresponded to those using non-synonymous single

nucleotide polymorphism variants, indicating that the barcode system based on the 50

InDels was a useful tool to improve the reliability of identification of tartary buckwheat acces-

sions in the germplasm stocks.
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Introduction

The eudicot family Polygonaceae consists of 27 reported species, including the 2 cultivated

species, common buckwheat (Fagopyrum esculentumMoench) and tartary buckwheat

(F. tataricumGaert.) [1,2]. Buckwheats (F. esculentum and F. tataricum) are cultivated, as

short-season pseudo-cereals, in many countries and regions, including China, Nepal, Russia,

Europe, Korea, and Japan [3,4]. Following domestication in upland southwestern China, a

multitude of tartary buckwheat landraces were created by ancient farmers through both artifi-

cial and natural selection [5]. After cultivation in China, these landraces were first dispersed to

Nepal, Russia, Europe, Korea, and Japan [5–9]. Several characteristics of tartary buckwheat,

such as its self-pollinating nature and ability to adapt to various regions (ranging from high

altitude zones to lowland), led to both morphology and genetically divergent pockets of landra-

ces [10–13]. These landraces have been largely replaced by fewer landraces with specific

desired characteristics such as high-yield, drought resistance, and flavor [5,14].

Tartary buckwheat is a major food crop in high altitude zones (e.g., high mountain areas of

southern China and the Himalayan hills) due to its frost tolerance under poor soil conditions.

Tartary buckwheat has also been used more recently for a variety of purposes, ranging from

various transitional food products to medical use [15,16]. The grain of tartary buckwheat is

considered to be an ideal functional food source for humans because it is richer in proteins,

fats, vitamins, rutin, quercetin, and other flavonoids than common buckwheat [17–23]. The

popularity of tartary buckwheat has been steadily increasing, and its cultivation has broadened

into areas far outside its original region [10,11,24,25]. This is a testament to tartary buck-

wheat’s adaptability, which will be crucial in Earth’s changing climate [14]. Breeding for com-

mercial varieties of tartary buckwheat improves agricultural traits, such as lodging, late

maturity, and low yield [26,27]; however, this cultivation resulted from a narrow genetic base

from a few varieties only, which have produced modern varieties that are not well adapted to a

variety of growing environment. The narrow genetic diversity within a commercial variety is

due to the rigid quality required by farmers and processors, the finite use of exotic germplasm,

restricted breeding strategies, and individual plant selection [28–30]. Thus, more genetic varia-

tion among tartary buckwheat genotypes could be used to improve a specific trait of interest

due to the narrow genetic diversity of modern commercial varieties [14,31,32].

The identification of tartary buckwheat germplasms is vital to the enhancement of genetic

diversity. Researchers have been focused on developing molecular markers using germplasms

and morphological descriptors to provide high discrimination power. There are many meth-

ods for variety discrimination based on DNA polymorphisms, such as random amplification

of polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), inter-simple

sequence repeat (ISSR), simple sequence repeats (SSRs), and sing nucleotide polymorphism

(SNP). Insertion-deletion polymorphisms (InDels) are gaining more attention among molecu-

lar breeding scientists because they are easy to use, co-dominant (fully informative), and rela-

tively abundant [33–40]. In tartary buckwheat, SSR [9], AFLP [41], RAPD [42,43], ISSR [44]

and SNP [45,46] have been used to assess genetic variation, but no study has used a variety of

discrimination methods with InDel markers due to the difficulty of finding DNA polymor-

phisms in tartary buckwheat accessions.

Until recently, a lack of large-scale genome sequencing information made the introduction

of InDels as genetic markers in non-model species (e.g., common and tartary buckwheat) diffi-

cult. In recent years, published studies have provided the draft genomes of common buck-

wheat [47], and a tartary buckwheat cultivar “Pinku1” [48] in the family Polygonaceae. More

importantly, a wealth of polymorphism data can now be obtained from a massive amount of

sequencing data using high-throughput sequencing technologies [49]. In addition, Sohn et al.
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[38] reported that the InDel-based barcode system focuses on usability, and provided an effi-

cient resource management system. In addition to the InDel-based barcode system, morpho-

logical descriptors are now emerging that aim to identify tartary buckwheat accessions, which

can be used to verify key genomic factors that explain or predict major agronomic traits.

We present a high-quality draft genome assembly and annotation for the tartary buck-

wheat. F. tataricum cv. “Daegwan 3–7.” Using comparative genomics approaches, we revealed

171,926 homogeneous InDels and 53,755 heterogeneous InDels found in 26 tartary buckwheat

accessions, which we compared to the draft genomes of the tartary buckwheat cultivar “Daeg-

wan 3–7.” Among them, 50 polymorphic InDels from the 26 accessions were selected by gel

electrophoresis, which were converted to barcodes by comparing amplicon polymorphisms

with the reference sequence. We also revealed the geographical distribution of 73 accessions

through population structure analysis using the barcodes. For the genetic identification of tar-

tary buckwheat resources, we made a user-friendly barcode system based on 50 InDel-based

genotypes of 73 accessions. As a user-friendly system, the homology between the accessions

can be predicted in both one (1D) and two-dimensions (2D) as blocks. Our platform could be

used in genetic research and breeding programs, as well as for efficient resource management

systems for tartary buckwheat.

Materials and methods

Plant materials

The accessions of 73 tartary buckwheat plants (S1 Table) were provided by the National Agro-

biodiversity Center (Jeonju, Republic of Korea) and the Highland Agriculture Research Insti-

tute (Pyeongchang, Republic of Korea). The accessions were planted in a greenhouse located

at the Highland Agriculture Research Institute (37˚680N and 128˚730E, 779 m altitude), Gang-

won Province, Republic of Korea. These were self-pollinated 3 times by the single seed descent

(SSD) method by growing the individual plants in flowerpots (10cm in diameter) [50]. We

grew an additional four generations of HLB1001 using the SSD method, which resulted in the

selection of a progeny, “Daegwan 3–7” for a draft genome of tartary buckwheat. A total of 26

accessions were collected (China, India, Nepal, Bhutan, Pakistan, and USA).

To investigate the biodiversity and comparative relationships between the accessions, col-

lected accessions were sown in 2017 and grown in the greenhouse at the Highland Agriculture

Research Institute. We separated the plants by developmental stage: the vegetative growth

stage (1–40 days after planting, DAP), flowering stage (40–80 DAP), and yield stage (80–90

DAP). At the yield stage, the color of the seed coat turned black, indicating that the seeds were

completely maturated [51].

Measurement of rutin and quercetin content

The yield stage seeds were used to measure their rutin and quercetin content. First, the mature

seeds from the 76 accessions were milled into a fine powder, then the samples were immedi-

ately flash-frozen in liquid nitrogen and stored at −80˚C until further use. A total of 0.10 g dry

powder for each sample was mixed with 1 ml methanol, then was extracted at 80˚C for 1 hr in

a conventional Soxhlet apparatus. The extract was filtered through a 0.20 μm syringe filter

(PTFE 13 mm, PALL Life Sciences, Ann Arbor, MI) for rutin content [23]. Ultra-performance

liquid chromatography (Waters Corporation, Milford, MA, USA) was performed on an

Acquity 1-class using a C18 column (2.1 mm × 100 mm, 1.7 μm) (Waters Corporation, USA)

at 30˚C. The mobile phase (1% formic acid in water/0.1% formic acid in acetonitrile) flowed

by the gradient elution method (S2 Table) at a flow rate of 0.25 ml/min with a total injection

volume of 10 μl. Rutin quantity was estimated based on the linear calibration curve of standard
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rutin and quercetin (Extrasynthese, France) under a detection wavelength of 259 nm. Three

independent sample analyses were performed for each sample. All statistical analyses were per-

formed using ver. 3.6.1 of the R software.

DNA sequencing and de novo assembly

After 21 DAP, the leaves in the third node of the progeny “Daegwan 3–7” were used to create a

draft genome. First, 3-week-old leaves from the bulk of 10 plants were collected for genomic

DNA extraction using a standard CTAB (cetyl trimethylammonium bromide) protocol [52,53].

Both short read (Illumina) and long read (PacBio) libraries were prepared according to the

manufacturer’s instructions for the entire genome of F. tataricum. A short insert paired-end

(PE) library was prepared using a Illumina TruSeq Nano DNA Sample Preparation Kit (Illu-

mina Inc., San Diego, Ca, USA) and 1~3 μg of DNA. A library profile analysis was performed

with an Agilent 2100 Bioanalyzer (Agilent Technologies, USA) and qPCR quantification, then

the libraries were sequenced to 2 × 100 bp on the Illumina HiSeq 2500 platform (Illumina,

USA) from the TheragenEtex Bio Institute (TheragenEtex Inc., Suwon, Republic of Korea). Pac-

Bio SMRTbell libraries (2 kb, 5 kb, 10 kb, and 15 kb inserts) were prepared with the standard

PacBio library preparation protocols, which are available at http://pacificbiosciences.com/. The

sequencing was conducted on a PacBio RS II (Pacific Biosciences, USA) system using C4 chem-

istry and 240 min movies by the TheragenEtex Bio Institute.

The short and long reads were assembled separately. The de novo assembly of the PacBio

long reads was performed using Fast Alignment and CONsensus [54] with default parameters.

The short reads were assembled with SOAPdenovo2 [55] with default parameters. The initial

contigs were merged using HaploMerger2 [56]. Both short and long reads were then used to

construct scaffolds with SSPACE [57], which led to the superscafold-scale draft genome of tar-

tary buckwheat cv. “Daegwan 3–7.” The N50 length of the final genome assemblies was

evaluated.

Identification and validation of the polymorphic InDels

Genomic DNA was extracted for whole-genome resequencing from the 26 accessions that had

self-pollinated 3 times using the SSD method. Three-week-old leaves from the bulk of 10 plants

were collected for genomic DNA extraction using a standard CTAB protocol [52,53]. The data

consisted of 101-bp reads, which were generated using the HiSeq 2500 sequencer. The Short

Oligonucleotide Alignment Program 2 (SOAP2) was used to map the raw pair-end reads onto

the reference genome (tartary buckwheat cv. “Daegwan 3–7”). For each accession, more than

93% of the reads were properly aligned to the reference genome. Insert size was estimated by

mapping the reads to the reference genome using the Burrows-Wheeler Aligner algorithm

(bwa) [58] ver 0.5.9. The aligned reads were realigned at InDel positions using the GATK

InDelRealinger algorithm [59] enhance the mapping quality. The base quality scores were

recalibrated using the GATK TableRecalibration algorithm. The primer pair used to amplify

each of the InDels were selected by the Primer3 software (http://primer3.sourceforge.net). We

selected InDels with more than 10 bp and designed the primers accordingly to match the char-

acteristics of each InDel using the Primer 3 software.

Amplicon polymorphism assay and bar-coding process

PCR analysis was performed using 10 μl reaction mixtures containing 20 ng of total genomic

DNA, 2 pM of primer, and 5 μl of GoTaq Green Master Mix (Promega, Madison, WI, USA).

The PCR was performed at 95˚C for 5 min, followed by 35 subsequent rounds at 94˚C for 30

sec, 45˚C for 30 sec and 72˚C for 30 sec, using a Mastercycler pro 384 (Eppendorf, Germany).
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The PCR products were separated by electrophoresis in 3% gels of certified low range ultra-

agarose (Bio-rad) followed by LoadingSTAR staining (Dynebio, Republic of Korea). For the

limitation of the number of candidates, we chose primer pairs that amplified PCR products

that were 150–231 bp long. The allelic diversity of the InDels with the e-PCR products in 26

tartary buckwheat genomes were assessed via PIC (Polymorphism Information Content),

which was defined as PIC i ¼ 1�
Pn

j¼1
p2
ij, where p ij is the frequency of the jth pattern for the

ith marker [60,61].

The 50 InDel markers were selected according to their genotyping success and PCR band

size. The discriminating power of the selected 50 InDel set for tartary buckwheat identification

was evaluated using the 76 tartary buckwheat accessions. Primers were designed by targeting

the InDel region in such a way that the genotypes of tartary buckwheat accessions would pro-

duce the same or different (insertion or deletion) amplicons relative to the reference genome,

“Daegwan 3–7.” Based on the results of InDel marker amplification, the same result with the

reference genome was represented by an “a” while other results were represented by a “b.” For

bar-coding representation of the results, “a” and “b” were converted to white and black,

respectively. The homology of the accessions were calculated after PCR amplification of all 50

InDels.

Phylogenetic analysis and population structure among 73 tartary

buckwheat accessions

The discriminating power of the selected 50 InDel set for tartary buckwheat identification

were evaluated using the 76 tartary buckwheat accessions. The analysis was carried out with

POWERMARKER Ver. 3.23 (Liu and Muse 2005; http//www.poxermarker.net). A phyloge-

netic tree for the 73 accessions was drawn based on the genotypes defined with the 50 InDels

using the weighted neighbor-joining method with simple matching coefficients in the DAR-

win software [55]. To delineate clusters of individuals on the basis of their genotypes, the

model-based STRUCTURE 2.3.4 [63] was used with the admixture model, a burn-in period of

100,000 iterations, and data from the 50 InDel loci. The number of clusters (k) was set to five,

as this number maximized the Δk (ad hoc criterion) parameter. We used simulations with k

values ranging from 2 to 10 with 5 replications, to calculate the LnP(D) value. The optimal k

value can be chosen based on the maximum LnP(D) that provides a distinct population struc-

ture. On this basis, we chose K = 3 (three ancestral groups) for the tartary buckwheat popula-

tions. To check the quality of these analyses, a phylogenetic tree and a population structure for

the 26 re-sequenced accessions were drawn based on the genotypes defined using the 6,622

non-synonymous SNPs.

Results

Genome assembly and whole-genome sequencing of tartary buckwheat

accessions

We grew seven generations of tartary buckwheat cv. “Daegwan” using the SSD method and an

isolated individual (designated as “Daegwan 3–7”) to exclude any possible heterogeneity in the

original seed lot. We produced a total of 43.83 and 32.17 Gb sequences from Illumina PE and

Single-Molecule Real-Time (SMRT) sequencing platforms, respectively, which corresponded

to 78x (Illumina PE, S2 Table) and 58x (SMRT, S3 Table) coverages (S1 Fig) for the reference

genome. Combining the sequencing strategies of PacBio and Illumina Hiseq2500, we obtained

a final draft assembly of 569.37 Mb in 2,886 scaffolds with 50% of the total sequence captured

in 156 scaffolds larger than 886,968 bps (Table 1, N50).
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We selected 26 tartary buckwheat accessions for whole-genome resequencing. These acces-

sions originated or were popularized in different Asian and international regions, including 15

landraces from China, 4 from Nepal, 4 from India, 1 from the USA, 1 from Bhutan and 1 from

Pakistan (Table 2). After 3 additional generations were grown using the SSD method, a panel of

the 26 genotypes showed a broad extent of rutin content and phenotype variation (Figs 1 and 2).

The 26 accessions showed a various distribution of rutin content compared to those of the 73

accessions (Fig 2). In particular, HLB1013 had the highest rutin content (1,921 mg/100g�DW),

while HLB1006 had the lowest (1,250 mg/100g�DW) among the 26 accessions. Large differences

were found in seed shape and seed coat color among the 26 accessions (Fig 1). Seed information

conformed to the known the genetic variation of the 26 accessions.

Table 1. Summary of Fagopyrum tataricum draft genome assembly process.

Steps Type No. of Sequences Total bases Longest sequence N50 sequence N90 sequence

Illumina assembly Contigs 37,711 416,936,361 318,774 29,297 5,269

PacBio assembly Contigs 2,231 450,944,578 5,290,013 650,667 148,793

Hybrid assembly Contigs 4,433 565,095,288 5,290,013 463,432 36,547

Scaffolding / Gap-filling Scaffolds 2,886 569,372,063 5,875,542 798,933 61,611

https://doi.org/10.1371/journal.pone.0250786.t001

Table 2. Genome coverage and mean depth after the whole genome resequencing of 26 accessions.

Genotype IT Number a Country of origin Genome coverage (%) b Mean depth

HLB 1001 IT 224676 USA 94.80 24.28

HL1B 002 IT 225083 China 93.64 26.60

HLB 1003 IT 225084 China 94.00 23.25

HLB 1004 IT225085 India 93.63 23.78

HLB 1005 IT225086 India 93.36 26.40

HLB 1006 IT225087 India 94.53 26.20

HLB 1007 IT225088 Nepal 92.99 24.58

HLB 1008 IT225089 Nepal 93.47 24.28

HLB 1009 IT225090 Nepal 93.21 27.30

HLB 1010 IT226673 China 93.64 24.68

HLB 1011 IT226674 China 94.22 25.89

HLB 1012 IT226675 China 94.57 25.79

HLB 1013 IT226676 China 93.92 24.44

HLB 1014 IT226677 China 94.06 25.74

HLB 1015 IT226678 China 94.19 25.53

HLB 1016 IT226679 China 94.01 24.93

HLB 1017 IT226680 China 94.18 25.66

HLB 1018 IT226682 Nepal 93.14 24.69

HLB 1019 IT261917 China 94.23 25.13

HLB 1020 IT261922 China 94.89 23.70

HLB 1021 IT261924 Bhutan 93.70 25.21

HLB 1022 IT278316 China 94.35 24.44

HLB 1023 IT278317 China 94.05 26.99

HLB 1024 IT278318 China 94.56 23.90

HLB 1025 IT278319 Pakistan 94.60 25.85

HLB 1026 IT226681 India 93.98 26.65

a National registration number managed by Nation Agrodiversity Center in Republic of Korea.
b Genome coverage was calculated based on a 569 Mbp genome size and 101 bp paired-end Illumina reads.

https://doi.org/10.1371/journal.pone.0250786.t002
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Fig 1. The seed morphology of 26 re-sequenced tartary buckwheat accessions and Clfa41.

https://doi.org/10.1371/journal.pone.0250786.g001

Fig 2. Rutin content of 73 tartary buckwheat accessions according to country of origin. The phenotypic segregation

is shown in box-plot format. The interquartile region, median, and range are indicated by the box, the bold horizontal

line, and the vertical line respectively. USA/Japan/Russia includes 4 accessions; 1 from the USA, 1 from Japan, and 2

from Russia. We selected 26 accessions for whole-genome resequencing that originated or were popularized in

different Asian and international regions. For expanded details of the 73 tartary buckwheat accessions, see S1 Table.

https://doi.org/10.1371/journal.pone.0250786.g002
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We produced paired-end DNA reads at 23–27-fold depths (Table 2) for the 26 accession

genomes and mapped them to the reference genome (“Daegwan 3–7”). The sequencing quali-

ties of all the samples were high: 93%–95% of the accession sample reads were mapped to the

reference genome, and 96%–97% of the reference genome was covered (S3 Table). The genetic

variations (SNPs and small InDels) among the 26 accessions collected from the six countries

were individually identified by Samtools and the Genome Analysis Tollkit GATK (see Meth-

ods). To increase the accuracy of the prediction, only the variations predicted by both methods

were used for subsequent analysis. Bioinformatic analysis revealed 171,926 and 53,755 homo-

geneous and heterogeneous InDels, respectively (Fig 3). The heterozygous rates of all acces-

sions were around 10%, reflecting the possibility of cross-pollination although self-fertilization

was used (S4 Table).

Selection of 50 InDels and constructing barcode-type database of 73

accessions

Sequence comparison at the nucleotide level of the tested genomes with the reference genome

revealed InDels that could be easily used to identify tartary buckwheat resources in common

laboratories. Consistent with what has been found in other organisms [38,64], the great major-

ity of homogeneous InDels from all accessions were short with a dominance of 4-bp or fewer

events (Fig 3). From this polymorphism data, we chose InDels with more than 10-bp for fur-

ther analysis to help us identify them by PCR and gel-electrophoresis. We tested 100 primer

sets, focusing on their ability to amplify PCR products in the 26 genome types, since this study

aimed to establish PCR-based markers applicable for all tartary buckwheat accessions. PCR

primers were designed to generate amplicons of varying sizes within the 150–231 bp interval

(S5 Table). Among them, 50 InDel loci were widely distributed on whole chromosomes in the

reference genome (“Pinku 1”) reported previously (Fig 4). We selected the 50 InDels to vali-

date the prediction accuracy and found that 98.2% of the PCR results in the 26 accessions were

Fig 3. Number of InDels in 26 tartary buckwheat accessions aligned with reference genome, “Daegwan 3–7.” The

number of variants homogeneous to alternative genotype; both alleles are same to alternative genotype. The number of

variants heterogeneous genotype; one allele is same to reference, and another to alternative genotype.

https://doi.org/10.1371/journal.pone.0250786.g003
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consistent with the predicted results. The results of the InDel analyses were highly accurate (S5

and S6 Tables). This high accuracy provided a solid foundation for our data analyses and pro-

vides high-quality data for future data mining.

Primers were designed by targeting the InDel region, in such a way that the genotypes of

the 26 accessions would produce the same or different (insertion or deletion) amplicons rela-

tive to the reference genome (Fig 5). By using the previously reported barcode method [38,39],

identical results to the reference genome “Daegwan 3–7” were represented by an “a,” while the

other results were represented by “b,” which were presented as “white” and “black” barcodes,

respectively. Fig 5 shows the barcode system applied to the tartary buckwheat accessions

HLB1007 and HLB1008, which were converted to the standard 1D and widely-used 2D bar-

code types by comparing their amplicon polymorphisms to the reference genome, “Daegwan

3–7.” This result highlights that the barcode types can be effectively used to investigate the

degree of marker difference in tartary buckwheat accessions (Fig 6). The creation, stability and

quality of the barcode system for genetic identification using the selected 50 InDels is thor-

oughly evaluated below.

By building a database of the 50 InDel polymorphisms for the 73 tartary buckwheat acces-

sions (S2 Fig), we have established a more stable foundation for utilizing the barcode system to

provide a promising tool for identifying the genetic resources of tartary buckwheat. Allele fre-

quencies and average PIC value of the 50 InDel loci are shown in Table 1. The major allele fre-

quencies ranged from 0.5616 at the TB42 locus to 0.9863 at the TB48 locus. The average PIC

value was 0.1532, with a range of 0.0267–0.3712, which implied that the selected InDels could

be applied for investigating polymorphisms of tartary buckwheat accessions (S7 Table). The

genotypes of the 73 tartary buckwheat accessions were constructed with a two-dimensional

barcode, and genotypic discrimination was analyzed by comparing it with the accessions of

the barcode system. The average difference between the analyzed accessions was 7 InDels from

a total of 50 InDels, while 6 accessions had differences in 12 InDels compared to the reference

Fig 4. Schematic of the chromosomal distribution of the tartary buckwheat InDels. The number of the

chromosome is shown on each chromosome of a reference genome of “Pinku1.”

https://doi.org/10.1371/journal.pone.0250786.g004
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Fig 5. Application of tartary barcode system to tartary accession, HLB1007 and HLB1008. (A) Amplification products

and barcode representation of the polymorphisms using InDel marker TB11 on tartary buckwheat accessions. PCR results

using the 50 InDels in (B) HLB1007 and (C) HLB1008 were converted to standard 1D and widely-used 2D barcode types in

comparison with those in “Daegwan 3–7.” Identical results to the reference genome were represented by white, while other

results were represented by black.

https://doi.org/10.1371/journal.pone.0250786.g005

Fig 6. Comparison of 2-dimensional barcode patterns between HLB1007 and HLB1008. Identical results are

represented by white, while the other results are represented by black. Seed morphology of HLB1007 and HLB1008.

https://doi.org/10.1371/journal.pone.0250786.g006
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genome, “Daegwan 3–7.” By comparing the two-dimensional barcodes of the accessions, dif-

ferent blocks could be visually distinguished with ease, so that the genotype differences of the

accessions could be determined (Fig 6). The discrimination power of genetic resources was

high enough to broaden our understanding of both phylogenetic signals and population-level

variation.

Phylogenetic analysis and population structure in tartary buckwheat

accessions

Phylogenetic analysis of the 6,622 non-synonymous SNP variants and population structure

subdivided the panel into 2 primary populations (Fig 7): the reference group and the non-ref-

erence group. A similar result was attained with the SSR data, which indicated two separate

group clusters of tartary buckwheat [9]. The 23 accessions had 4 subgroups within the non-ref-

erence group, and were classified according to their collection area. The phylogeny resolved

subgroup 2 (3 Nepal, 1 Bhutan, and 2 China) as closer to subgroup 1 (8 China and 1 India)

than subgroup 3 (3 India, 1 Pakistan, and 1 Nepal).

To validate the reliability of the 50 InDel markers for discriminating between tartary buck-

wheat accessions, bin maps were constructed for 73 tartary buckwheat accessions using the

InDels (S6 Table). We analyzed the population structures of the studied accessions and refer-

ence groups. The result are shown in Fig 8. At K = 3, the clusters were anchored to Southeast

Asia and China. Among subgroup 1, the accessions in Southeast Asia were almost entirely

composed of the red component, while the Chinese accessions were composed of the red,

green, and blue components. Subgroup 1 mainly consisted of accessions from Southeast Asia

Fig 7. Diversity analysis of 26 re-sequenced tartary buckwheat accessions. (A) Phylogenetic analysis based on non-synonymous SNPs. (B) STRUCTURE

[63] classification and (C) principal component analysis were similar. Each color represents country of origin.

https://doi.org/10.1371/journal.pone.0250786.g007
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(65.4%), while subgroup 2 was comprised of Chinese accessions (71.4%), and subgroup 3 con-

sisted of Chinese accessions (97.0%). At the same time, the Chinese accessions in subgroup 1

and 3 showed a mixed composition of both red, green, and blue components. A PCA also pro-

vided similar results, with the accessions forming a tight cluster separated by collection region.

Weighted neighbor-joining (NJ tree) relationships with bin maps revealed 3 groups (G1,

G2, and G3) that contained 40, 16, and 17 accessions, respectively (Fig 8). The accessions col-

lected in Nepal and Bhutan demonstrated substructure within group 1, being the genotypes

closest to the reference group. A different result revealed that two separate groups were clus-

tered by using non-synonymous SNP variants (Fig 7). The color-coded branches supported

the classification of the 73 accessions by the collection region (Fig 8). In the phylogenetic anal-

ysis, PCA and population structure indicated that the tartary buckwheat accessions segregated

into different groups that reflected their geographical distribution. With the evidence relating

the 50 InDels to environmental adaptability, these results are consistent with the segregation

of the tartary buckwheat into different groups according to their geographical distribution.

These results show the practicability of the barcode system, which can be used to identify

genetic variation associated with phenotypic variation of functional relevance, as well as mark-

ers that can be used in crop breeding.

Fig 8. Diversity analysis of tartary buckwheat accessions. (A) STRUCTURE [63] results based on 50 InDels: 73 accessions were divided in 3 subpopulations.

(B) Principal component analysis and STRUCUTURE classification were similar. Each color represents country of origin. (C) Phylogenetic analysis among 73

tartary buckwheat accessions using weighted neighbor-joining analysis in DARwin software [62]. The horizontal bar indicates distance based on the simple

matching coefficient. Each subgroup represents a subpopulation based on STRUCTURE results.

https://doi.org/10.1371/journal.pone.0250786.g008
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Discussion

Tartary buckwheat is an important crop that is poised to be the target of many future breeding

efforts. It is a crop species of interest for various reasons, including its higher levels of rutin

compared to the common buckwheat [10,23,65]. For breeding commercial varieties of tartary

buckwheat, the elite germplasm needs to be expanded by adding various genetic resources.

This is a field that is still under-represented at the genetic level, despite its vast germplasm

diversity and its importance in stress adapted resources [66–70]. Particularly, since these

resources possess many distinct traits, we used 73 genetic resources of tartary buckwheat to

create a framework for comparative analysis. These resources differ in seed morphology

(Fig 1) and rutin content (Fig 2). These differences might result in distinct responses to UV-B,

drought [69], and salt stress [67]. A recent publication of tartary buckwheat genomes provided

the reference genome needed to study the molecular markers to distinguish between these

genetic resources [48]. The narrow genetic diversity seen within a commercial variety has vari-

ous causes, including the rigid quality required by farmers and processors [28,30]. Thus,

molecular markers are imperative to understand the genetic differences of tartary buckwheat

accessions, which could be used to broaden the genetic resources of commercial breeding pro-

grams. To address this, we made a user-friendly barcode system using 50 InDel-based geno-

types of 73 accessions. Our barcode system could be used in genetic research, breeding

programs, and efficient resource management systems for buckwheat.

High-throughput sequencing technologies [49] offer immense possibilities for generating a

massive amount of sequencing data from hitherto uncharacterized genomes, which facilitates

the introduction of InDels as genetic markers in non-model crops, like tartary buckwheat.

Given that the existing reference genome for “Pinku 1” was from China [48], we constructed a

new superscaffold-scale reference genome for a variety of “Daegwan 3–7” from the Republic of

Korea by combining the sequencing strategies of PacBio and Illumina Hiseq2500. Using this

integrated approach, we obtained an N50 scaffold size of 463,432 bps for the draft genome of

“Daegwan 3–7” (Table 1). To explore the genomic variation of tartary buckwheat accessions,

we performed whole-genome sequencing for 26 accessions across the reference genome

(“Daegwan 3–7”) (Table 2). Significantly, the depth (23 × – 27 ×) of sequence coverage indi-

cates that it was well-suited for the sequence analysis of the 26 genetic resources. From these

genome comparisons, 171,926 homogeneous InDels and 53,755 heterogeneous InDels were

obtained with an InDel density of 2 for every 1 kb through pairwise comparison with the refer-

ence genome (Fig 3 and S5 Table). Among them, 50 polymorphic InDels were selected by gel

electrophoresis, which PCR results were 98.2% matched with the predicted results (S6 and S7

Tables). Moreover, the 49 InDels were distributed widely in the whole genome of “Pinku 1.”

Considering that the TB8 locus was not found in “Pinku 1,” the two reference genomes for

“Pinku 1” and “Daegwan 3–7” can provide backbones and references for developing the pan-

genome to reduce reference bias. We plan to continue improve the draft genome of tartary

buckwheat cv. “Daegwan 3–7” for use in the pan-genome. Our results suggest that superscaf-

fold-scale de novo draft genomes usually facilitate the introduction of InDels as genetic mark-

ers in non-model crops, like tartary buckwheat.

To efficiently identify tartary buckwheat accessions, we developed the barcode system using

50 InDels selected from 26 landrace genomes using a resequencing strategy. The 2D-barcode

system (Figs 5 and 6) is a powerful tool to compare the genotypes of tartary buckwheat acces-

sions [38–40]. The landrace genomes collected from six countries, contained a wealth of

genetic diversity adapted to wide-ranging environmental conditions (Table 2). Through the

application of 50 InDels to this collection, we found that both geographical and environmental

factors have shaped the genetic diversity of tartary buckwheat landraces (Fig 7). In the 73
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accessions, the population structure analyses using the DNA barcode data revealed their geo-

graphical distribution (Fig 8), which is geared for adaptation in the diverse topographic condi-

tions of the agroecosystem [71–74]. In the phylogenetic analysis using non-synonymous SNPs,

the 26 accessions showed a close relationship with those from Bhutan and Pakistan. (Fig 7).

This observation is consistent with a previous study, which found that population genetic

structure analysis using SSR data clustered one group that was mainly distributed in Nepal,

Bhutan, and the Yunnan-Guizhou Plateau regions of China and the other group principally

derived from the Loess Plateau regions, Hunan and Hubei of China and the USA [9]. These

findings were consistent with the previously suggested method of seed exchange within a close

geographic distance [5,8]. Altogether with SSR [9], AFLP [41], RAPD [42,43], and ISSR [44],

the barcode system using InDels can complement current research and broaden our under-

standing of both phylogenetic signals and population-level variations [38–40]. These phyloge-

netic and structural analyses in the tartary buckwheat accessions will serve as a significant

resource to gain more insight into the evolution of lineage-specific gene networks associated

with the environmentally-specific developmental and adaptive traits of tartary buckwheat

landraces.

According to their position in unigenes, the 50 InDels were divided into five types: coding

region, 50 untranslated region, 30 untranslated region, splice region and intergenic region

(S7 Table). The InDels may be biased toward changes in gene expression via cis-regulatory

mutations [75]. The InDels of certain genes, e.g., RPP4 [76], UGT73B5 [77], TPS4 [78], and

DREB3 [79] have been postulated to play a role in different responses to environmental stresses

during growth and survival. With the evidence relating the 50 InDels to environmental adapt-

ability, these results are consistent with the segregation of the tartary buckwheat into different

groups according to their geographical distribution.

Despite self-fertilizing the tartary buckwheat, through 3 additional generations using the

SSD method, around 10% heterogeneous InDels were detected in the genomic DNA from the

26 progenies (S3 Table). Previous studies have shown that farmers cultivated several tartary

buckwheat landraces suitable for the multiple local microclimates and environmental condi-

tions [5], which could drive the gene flow of landraces within a region [80]. In this study, we

uncovered strong support for allogamy among landraces that contributes to heterogeneous

InDels in tartary buckwheat, which might drive the genetic diversity of landraces within a

region. Considering the effect of heterozygous InDel on the increase of single nucleotide muta-

tion rate [75,81], it might be an important characteristic that allows tartary buckwheat to adjust

to the diverse topographic conditions of the agroecosystem. These results suggest that the

divergent gene expression of the InDel loci may affect its adaptation to environmental

conditions.

We found that tartary buckwheat accessions could be distinguished by 50 InDels based on

genotype according to location with the differing environment (Figs 7 and 8). Tartary buck-

wheat is a diverse crop in which separate domestication events happened in each gene pool fol-

lowed by race and market class diversification that has resulted in different morphological

characteristics in each commercial market class [82]. Combining multiple data types can com-

pensate for missing or unreliable information in any single data type. Importantly, complete

resource management is only likely to be discovered if the genotype, phenotype and chemo-

type of tartary buckwheat accessions are considered in an analysis. To make a user-friendly

common platform for genotype, phenotype, and chemotype resources, we plan to incorporate

genotypic data with that phenotype and chemotype (rutin content) data for tartary buckwheat

accessions (S3 Fig). Our platform could be used in genetic research, breeding programs, and

for efficient resource management systems for buckwheat. Increasing tartary buckwheat pro-

ductivity will require adapting the crop to the agricultural environment of new locations. The
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barcode system can assist tartary buckwheat breeders in identifying germplasm accessions and

can be used as donor parents for breeding tartary buckwheat cultivars.
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