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Abstract: Traumatic brain injury (TBI) remains a critical public health challenge. Although studies
have found several prognostic factors for TBI, a useful early predictive tool for mortality has yet to be
developed in the triage of the emergency room. This study aimed to use machine learning algorithms
of artificial intelligence (AI) to develop predictive models for TBI patients in the emergency room
triage. We retrospectively enrolled 18,249 adult TBI patients in the electronic medical records of
three hospitals of Chi Mei Medical Group from January 2010 to December 2019, and undertook the
12 potentially predictive feature variables for predicting mortality during hospitalization. Six machine
learning algorithms including logistical regression (LR) random forest (RF), support vector machines
(SVM), LightGBM, XGBoost, and multilayer perceptron (MLP) were used to build the predictive
model. The results showed that all six predictive models had high AUC from 0.851 to 0.925. Among
these models, the LR-based model was the best model for mortality risk prediction with the highest
AUC of 0.925; thus, we integrated the best model into the existed hospital information system for
assisting clinical decision-making. These results revealed that the LR-based model was the best
model to predict the mortality risk in patients with TBI in the emergency room. Since the developed
prediction system can easily obtain the 12 feature variables during the initial triage, it can provide
quick and early mortality prediction to clinicians for guiding deciding further treatment as well as
helping explain the patient’s condition to family members.

Keywords: artificial intelligence; machine learning; traumatic brain injury; mortality; emergency
room triage; computer-assisted system

1. Introduction

Traumatic brain injury (TBI) remains a well-known public health challenge. The inci-
dence of TBI in Taiwan was 220.6 per 100,000 person-years and the standardized in-hospital
mortality rate was 10.7 deaths per 100,000 person-years from 2007 to 2008 [1]. In the USA,
statistics have shown that it has been steadily increasing from 521 in 2001 to 824 in 2010 per
100,000 person-years [2]. The prognosis of head injury patients can be predicted based on
age [3], sex [4], obesity [5,6], Taiwan Triage and Acuity Scale (TTAS) [7], Glasgow coma
scale (GCS) [8], pupillary light reflex [9], degree of midline shift in computed tomogra-
phy (CT) scan [10], elevated white blood cell count [11], coagulopathy [12], and presence
of comorbidities [13,14].
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Steyerberg and colleagues demonstrate development prognostic scores based on
admission characteristics including CT scan findings and laboratory results [15]. However,
a useful mortality prediction model evaluated by combining multiple risk factors without
image study and blood sampling analysis for TBI patients in the emergency triage station
has not yet been fully established. Therefore, this study believes that developing an accurate
method for predicting mortality risk can be truly helpful in clinical practice. Furthermore,
critical care physicians could use this information to help them decide which management
such as conservative or aggressive treatment to be given to the patient and to help them
educate the family members.

Recently, hospitals have begun to apply statistical and artificial intelligence models
with a variety of algorithms such as logistic regression (LR) [16], random forest [RF] [17],
support vector machines (SVM) [18], LightGBM [19], XGBoost [20], and multilayer per-
ceptron (MLP) [21], in clinical practice for providing diagnosis suggestions [22], identi-
fying adverse events [23] and surgical complications [24], and determining in-hospital
mortality [25–27]. These results were based on machine learning and fundamental statisti-
cal insights combined with a modern high-performance computing system to learn patterns
that can be used for recognition and prediction. However, their predictive performances
were found to be variable in different situation [26–29]. Furthermore, there are few stud-
ies focusing on using machine learning models to predict the mortality of patients with
TBI [30–34], and it remains unseen in the emergency room triage.

Using the big-data-driven approach and machine learning integrated in the Chi Mei
Center’s hospital information system (HIS), the hospital administration built a real-time
prediction system for patients with chest pain and major adverse cardiac events in the
emergency department (ED) [32–35]. At present, TTAS can precisely determine which
treatment should be prioritized to avoid over-triage and deploy more appropriate resources
for ED patients [7]. In current study, we wanted to know whether TTAS combined with
other feature variables obtained the best performance in predicting in hospital mortality
risk in patients with TBI. The purpose of this study was to construct an early in-hospital
mortality risk prediction model for TBI patients of various severities upon their arrival at the
initial triage setting based on the HIS data using machine learning algorithms. The present
research designed a retrospective study to establish a useful outcome prediction system
using the hospital’s TBI clinical database, which will provide scientific data that could be
used by healthcare practitioners as reference for choosing the appropriate treatment and
for educating patients’ family members.

2. Materials and Methods
2.1. Ethics

This study obtained ethics approval (10911-006) from the institutional review board
of the Chi Mei Medical Center, Tainan, Taiwan. The authors carried out all methods in
accordance with relevant guidelines and regulations. The Ethics Committee waived the
requirement for informed consent due to the retrospective nature of the study.

2.2. Flow Chart of Current Study

Our study was in performed in compliance with transparent reporting of a multivari-
able prediction model for individual prognosis or diagnosis (TRIPOD) standards.

Figure 1 shows the flow chart for integrating the AI prediction model for patients with
TBI in the ED. This study selected 12 feature variables for models training and made several
models for comparison with fewer features along with TTAS by significant feature (p < 0.05)
variables between mortality and non-mortality groups and included those with better
correlation between feature variables and mortality based on the correlation coefficient
matrix [33–36]. The authors trained the models on 70% training data and executed the
validations through a 30% test set created by a random split. After, six models were
constructed to predict mortality risk.
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Significance testing was performed by t-test for numerical variables and Chi-square
test for categorical variables. In addition, we performed Spearman correlation analysis to
show the strength of correlation between each feature and outcome. Due to an imbalanced
outcome class (mortality) in the dataset, we applied the synthetic minority oversampling
technique (SMOTE) [34–37] to oversample the positive outcome cases (mortality) to be
equal to the negative ones (survival) for the final model training with each machine
learning algorithm.

2.3. Patient Selection

This study retrospectively enrolled all TBI patients aged 18 years old and above
admitted to the emergency room (ER) from 1 January 2010 to 31 December 2019 in the
electronic medical records of three hospitals under the Chi Mei Medical Group including
one medical center, one regional hospital, and one district hospital.

2.4. Features Selection and Model Building

Based on the consensus of our study team consisting of multiple neurosurgeon expert
physicians, we selected potential clinical variables based on the following criteria: (i) essen-
tial to characterize traumatic brain injury, (ii) routinely acquired/measured, and (iii) easy
to interpret with a physical meaning. Then, we used univariate filter methods (including
continuous variables and categorical variables; a p-value of 0.05 or lower was considered
as the selection) and a Spearman’s correlation coefficient and experts’ opinions as the
final feature decision. The twelve feature variables were patients’ age, gender, body mass
index, TTAS, heart rate, body temperature, respiratory rate, GCS, left and right pupil size,
and light reflex due to their wide availability in the triage setting. We used six machine
learning algorithms including LR, RF, SVM, LightGBM, XGBoost, and MLP to build a
model for predicting in-hospital mortality risk.

We conducted a grid search with 5-fold cross-validation for hyper-parameter tuning
(Supplementary Table S1) for each algorithm to better evaluate the model performance and
thus obtain the optimal model. A default classification threshold value of 0.5 was used to
determine the binary outcome. That is, if the result of the predicted probability was equal
to or greater than the threshold, we predicted a positive outcome (mortality); otherwise,
we predicted a negative outcome (survival).
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2.5. Model Performance Measurement and Calibration

The study used the accuracy, sensitivity, specificity, and AUC (area under the receiver
operating characteristic curve) as metrics to measure prediction models’ performance,
which have long been used as quantitative performance measurement metrics in health care
studies [35–38] as well as in machine learning modeling [36–39]. Accuracy represents the
proportion of true results, either true positive or true negative, in the targeted population.
It measures the degree of veracity of a diagnostic test on a condition. Sensitivity represents
the proportion of true positives that are correctly identified by a diagnostic test. It means
how good the test is at detecting a disease or a disease outcome (i.e., mortality in our
model). Specificity represents the proportion of the true negatives correctly identified by a
diagnostic test. It means how good the test is at identifying a normal (negative) condition.
An ROC curve (receiver operating characteristic curve) is a graph showing the performance
of a classification model at all classification thresholds and AUC measures the entire area
underneath the ROC curve representing the degree of separability.

Meanwhile, models must be well calibrated for patient-level use cases because errors in
individual predicted probabilities can lead to inappropriate decision-making [37–40]. Thus,
we also performed model calibration for performance comparison. The Platt scaling method
of calibration was used in our models. We then performed a comparison of models with
and without calibration in Section 3.5. Comparing model calibration for the best models.

3. Results
3.1. Demographics and Clinical Pictures in Patients with TBI

The present study included 18,249 patients, of which 9908 were males and 8,341 were
females. Their average age was 57.85 ± 19.44 (mean ± SD) years. The average GCS upon
arrival at the triage was 14.35 ± 1.94. Further, 266 patients died, with a total mortality rate
of 1.44% (266/18,249). A total of 12,334 (67.59%) patients had a level 3 to 5 TTAS. Compared
with the non-mortality group, the mortality group had a lower body temperature and
BMI [40,41]. Except for heart rate and respiratory rate, all other feature variables were signifi-
cantly different between mortality and non-mortality groups (Table 1). Due to an imbalanced
outcome class in the dataset, this study applied the SMOTE [34–37] for model training.

Table 1. Demographics and significances in traumatic brain injury patients.

Variable Overall
n = 18,249

Mortality
n = 266

Non-Mortality
n = 17,983 p-Value

Age, mean (SD) 57.85 (19.44) 65.59 (17.74) 57.73 (19.45) <0.001
Sex, n (%)

Female 8341 (45.71) 77 (28.95) 8264 (45.95) <0.001
Male 9908 (54.29) 189 (71.05) 9719 (54.05)

BMI, mean (SD) 23.93 (4.45) 22.68 (3.78) 23.95 (4.46) <0.001
TTAS, n (%)

Level I 669 (3.67) 147 (55.26) 522 (2.90) <0.001
Level II 5246 (28.75) 85 (31.95) 5161 (28.70)

Level III-V 12,334 (67.59) 34 (12.78) 12,300 (68.40)
Heart rate, mean (SD) 86.59 (18.74) 89.75 (29.66) 86.54 (18.53) 0.080

Body temperature, mean (SD) 36.43 (0.50) 36.30 (0.70) 36.43 (0.49) 0.002
Respiratory rate, mean (SD) 17.65 (2.51) 17.44 (5.12) 17.66 (2.45) 0.502

GCS, mean (SD) 14.35 (1.94) 8.58 (4.68) 14.44 (1.73) <0.001
Pupil size(L), mean (SD) 2.48 (0.57) 3.05 (1.24) 2.47 (0.55) <0.001

Pupil reflex (L), n (%)
− 450 (2.47) 97 (36.47) 353 (1.96) <0.001
+ 17,799 (97.53) 169 (63.53) 17,630 (98.04)

Pupil size(R), mean (SD) 2.47 (0.57) 2.97 (1.23) 2.47 (0.55) <0.001
Pupil reflex(R), n (%)

− 460 (2.52) 93 (34.96) 367 (2.04) <0.001
+ 17,789 (97.48) 173 (65.04) 17,616 (97.96)

Note: A t-test was used for numerical variables and the Chi-square test was used for categorical variables; because
there were no cases of mild severity of TTAS levels IV-V in the mortality group, we merged levels III–V for
significance testing in demographics.
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3.2. The Correlation between Feature Variables and Mortality

To quickly select the proper parameters for machine learning, we conducted a cor-
relation analysis (heat map) of mortality and feature variables using a matrix diagram
(Figure 2). It was found that the seven leading feature variables correlated to mortality
were left and right pupillary light reflex, GCS, TTAS, left pupil size, age, and right pupil
size. This matrix also showed that the GCS, right and left pupillary light reflex, and TTAS
were negatively correlated with mortality and age, and that heart rate and pupil size were
positively correlated with mortality during hospitalization.
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variables selection.

3.3. The Predictive Model Using the Twelve Feature Variables

When evaluating the models for mortality risk prediction using the 12 feature vari-
ables, this study found that the LR-based model had the best predictive performance
(AUC = 0.925), followed by SVM (AUC = 0.920), MLP (AUC = 0.893), XGBoost (AUC = 0.871),
random forest (AUC = 0.870), and LightGBM (area under the curve (AUC) = 0.851)
(Figure 3). Further, the LR-based model had the highest accuracy (0.893) for mortality
risk prediction with a sensitivity of 0.812, and specificity of 0.894 (Table 2).

Table 2. Model performance with 12 features (TTAS + 11 feature variables).

Algorithm Accuracy Sensitivity Specificity PPV NPV AUC (95% CI)

Logistic regression 0.893 0.812 0.894 0.102 0.997 0.925 (0.901–0.950)
Random forest 0.800 0.800 0.800 0.056 0.996 0.870 (0.824–0.916)

SVM 0.865 0.862 0.865 0.087 0.998 0.920 (0.891–0.948)
LightGBM 0.708 0.825 0.706 0.040 0.996 0.851 (0.807–0.895)

MLP 0.825 0.825 0.825 0.065 0.997 0.893 (0.854–0.933)
XGBoost 0.717 0.838 0.715 0.042 0.997 0.871 (0.829–0.914)

Note: PPV = positive predictive value; NPV = negative predictive value; CI = confidence interval; AUC = area
under receiver operating characteristic curve.
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support vector machine (SVM) (blue), LightGBM (green), multilayer perceptron (dash), and XGBoost
(red) using the 12 feature variables.

3.4. The Predictive Models Using Fewer Feature Variables

In addition to TTAS, we made attempts to build models with fewer other feature
variables for prediction power comparison based on the correlation coefficient. One-feature
model used TTAS as the single feature; five-feature model used features of TTAS, left and
right pupil light reflex, GCS and left pupil size; six-feature model used features of TTAS,
left and right pupil light reflex, left pupil size, age, and right pupil size; seven-feature model
used features of TTAS, left and right pupil light reflex, GCS, left pupil size, age, and right
pupil size. Model performances were reported in order in Table 3. The result reveals that
even only used TTAS as the only one feature, the model still has accepted performance
(AUC = 0.872).

We conducted the Delong test [41,42] to judge whether one model had a significantly
different AUC than another model. According to the p-values in the cells with a 0.05 level,
it revealed that the 12-, 7-, and 6-feature models had insignificant differences from each
other (Table 4). It implies that if hospitals are unable to prepare complete data of 12 features
for patients, they can consider using 7- or 6-feature models and still maintain excellent
prediction performance similar to the best 12-feature model.
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Table 3. Model performance with fewer feature variables.

Algorithm Accuracy Sensitivity Specificity PPV NPV AUC (95% CI)

(TTAS + 6 feature variables)

Logistic regression 0.84 0.875 0.839 0.075 0.998 0.909 (0.876–0.943)
Random forest 0.812 0.812 0.812 0.06 0.997 0.885 (0.844–0.925)

SVM 0.806 0.812 0.806 0.059 0.997 0.889 (0.848–0.931)
LightGBM 0.724 0.825 0.722 0.042 0.996 0.884 (0.848–0.920)

MLP 0.808 0.875 0.807 0.063 0.998 0.905 (0.869–0.941)
XGBoost 0.812 0.838 0.812 0.062 0.997 0.897 (0.863–0.931)

(TTAS + 5 feature variables)

Logistic regression 0.823 0.825 0.823 0.065 0.997 0.907 (0.875–0.939)
Random forest 0.812 0.812 0.812 0.06 0.997 0.876 (0.840–0.913)

SVM 0.824 0.825 0.824 0.063 0.997 0.904 (0.872–0.937)
LightGBM 0.826 0.825 0.826 0.073 0.997 0.883 (0.845–0.921)

MLP 0.814 0.838 0.814 0.062 0.997 0.902 (0.871–0.937)
XGBoost 0.806 0.85 0.806 0.061 0.997 0.887 (0.851–0.923)

(TTAS + 4 feature variables)

Logistic regression 0.925 0.688 0.928 0.125 0.995 0.891 (0.850–0.931)
Random forest 0.876 0.75 0.878 0.084 0.996 0.855 (0.800–0.911)

SVM 0.81 0.788 0.811 0.058 0.996 0.869 (0.824–0.915)
LightGBM 0.871 0.762 0.873 0.082 0.996 0.866 (0.814–0.917)

MLP 0.868 0.788 0.869 0.082 0.996 0.893 (0.855–0.931)
XGBoost 0.876 0.762 0.877 0.084 0.996 0.866 (0.815–0.918)

(TTAS)

Logistic regression 0.696 0.9 0.693 0.042 0.998 0.872 (0.832–0.912)
Random forest 0.696 0.9 0.693 0.042 0.998 0.872 (0.832–0.912)

SVM 0.696 0.9 0.693 0.042 0.998 0.872 (0.832–0.912)
LightGBM 0.696 0.9 0.693 0.042 0.998 0.872 (0.832–0.912)

MLP 0.696 0.9 0.693 0.042 0.998 0.869 (0.828–0.911)
XGBoost 0.696 0.9 0.693 0.042 0.998 0.872 (0.832–0.912)

Note. PPV = positive predictive value; NPV = negative predictive value; CI = confidence interval; AUC = Area
under receiver operating characteristic curve.

Table 4. DeLong test for the logistic regression models with different features.

TTAS + 11 Features TTAS + 6 Features TTAS + 5 Features TTAS + 4 Features TTAS

TTAS + 11 features 1 0.103 0.127 0.043 0.003
TTAS + 6 features 0.103 1 0.777 0.174 0.013
TTAS + 5 features 0.127 0.777 1 0.146 0.001
TTAS + 4 features 0.043 0.174 0.146 1 0.007

TTAS 0.003 0.013 0.001 0.007 1

3.5. Comparing Model Calibration for the Best Models

We conducted the model calibration to decrease the error between predicted probabili-
ties and observed probabilities for preventing inappropriate prediction. The result showed
calibrated models (Table 5), which were used as the basis for practical implementation,
with a slightly higher performance than uncalibrated ones (e.g., for the 12-feature model,
AUC: 0.925 change to 0.926; 7-feature model, AUC: 0.909 change to 0.910).

Table 5. Calibrated model performance (logistic regression).

Model Accuracy Sensitivity Specificity PPV NPV AUC (95% CI)

TTAS + 11 feature variables 0.891 0.812 0.892 0.101 0.997 0.926 (0.901–0.950)
TTAS + 6 feature variables 0.843 0.838 0.843 0.073 0.997 0.910 (0.876–0.943)
TTAS + 5 feature variables 0.822 0.825 0.822 0.064 0.997 0.907 (0.875–0.939)
TTAS + 4 feature variables 0.908 0.713 0.911 0.106 0.995 0.891 (0.851–0.932)

TTAS 0.696 0.900 0.693 0.042 0.998 0.872 (0.832–0.912)
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3.6. Distribution of the Predictive Value of Mortality in Each Patient

Of the patients in the testing set, 80 patients died and 5395 patients survived. Using
a box plot with median and interquartile ranges, Figure 4a shows the distribution of the
predicted probabilities with the 12-feature calibrated model of all survival patients and all
dead patients. We used 0.5 as the threshold for judging the predicted result. Equal to or
greater than 0.5 would be predicted to be mortality, otherwise as survival. We deleted the
patients whose predictions were inaccurate in Figure 4a to be Figure 4b. Table 6 shows that
the predictive value of mortality risk was 10.89% (minimal), 58.76% (25th), 91.15% (median),
99.07% (75th), and 99.94% (maximal), and the predictive value of non-mortality risk was
0.09% (minimal), 4.38% (25th), 11.62% (median), 27.55% (75th), and 99.86% (maximal)
(Figure 4a). In accurately predicted true patients, the predicted value of mortality risk was
51.24% (minimal), 74.09% (25th), 96.95%, (median) 99.38% (75th), and 99.94% (maximal),
and the predictive value of non-mortality risk was 0.09% (minimal), 3.80% (25th), 9.65%
(median), 20.52% (75th), and 49.9% (maximal) (Figure 4b).
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Table 6. The predicted risk probabilities of overall results.

All Cases without Exclusion Excluding False-Positive and False-Negative Cases

Non-Mortality Mortality Non-Mortality Mortality

count 5395 80 count 4822 65

mean 20.27 76.02 Mean 13.73 87.15

SD 22.81 27.80 SD 12.40 16.15

min 0.09 10.84 min 0.09 50.77

25% 4.38 58.67 25% 3.79 74.10

50% 11.57 90.96 50% 9.60 96.85

75% 27.61 99.07 75% 20.46 99.41

max 99.86 99.94 max 49.96 99.94
Note: Probability value in percentage (%); SD: standard deviation.
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3.7. External Validation and Computer-Assisted System Development

To confirm the performance of the AI mortality risk prediction model, this study
collected 200 new patients with the same definitions of features and outcomes in the HIS
from 10 September 2020 to 10 November 2020 for further external validation (Table 7).
The result showed the values of sensitivity (100%), specificity (84.3%), accuracy (84.5%),
PPV (0.088), and NPV (1.0). It revealed that this study’s model is acceptably stable and
reliable for supporting clinical decision-making.

Table 7. Clinical characteristics of 200 patients for external validation.

Variable Survivaln = 197 Mortalityn = 3 p-Value

Gender, n (%) 0.247

male 97 (49.2) 0 (0)

female 100 (50.8) 3 (100)

Age, median (IQR) 51 (32–67) 72 (29–95) 0.280

GCS, median (IQR) 15 (15–15) 3 (3–6) <0.001

Pupil size (L), median (IQR) 2.5 (2.0–2.5) 4.0 (2.0–5.0) 0.137

Pupil size (R), median (IQR) 2.5 (2.0–2.5) 2.5 (2.0–4.0) 0.510

light reflex (L), n (%) <0.001

− 1 (0.5) 2 (66.7)

+ 196 (99.5) 1 (33.3)

light reflex (R), n (%) <0.001

− 1 (0.5) 2 (66.7)

+ 196 (99.5) 1 (33.3)

TTAS, n (%) <0.001

Level I 4 (2.0) 3 (100)

Level II 39 (19.8) 0 (0)

Levels III–V 154(78.2) 0 (0)

BMI, median (IQR) 24.6 (22.8–24.6) 19.5 (17.3–19.5) 0.008

BT, median (IQR) 36.4 (36.2–36.7) 36.6 (35.0–37.2) 0.778

HR, median (IQR) 86 (75–97) 98 (86–105) 0.183

RR, median (IQR) 16 (16–18) 18 (10–24) 0.632

predictive value, median (IQR) 28.3 (26.0–35.9) 85.8 (85.7–85.8) 0.003
Note: Continuous variables were reported as the median and interquartile range (IQR). Categorical variables
were presented as frequency counts with percentages. Variables were evaluated using Mann–Whitney U test for
continuous variables and Fisher’s exact test for categorical variables. p-Value of <0.05 was considered to show
statistical significance.

After we confirmed the best LR-based model, we developed a web-based AI prediction
system with the best model and integrated it with the existing emergency triage system to
assist clinicians and nurses for better decision making and communication with patients
and/or their family members (Figure 5).
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Table 8 shows a comparison with related studies using machine learning models to
predict in-hospital mortality.

Table 8. A comparison with related studies.

Study This Study Shi et al., 2013 [32] Matssuo et al., 2019 [30] Serviá et al., 2020 [33]

Setting In the emergency
room triage In-hospital In-hospital Intensive care unit

Patient number 18,249 3206 232 9625
Study method Six ML methods Two ML methods Nine ML methods Nine ML methods

Feature variables 12 feature variables 7 feature variables 11 feature variables 11 variables
Outcome Mortality Mortality Mortality Mortality

Testing results 0.925 0.896 0.875 0.915
(AUC 95% CI) (0.901–0.950) (0.871–0.921) (0.869–0.882) (N/A)

Best predicting model Logistic regression Artificial neural
network Ridge regression Bayesian network

Real world
implementation Yes N/A N/A N/A.

ML: machine learning.

4. Discussion

This study reviewed related literature and found that this is an innovative study to
develop an early mortality risk prediction system using AI algorithms in the emergency
triage setting. The result showed that the model of the TTAS together with the 11 fea-
ture variables had the best predictive performance (AUC = 0.925). This study showed
remarkable results that can be useful in the field of neurocritical care in the ED: (1) Even
without imaging studies or laboratory data collection, our twelve feature variables were
highly accurate and better than TTAS in predicting mortality risk in the emergency triage
setting; (2) the LR-based model had the highest accuracy and the best performance model
for in-hospital mortality risk prediction; (3) if the value of the mortality risk calculation
result is greater than 91.15%, the emergency physician must pay extra attention in car-
ing for the patient and explain to the family that the patients’ chance for survival is low;
(4) this study actually integrated the best model into the existing HIS for clinical use.
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Consistent with previous studies [3,4,7–9], our results showed that patients who
are older, male, with a level 1 to 2 TTAS, have low GCS, without pupillary light reflex,
and larger pupil size have significantly higher mortality risk. Furthermore, it was found
that those with low body temperature (36.30 ± 0.70 ◦C) and low BMI (22.68 ± 3.78) have
significantly higher mortality risk.

Correlation coefficient matrix using Spearman rank order correlation method is a good
statistic method to analyze the relationship between two items being observed [36,37].
The correlation coefficient can range from −1 to 1, with −1 or 1 indicating a perfect
relationship [40]. This study’s results showed that pupillary light reflex, GCS, and TTAS
had low correlation to mortality (correlation coefficient 0.1–0.39), and other feature variables
had weak correlation to mortality (correlation coefficient < 0.1). This is possibly the case
because compared with conventional clinical study, we used all original data without
matching the case group and the control group to diminish the effects of confounding
factors; therefore, the data was highly diverse. Moreover, the observation end points were
obtained at discharge, which may have been affected by other factors present during this
period; thus, future studies should develop a dynamic real-time assessment system to
enhance the practicality of the model.

Based on the correlation coefficient matrix (Figure 2), the pupillary light reflex had
the highest correlation to mortality. Both the pupillary light reflex and GCS had a higher
correlation to mortality than TTAS. This result implies that the TTAS should be modified to
suit the needs of patients with TBI in the emergency triage setting for the early prediction
of mortality risk.

The computerized triage system, the Taiwan Triage and Acuity Scale (TTAS), adapted
from the Canadian Triage and Acuity Scale (CTAS, 2017) [42–44], was officially launched
to avoid over-triage and deploy more appropriate resources for ED patients in Taiwan in
2010 [7]. In the current study, it was found that single TTAS has high AUC (0.876) and sensi-
tivity (0.900) but has low specificity (0.693) and accuracy (0.696) for mortality risk prediction.
Based on the results, TTAS combined with eleven other feature variables (AUC = 0.925)
obtained the best performance in predicting in-hospital mortality risk in patients with
TBI (Table 2). Why is our in-hospital predictive mortality risk model higher than TTAS
alone? This may be related to the components of the TTAS, including parameters such as
respiratory, hemodynamic, temperature, cognitive impairment and trauma mechanisms.
In addition to TTAS, we also include age, gender, BMI, pupil size, and pupil light re-
flex in our predictive models, which are considered prognostic factors for trauma pa-
tients. Although there is still much to learn about its benefits, we recommend the twelve
feature variables in the AI predictive model to become integrated in the ER triage for
clinical applications.

Figure 4a showed the probabilities of the edge points, indicating the median value was
91.15% and that no mortality risk occurred below 10.89%. The same statistics, excluding
the false-positive and true-negative cases, are shown in Figure 4b, indicating that the
minimal predictive probability of mortality risk was 51.24%. Therefore, we recommend
the following: (1) the emergency physician in the triage setting should pay extremely
close attention to patients with a predictive value of mortality risk higher than 51.24%,
especially those higher than 91.15%; and (2) the treatment protocols should be different
among patients with a predictive value of mortality risk higher than 91.25%, between
91.15% and 51.24%, between 51.24% and 10.89%, and below 10.89%.

In this study, despite obtaining a high mortality risk prediction of more than 91.15%,
136 patients survived. We checked their detail data in our emergency system and found
that their survival was due to provision of early intervention such as immediate aggressive
resuscitation in the ER (3.7%), craniotomy procedure to remove intracranial hemorrhage
(38.9%), and early admission to ICU (86.1%). It implied that although the AI prediction
model has excellent predictive performance, it can only be regarded as a decision-support
tool rather than a diagnostic determinator.
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In the subgroup analysis, this study investigated 15 patients with a mortality risk
prediction of less than 50% but who did not survive; six patients died from advanced stage
cancer-related complications, five patients died due to delayed intractable intracranial
hemorrhage, three patients died due to septic shock, and one patient died because of a
concurrent malignant middle cerebral artery infarction. This indicates that patients with
TBI may be relatively well during their initial assessment; however, underlying disease,
delayed hemorrhage, or other complications may aggravate their condition. Therefore,
in order to improve the performance of this model, future studies on specific early inter-
vention and advanced cancer-related complications are necessary.

Furthermore, although the accuracy, sensitivity, specificity, and AUC of our proposed
AI model were all higher than 0.8, the PPV was low. It could be mainly due to the scarcity
of cases with positive outcomes (dead patients) resulting in imbalanced data distribution,
and this may cause a very high false-positive rate if deployed. However, for high-risk
TBI in the emergency room, the high false-positive rate could still have clinical value but
deserves further improvement. This needs to be further explored by follow-up studies.

Table 8 demonstrated a comparison with related studies for predicting in-hospital
mortality using machine learning models. Compared to other studies, we have the highest
number of cases and the highest predictive power to predict the risk of in-hospital mortality
at the time of emergency triage, and the model is currently being used in clinical settings.

Core CRASH [45] and core IMPACT [15] are currently the most common prognostic
systems for trauma. CRASH includes age, motor score, pupils, hypoxia, hypotension, brain
CT scan, and lab findings (glucose and hemoglobin level). Core IMPACT includes age,
GCS, pupils reflecting the light, major extra-cranial injury, and brain CT scan findings.
Our prediction system has good results without brain CT and lab components. In the
future, the predictive power of three additional prediction systems can be evaluated.

Despite its strengths, this study still has limitations. First, being a retrospective
observational study, the feature variables could have been miscoded or biased by many
unrecognized confounders which could have affected the mortality of patients with TBI.
Second, we did not evaluate other feature variables such as coagulopathy, brain CT scan
findings, surgery procedures, and other complications, which could influence the outcome
after TBI. Third, as a study of three hospitals of the Chi Mei Medical Group, its results
cannot be generalized to other hospitals. Therefore, further external validation is required
for more heterogeneous samples to confirm and extend our results. Finally, TTAS as an
input feature is a country-specific measurement and may limit the generalizability and
adoption of the proposed algorithm outside of Taiwan.

5. Conclusions

Without clinical laboratory data and imaging studies, our results showed that the LR
algorithm was the best algorithm to predict the mortality risk in patients with TBI in the
emergency room triage setting. Since the 12 feature variables during the initial triage can
be easily obtained, our developed AI system can provide real-time mortality prediction
to clinicians to help them explain the patient’s condition to family members and to guide
them in deciding on further treatment. We believe that predicting the adverse outcomes of
patients with TBI using machine learning algorithms is a promising research approach to
help physicians’ decision-making after patient admission to ER at the earliest possible time.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci12050612/s1, Table S1: Hyper-parameters range for experiments.

Author Contributions: K.-C.T., K.-T.C., J.-R.K. and T.-T.E.N. conceived and designed the experiments.
C.-J.C., J.-R.K. and C.-F.L. performed the experiments, J.-R.K. and C.-F.L. analyzed the data, C.-C.W.
and N.-C.C. contributed reagents/materials/analysis tools, and J.-R.K., K.-T.C. and T.-T.E.N. wrote
the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

https://www.mdpi.com/article/10.3390/brainsci12050612/s1
https://www.mdpi.com/article/10.3390/brainsci12050612/s1


Brain Sci. 2022, 12, 612 13 of 14

Institutional Review Board Statement: This study obtained ethics approval (10911-006) from the
institutional review board of Chi Mei Medical Center, Tainan, Taiwan.

Informed Consent Statement: Patient consent was waived due to the retrospective nature of the study.

Data Availability Statement: Based on the privacy of patients within the Chi Mei Medical Centers
Health Information Network, the primary data underlying this article cannot be shared publicly.
However, de-identified data will be shared on reasonable request to the corresponding author.

Acknowledgments: The authors would like to thank all of the researchers, especially Yu-Shan Ma
and Yu-Ting Shen, who extended their unwavering support in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hsu, I.L.; Li, C.Y.; Chu, D.C.; Chien, L.C. An epidemiological analysis of head injuries in Taiwan. Int. J. Environ. Res. Public Health

2018, 15, 2457. [CrossRef] [PubMed]
2. Centers for Disease Control and Prevention. Traumatic Brain Injory & Concussion. Available online: www.cdc.gov/

traumaticbraininjury/data/ (accessed on 1 October 2021).
3. Kuo, J.R.; Lo, C.J.; Lu, C.L.; Chio, C.C.; Wang, C.C.; Lin, K.C. Prognostic predictors of outcome in an operative series in traumatic

brain injury patients. J. Formos. Med. Assoc. 2011, 110, 258–264. [CrossRef]
4. Farace, E.; Alves, W.M. Do women fare worse? A metaanalysis of gender differences in outcome after traumatic brain injury.

Neurosurg. Focus. 2000, 8, e6. [CrossRef] [PubMed]
5. Czorlich, P.; Dreimann, M.; Emami, P.; Westphal, M.; Lefering, R.; Hoffmann, M. Body Mass Index > 35 as independent predictor

of mortality in severe traumatic brain injury. World Neurosurg. 2017, 107, 515–521. [CrossRef] [PubMed]
6. Cone, J.T.; Benjamin, E.R.; Alfson, D.B.; Demetriades, D. Isolated severe blunt traumatic brain injury: Effect of obesity on outcomes.

J. Neurosurg. 2020, 134, 1667–1674. [CrossRef]
7. Ng, C.J.; Yen, Z.S.; Tsai, J.C.; Chen, L.C.; Lin, S.J.; Sang, Y.Y.; Chen, J.C. TTAS national working group. Validation of the Taiwan

triage and acuity scale: A new computerised five-level triage system. Emerg. Med. J. 2011, 28, 1026–1231. [CrossRef]
8. Nyam, T.E.; Ao, K.H.; Hung, S.Y.; Shen, M.L.; Yu, T.C.; Kuo, J.R. FOUR Score predicts early outcome in patients after traumatic

brain injury. Neurocrit. Care 2017, 26, 225–231. [CrossRef]
9. Brain Trauma Foundation, American Association of Neurological Surgery. Joint section in Neurotrauma and Critical care:

Pupillary diameter and light reflex. J. Neurotrauma. 2000, 17, 583–590. [CrossRef]
10. Eisenberg, H.M.; Gary, H.E.; Aldrich, E.; Saydjari, C.; Turner, B.; Foulkes, M.A.; Jane, J.A.; Marmarou, A.; Marshall, L.F.;

Young, H.F. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank.
J. Neurosurg. 1990, 73, 688–698. [CrossRef]

11. Li, Z.; Wu, X.; Wu, X.; Yu, J.; Yuan, Q.; Du, Z. Admission circulating monocytes level is an independent predictor of outcome in
traumatic brain injury. Brain Inj. 2018, 32, 515–522. [CrossRef]

12. Kuo, J.; Chou, T.; Chio, C. Coagulopathy as a parameter to predict the outcome in head injury patients–analysis of 61 cases.
J. Clin. Neurosci. 2004, 11, 710–714. [CrossRef] [PubMed]

13. Liao, J.; Ho, C.; Liang, F.; Wang, J.; Lin, K.; Chio, C.; Kuo, J.R. One-year mortality associations in hemodialysis patients after
traumatic brain injury—An eight-year population-based study. PLoS ONE 2014, 9, e93956. [CrossRef] [PubMed]

14. Cheng, C.; Ho, C.; Wang, C.; Liang, F.; Wang, J.; Chio, C.; Chang, C.; Kuo, J.R. One-year mortality after traumatic brain injury in
liver cirrhosis patients—A ten-year population-based study. Medicine 2015, 94, e1468. [CrossRef] [PubMed]

15. Steyerberg, E.W.; Mushkudiani, N.; Perel, P.; Butcher, I.; Lu, J.; Mchugh, G.S.; Murray, G.D.; Marmarou, A.; Roberts, I.;
Habbema, J.D.F.; et al. Predicting outcome after traumatic brain injury: Development and international validation of prognostic
scores based on admission characteristics. PLoS Med. 2008, 5, e165. [CrossRef] [PubMed]

16. Hosmer, D.W.; Lemeshow, S., Jr.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013.
17. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
18. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
19. Ke, G.; Meng, Q.; Finley, T.; Wang, T.F.; Chen, W.; Ma, W.D.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boost-

ing decision tree. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017.

20. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

21. Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [CrossRef]
22. Azarkhish, I.; Raoufy, M.R.; Gharibzadeh, S. Artificial intelligence models for predicting iron deficiency anemia and iron serum

level based on accessible laboratory data. J. Med. Syst. 2011, 36, 2057–2061. [CrossRef]
23. Liu, N.; Koh, Z.X.; Goh, J.; Lin, Z.; Haaland, B.; Ting, B.P.; Ong, M.E. Prediction of adverse cardiac events in emergency department

patients with chest pain using machine learning for variable selection. BMC Med. Inform. Decis. Mak. 2014, 14, 75. [CrossRef]

http://doi.org/10.3390/ijerph15112457
http://www.ncbi.nlm.nih.gov/pubmed/30400380
www.cdc.gov/traumaticbraininjury/data/
www.cdc.gov/traumaticbraininjury/data/
http://doi.org/10.1016/S0929-6646(11)60038-7
http://doi.org/10.3171/foc.2000.8.1.152
http://www.ncbi.nlm.nih.gov/pubmed/16924776
http://doi.org/10.1016/j.wneu.2017.08.010
http://www.ncbi.nlm.nih.gov/pubmed/28823658
http://doi.org/10.3171/2020.3.JNS193458
http://doi.org/10.1136/emj.2010.094185
http://doi.org/10.1007/s12028-016-0326-y
http://doi.org/10.1089/neu.2000.17.583
http://doi.org/10.3171/jns.1990.73.5.0688
http://doi.org/10.1080/02699052.2018.1429023
http://doi.org/10.1016/j.jocn.2003.10.011
http://www.ncbi.nlm.nih.gov/pubmed/15337130
http://doi.org/10.1371/journal.pone.0093956
http://www.ncbi.nlm.nih.gov/pubmed/24714730
http://doi.org/10.1097/MD.0000000000001468
http://www.ncbi.nlm.nih.gov/pubmed/26448001
http://doi.org/10.1371/journal.pmed.0050165
http://www.ncbi.nlm.nih.gov/pubmed/18684008
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/0925-2312(91)90023-5
http://doi.org/10.1007/s10916-011-9668-3
http://doi.org/10.1186/1472-6947-14-75


Brain Sci. 2022, 12, 612 14 of 14

24. Arvind, V.; Kim, J.S.; Oermann, E.K.; Kaji, D.; Cho, S.K. Predicting surgical complications in adult patients undergoing anterior
cervical discectomy and fusion using machine learning. Neurospine 2018, 15, 329–337. [CrossRef]

25. Du, X.; Min, J.; Shah, C.P.; Bishnoi, R.; Hogan, W.R.; Lemas, D.J. Predicting in-hospital mortality of patients with febrile
neutropenia using machine learning models. Int. J. Med. Inform. 2020, 139, 104140. [CrossRef] [PubMed]

26. Awad, A.; Bader-El-Den, M.B.; McNicholas, J.; Briggs, J.S. Early hospital mortality prediction of intensive care unit patients using
an ensemble learning approach. Int. J. Med. Inform. 2017, 108, 185–195. [CrossRef] [PubMed]

27. Lin, K.; Hu, Y.; Kong, G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest
model. Int. J. Med. Inf. 2019, 125, 55–61. [CrossRef] [PubMed]

28. Citi, L.; Barbieri, R. PhysioNet 2012 Challenge: Predicting mortality of ICU patients using a cascaded SVM-GLM paradigm.
In Proceedings of the 2012 Computing in Cardiology, Krakow, Poland, 9–12 September 2012; pp. 257–260.

29. Yera, A.; Muguerza, J.; Arbelaitz, O.; Perona, I.; Keers, R.N.; Ashcroft, D.M.; Williams, R.; Peek, N.; Jay, C.; Vigo, M. Modelling
the interactive behaviour of users with a medication safety dashboard in a primary care setting. Int. J. Med. Inform. 2019, 129,
395–403. [CrossRef] [PubMed]

30. Matsuo, K.; Aihara, H.; Nakai, T.; Morishita, A.; Tohma, Y.; Kohmura, E. Machine learning to predict in-hospital morbidity and
mortality after traumatic brain injury. J. Neurotrauma 2019, 37, 202–210. [CrossRef]

31. Amorim, R.L.; Oliveira, L.M.; Malbouisson, L.M.; Nagumo, M.M.; Simões, M.; Miranda, L.C.; Bor-Seng-Shu, E.; Beer-Furlan,
A.; de Andrade, A.F.; Rubiano, A.M.; et al. Prediction of early TBI Mortality using a machine learning approach in a LMIC
population. Front. Neurol. 2019, 10, 1366. [CrossRef]

32. Shi, H.Y.; Hwang, S.L.; Lee, K.T.; Lin, C.L. In-hospital mortality after traumatic brain injury surgery: A nationwide population-
based comparison of mortality predictors used in artificial neural network and logistic regression models. J. Neurosurg. 2013, 118,
746–752. [CrossRef]

33. Serviá, L.; Montserrat, N.; Badia, M.; Llompart-Pou, J.A.; Barea-Mendoza, J.A.; Chico-Fernández, M.; Sánchez-Casado, M.;
Jiménez, J.M.; Mayor, D.M.; Trujillano, J. Machine learning techniques for mortality prediction in critical traumatic patients:
Anatomic and physiologic variables from the RETRAUCI study. BMC Med. Res. Methodol. 2020, 20, 262. [CrossRef]

34. Warman, P.; Seas, A.; Satyadev, N.; Adil, S.M.; Kolls, B.J.; Haglund, M.M.; Dunn, T.W.; Fuller, A.T. Machine learning for predicting
in-hospital mortality after traumatic brain injury in both high-income and low- and middle-income countries. Neurosurgery 2022,
90, 605–612. [CrossRef]

35. Zhang, P.; Hsu, C.; Kao, Y.; Chen, C.; Kuo, Y.; Hsu, S.; Liu, T.; Lin, H.; Wang, J.; Liu, C.; et al. Real-time AI prediction for major
adverse cardiac events in emergency department patients with chest pain. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 93.
[CrossRef]

36. Liu, C.L.; Xu, Y.; Wu, H.; Chen, S.; Guo, J.J. Correlation and interaction visualization of altmetric indicators extracted from
scholarly social network activities: Dimensions and structure. J. Med. Internet Res. 2013, 15, e259–e277. [CrossRef] [PubMed]

37. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res.
2002, 16, 321–357. [CrossRef]

38. Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine.
Clin. Chem. 1993, 39, 561–567. [CrossRef] [PubMed]

39. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,
30, 1145–1159. [CrossRef]

40. Amarasingham, R.; Patzer, R.E.; Huesch, M.D.; Nguyen, N.Q.; Xie, B. Implementing electronic health care predictive analytics:
Considerations and challenges. Health Aff. 2014, 33, 1148–1154. [CrossRef]

41. Nishida, C. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet
2004, 363, 157–163.

42. DeLong, E.; DeLong, D.; Clarke-Pearson, D. Comparing the areas under two or more correlated receiver operating characteristic
curves: A nonparametric approach. Biometrics 1998, 44, 837–845. [CrossRef]

43. Edward, N.; Nan, C.; Hecht, L.; Nelson, E.; Ross, J.; Fiddler, L. Correlation and regression. In SPSS for Windows Version 11.0:
A Basic Tutorial; McGraw-Hill, Inc.: New York, NY, USA, 2000.

44. Bullard, M.J.; Musgrave, E.; Warren, D.; Unger, B.; Skeldon, T.; Grierson, R.; van der Linde, E.; Swain, J. Revisions to the Canadian
Emergency Department Triage and Acuity Scale (CTAS) Guidelines 2016. CJEM 2017, 19, S18–S27. [CrossRef]

45. MRC CRASH Trial Collaborators; Perel, P.; Arango, M.; Clayton, T.; Edwards, P.; Komolafe, E.; Poccock, S.; Roberts, I.; Shakur, H.;
Steyerberg, E.; et al. Predicting outcome after traumatic brain injury: Practical prognostic models based on large cohort of
international patients. BMJ 2008, 336, 425–429. [CrossRef]

http://doi.org/10.14245/ns.1836248.124
http://doi.org/10.1016/j.ijmedinf.2020.104140
http://www.ncbi.nlm.nih.gov/pubmed/32325370
http://doi.org/10.1016/j.ijmedinf.2017.10.002
http://www.ncbi.nlm.nih.gov/pubmed/29132626
http://doi.org/10.1016/j.ijmedinf.2019.02.002
http://www.ncbi.nlm.nih.gov/pubmed/30914181
http://doi.org/10.1016/j.ijmedinf.2019.07.014
http://www.ncbi.nlm.nih.gov/pubmed/31445283
http://doi.org/10.1089/neu.2018.6276
http://doi.org/10.3389/fneur.2019.01366
http://doi.org/10.3171/2013.1.JNS121130
http://doi.org/10.1186/s12874-020-01151-3
http://doi.org/10.1227/neu.0000000000001898
http://doi.org/10.1186/s13049-020-00786-x
http://doi.org/10.2196/jmir.2707
http://www.ncbi.nlm.nih.gov/pubmed/24275693
http://doi.org/10.1613/jair.953
http://doi.org/10.1093/clinchem/39.4.561
http://www.ncbi.nlm.nih.gov/pubmed/8472349
http://doi.org/10.1016/S0031-3203(96)00142-2
http://doi.org/10.1377/hlthaff.2014.0352
http://doi.org/10.2307/2531595
http://doi.org/10.1017/cem.2017.365
http://doi.org/10.1136/bmj.39461.643438.25

	Introduction 
	Materials and Methods 
	Ethics 
	Flow Chart of Current Study 
	Patient Selection 
	Features Selection and Model Building 
	Model Performance Measurement and Calibration 

	Results 
	Demographics and Clinical Pictures in Patients with TBI 
	The Correlation between Feature Variables and Mortality 
	The Predictive Model Using the Twelve Feature Variables 
	The Predictive Models Using Fewer Feature Variables 
	Comparing Model Calibration for the Best Models 
	Distribution of the Predictive Value of Mortality in Each Patient 
	External Validation and Computer-Assisted System Development 

	Discussion 
	Conclusions 
	References

