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Abstract

Light-activated gene transduction (LAGT) is an approach to localize gene therapy via 

preactivation of cells with UV light, which facilitates transduction by recombinant adeno-

associated virus vectors. Prior studies demonstrated that UVC induces LAGT secondary to 

pyrimidine dimer formation, while UVA induces LAGT secondary to reactive oxygen species 

(ROS) generation. However, the empirical UVB boundary of these UV effects is unknown. Thus, 

we aimed to define the action spectra for UV-induced LAGT independent of DNA damage, and 

determine an optimal wavelength to maximize safety and efficacy. Results: UV at 288, 311 and 

320nm produced significant dose-dependent LAGT effects, of which the maximum (800-fold) was 

observed with 4kJ/m2 at 311nm. Consistent with its robust cytotoxicity, 288nm produced 

significantly high levels of DNA damage at all doses tested, while 311, 320 and 330nm did not 

generate pyrimidine dimers and produced low levels of DNA damage detected by comet assay. 

While 288nm failed to induce ROS, the other wavelengths were effective, with the maximum (10-

fold) effect observed with 30 kJ/m2 at 311nm. An in vivo pilot study assessing 311nm-induced 

LAGT of rabbit articular chondrocytes demonstrated a significant 6.6-fold (p<0.05) increase in 

transduction with insignificant cytotoxicity. Conclusion: 311nm was found to be the optimal 

wavelength for LAGT based on its superior efficacy at the peak dose, and its broad safety range 

that is remarkably wider than the other UV wavelengths tested.
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Introduction

One of the promises of gene therapy is local treatment to achieve supra-pharmacological 

dosing and limit systemic side-effects, which cannot be achieved by traditional small 

molecule or biologic therapies. While localized gene transfer approaches have been 

developed via: direct injection of vectors with limited biodistribution, vectors with limited 

tissue tropism, or tissue specific promoters1–5, currently there is no technology that can site-

specifically target gene expression to a limited number of cells within a particular tissue. 

The development of this technology would greatly facilitate gene therapies for tissue repair 

and regeneration, which requires a morphogenic gradient to perpetuate unidirectional growth 

and differentiation, such as that observed in epimorphic regeneration6,7. To the end of site-

specific gene therapy, we proposed a light-activated gene transduction (LAGT) approach, 

which is designed to work with first generation single-stranded recombinant adeno-

associated viral vectors (rAAV)4,8. While these vectors have many advantages, including 

high infection efficiency of multiple non-dividing cell types, rAAV transduction is limited 

by inefficient second-strand DNA synthesis,8–10 which takes days to weeks to occur in 

some gene therapies8–13. Based on prior studies that demonstrated that rAAV transduction 

is enhanced by DNA damaging agents (i.e. short wavelength 254nm UVC) that induce DNA 

repair enzymes in exposed cells to facilitate second-strand synthesis,9,10,14,15 we 

demonstrated that the same increased transduction efficiency can be achieved independently 

of DNA damage via pretreatment with long wavelength UVA (325nm).16 The mechanism 

responsible for this UV-induced LAGT effect was shown to be the generation of 

intracellular reactive oxygen species (ROS), which are also known to activate DNA 

polymerases. While we were unable to detect significant levels of various forms of DNA 

damage that were directly caused by 325nm UVA exposure, the most common of which is 

pyrimidine dimer formation, high levels of ROS produced by this treatment are cytotoxic 

due to membrane lipid-peroxidation. Thus, safe and effective LAGT can be achieved within 

a window of UV exposures that generates sufficient ROS to activate DNA polymerases, but 

not above the level that can be resolved by cellular catalases and superoxide dismutase. In 

the case of articular chondrocytes, this safe and effective exposure window for site-specific 

LAGT at 325nm UVA is between 600 and 12,000J/m2 (joule per square meter).16

The feasibility of LAGT for targeted in vivo gene therapy is defined by several parameters. 

The first is the power of the light source (J/m2/sec), as it is desirable to deliver the effective 

UV dose in as short a time as possible. Indeed, this drove our initial decision to use 325nm 

UVA, which can be delivered by a helium-cadmium laser through a collimated fiber-optic 

cable at a fluence of 330 J/m2/sec. While proof of principle studies demonstrated that safe 

and effective LAGT can be achieved with this system,16 several critical questions remain 

regarding the action spectrum of UV for this approach. Specifically, 1) What is the shortest 

UV wavelength that does not directly induce DNA damage? 2) What is the longest UV 

wavelength that mediates the LAGT effect? 3) Which UV wavelength achieves the greatest 

LAGT effect? And 4) Which UV wavelength has the broadest safety-efficacy window for 

LAGT? To the end of defining these empirical properties of various UV action spectra, we 

performed a series of in vitro experiments with UVB-UVA wavelengths that spanned from 

288nm to 365nm.
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Results

Experimental systems

In order to evaluate the empirical properties of a broad range of UV wavelenghts on LAGT 

efficacy, cytotoxicity, DNA damage and ROS generation, we established three light delivery 

systems. The first was a xenon short arc light source, fitted with bandpass filters, which 

were designed to interrogate the UVB to UVA transition. Based on our hypothesis that the 

optimum wavelength for LAGT would be in the 305–330nm range, we used three different 

bandpass filters that transmitted bands over this action spectra region with partially overlap 

in the wings of their bandpass curves. We also used a fourth bandpass filter that transmitted 

UVB emission at wavelengths below the range of interest. These bandpass filters provided a 

peak transmission of average 65% at full output power (Table 1), with a full width at 

measured half maximum bandpass centered at the following wavelengths: 287.7±5.0, 

311.4±5.7, 320.5±6.2 and 330.1±4.9nm (Figure 1). Since we had previously determined that 

longer wavelength UV requires increasingly more energy to mediate LAGT versus short 

wavelengths,16 and only high power light sources are able to deliver these UV doses to cell 

cultures in a timely manner, we utilized a frequency shifted Nd:YLF laser and a UV LED 

light source to evaluate the effects of 349nm and 365nm UVA respectively.

Evaluation of UV wavelengths for their peak LAGT effect

In order to determine the peak LAGT effect of the six UV delivery systems, we determined 

the transfection efficiency of rAAV-luciferase (Luc) following infection of two different cell 

lines. The first, C3H10T.5 cells (C3H), is a murine mesenchymal progenitor that is 

representative of cell lines that are not easily transfected with single-stranded rAAV vectors. 

The second, 293 cells, were derived from human embryonic kidney, and is representative of 

cell lines that are highly transfectable by rAAV vectors. Figure 2 illustrates the dose-

dependent LAGT effects of the UV systems focused at 288nm, 311nm and 320nm. Note that 

each of these systems displayed a biphasic response in which a dose-dependent peak 

increase in transduction was followed by a dramatic loss of LAGT at higher doses, which is 

consistent with an exposure window that lies between efficacy and cytotoxicity. Among 

these, both the 311nm and 320nm systems demonstrated remarkable peak LAGT effects that 

were >750-fold in C3H and >150-fold in 293 cells. Also of note are the low doses that 

generated these peaks, 13kJ/m2 and 100kJ/m2, delivered in 30 and 180 seconds for the 

311nm and 320nm systems, respectively. We also performed broad UV dose-response 

experiments with the 330nm, 349nm and 365nm systems, which failed to demonstrate 

significant LAGT effects at all fluences tested (Figure 2 and data not shown). While this 

result was not surprising for the very long wavelength UVA systems, the lack of LAGT 

effect with the 330nm system demonstrates that the longest wavelength that can be used for 

this technology is ~325nm, which we previously demonstrated to mediate a modest 8-fold 

peak LAGT effect.16

Evaluation of UV wavelengths for their cytotoxicity and genotoxicity

In order to assess UV effects on cytotoxicity we performed in situ trypan blue staining on 

C3H and 293 cells exposed to various doses of light delivered by the 288nm, 311nm, 320nm 

and 330nm systems (Figure 3). All 4 wavelengths induced dose-dependent cell death. 
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288nm UV was the most cytotoxic, reaching 100% cell death at 9 kJ/m2 (C3H cell line), 

while the longer wavelengths were less toxic. Surprisingly, 311nm UV was the least 

cytotoxic, and only killed less than 13% of the cells at over twice the peak LAGT dose.

Our initial attempts at measuring macromolecular UV-induced DNA damage from double-

strand breaks via fragmentation of genomic DNA assessed by gel electrophoresis failed to 

demonstrate remarkable effects for all wavelengths tested (data not shown). Therefore, we 

repeated these exposures and assessed UV-induced DNA damage via the single cell gel 

electrophoresis Comet assay, which is a more sensitive technique that detects both double 

and single-stranded DNA breaks, the majority of apurinic sites, apyrimidinic sites, as well as 

alkali-labile DNA adducts such as phosphoglycols and phosphotriesters.17,18 The results 

from this experiment with 288nm, 311nm, 320nm and 330nm UV are presented in Figure 4. 

Consistent with the cytotoxicity data, 288nm UV produced the most DNA damage; 320nm 

UV also produced significant DNA damage in a dose dependent manner in C3H cells, but 

did not have these significant effects in 293 cells. Remarkably, neither 311nm nor 330nm 

UV induced significant comet tails in this assay.

As pyrimidine dimmer formation is the most prominent DNA modification induced by UV 

exposure, we determined the ability of 288nm, 311nm, 320nm and 330nm UV to generate 

these genetic lesions by ELISA. The results of this experiment demonstrated that only 

288nm UV is capable of inducing high levels of pyrimidine dimers (Figure 5). While 

64kJ/m2 of 320nm UV did induce very low levels of pyrimidine dimers, 311nm and 330nm 

UV were unable to induce levels above that observed in the no-UV treatment controls. 

Collectively, these results demonstrate that in contrast to high levels of 288nm UV-induced 

cytotoxicity and DNA damage at the low end of the UVB range, 311nm at the high end of 

the UVB range has a very favorable safety profile for LAGT.

Evaluation of UV wavelengths for their ability to induce ROS

Since UVA-induced LAGT independent of DNA damage is mediated by the generation of 

intracellular ROS, we examined the ability of 288nm, 311nm, 320nm and 330nm UV to 

induce intracellular ROS via detection of fluorescent dichlorofluorescein diacetate (DCFH-

DA) by flow cytometry. The results from this experiment demonstrated that only 311nm UV 

induced intracellular ROS at all doses tested in both cell lines (Figure 6). In contrast, 288nm 

UV failed to induce ROS levels above background at all doses tested, while 320nm and 

330nm only significantly increased ROS levels in 293 cells, but not in C3H cells. Taken 

together with the results from the LAGT, cytotoxicity and DNA damage data, these results 

clearly demonstrate that 311nm UV has the greatest safety-efficacy window for site-specific 

gene therapy.

Effects of UV on light-activated gene transduction in vivo

The safety and efficacy and of LAGT for articular cartilage gene therapy was tested in vivo 

using an established rabbit patellar groove defect model.16,19 To assess UV-induced cell 

death, the right knees of the rabbits were treated with LAGT using 0, 2, 6 and 18 KJ/m2 of 

313 nm UV light (N=4). The tissues were harvested 48 hours later, and cell death was 

quantified by counting the number of empty lacunae/total lacunae in Safarin-O/Fast green 
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(SO/FG)-stained sections. The results demonstrated that there was no significant effect of 

LAGT treatment on articular chondrocyte cell death (0 KJ/m2 = 0.06±0.05%; 2 KJ/m2 = 

0.06±0.04%; 6 KJ/m2 = 0.18±0.08%; and 18 KJ/m2 = 0.59±0.47%; mean ± SEM; p>0.05 

vs. 0 KJ/m2 for all doses).

For the efficacy test, the right knees were treated with or without 6 KJ/m2 of 313 nm UV 

light, followed by a direct injection rAAV-GFP (N=4). The tissues were harvested 48 hours 

later and the transduction efficiency was determined by counting eGFP-positive articular 

chondrocytes in sections process for immunohistochemistry (Figure 7). The results 

demonstrated a significant increased transduction in the UV treated knees (UV treated = 

54.2±14.3%; no UV = 8.2±3.2%; mean ± SEM; p<0.05).

Discussion

Gene therapy to facilitate healing of damaged adult-mammalian tissues that have very 

limited regenerative potential is significantly limited by our inability to target transgene 

expression to the edge of the defect, in a timely manner, while limiting transduction of the 

uninjured-healthy tissue. As an example, we have been working towards a gene therapy for 

articular and meniscal cartilage defects, which are extremely prevalent (>80% of people 

>50yrs) due to simple sports related injuries, and are known to be the leading cause of 

osteoarthritis and the need for joint replacement surgery20,21. Based on the biology of 

cartilage repair in vertebrae-regenerate species, which is highlighted by precise temporal-

spatial gene expression at the edge of the defect immediately following injury to establish a 

morphogenic gradient and blastema formation22,23, we envisioned a gene therapy 

performed during standard arthroscopy with potential to achieve this requisite gene 

expression profile. In this surgery, mechanical debridement is performed to remove the 

fragmented cartilage and stabilize the margins of the defect. This surgical procedure re-

establishes the opportunity to initiate formation of new cartilage via creation of 

morphogenic gradient of chondrogenic factors (i.e. GDF-5) via site-specific gene therapy. 

LAGT represents one approach that is compatible with standard arthroscopy, and we have 

previously demonstrated safe and effective LAGT with 325nm UVA in a rabbit articular 

cartilage defect model16. However, several significant improvements are needed to 

maximize the potential of LAGT therapy. These improvements require greater 

understanding of action spectra at the UVB-UVA boundary, which is the focus of the 

current study.

Biological pathways related to UV damage have been shown to be wavelength dependent 

24. The two basic mechanisms for UV induced cellular DNA damage are direct damage and 

indirect damage through alternative intracellular photosensitizing molecules. For irradiation 

close to the UVC range (250nm to 300nm), the dominant form of DNA damage is direct 

excitation that can be traced through pyrimidine dimerization. With longer wavelengths 

approaching the UVA range (>300nm), damage tends to occur indirectly through the 

excitation of intracellular chromophores. These chromophores can either be stimulated to 

damage DNA directly via generation of singlet oxygen species (type I photoreaction from 

O2 radicals), or via superoxide/hydroxyl radical formation through Fenton reaction (type II 

photoreaction)25. This oxidative DNA damage is primarily repaired through the action of 
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DNA glycosylases, AP endonucleases, and general nucleotide excision repair mechanisms 

including methylguanine DNA methyl transferase, MGMT activation26. Interestingly, these 

ROS including superoxide, singlet oxide, and peroxide radicals have been shown to induce 

activation of ATM kinase and p53 transcription, which are known to play a major role in 

DNA repair processes without causing DNA damage directly.27 Thus, UVA-induced type I 

and type II photoreactions provide therapeutic potential if a significant window between 

cytotoxicity-genotoxicty and efficacy exists, and efforts to identify the empirical windows 

for various action spectra at the UVB-UVA boundary are warranted.

Consistent with the known direct DNA damage induced by short wavelength UVB, here we 

demonstrate that 288nm LAGT and cytotoxicity is directly associated with high levels of 

pyrimidine dimers without ROS generation. In contrast, 311nm effects are associated with 

significant ROS levels without pyrimidine dimer formation. Furthermore, 311nm failed to 

induce macroscopic DNA damage as assessed by a Comet assay, demonstrating that these 

exposures do not induce type I or type II DNA damage either. Given that the empirical 

cutoff of UVB-induced LAGT independent of DNA damage must fall within the 288nm and 

311nm systems, we interpolated this cutoff to be 299±3nm as follows. First, there is a rapid 

drop off in DNA absorbance at UV wavelengths focusing at 299nm, leading to the complete 

absence of DNA absorbance above 302nm.28 Since this rapid drop of DNA absorbance 

coincides with the 299nm border wavelength between the 288nm irradiation system that 

produced high DNA damage with low ROS, and the 311nm irradiation system that produced 

low DNA damage with high ROS, and since the irradiation peaks centered at 288nm and 

311nm do not overlap, we conclude that the empirical boundary of the action spectra of 

DNA damage dependent vs. DNA damage independent LAGT to be at 299±3nm.

A major disappointment with the 325nm HeCd laser system we used previously is its 

modest LAGT effects (8-fold)16. This prompted us to evaluate shorter UVA wavelengths 

more closely. Remarkably, both 311nm and 320nm UVA achieved 100-fold greater LAGT 

effects at their peak fluences. Moreover, the 4-fold increased LAGT effect observed in C3H 

vs. 293 cells is consistent with a greater net activation of host DNA polymerases in the less 

transfectable cell line. As this effect would be even greater in nondividing cells, the peak 

LAGT effect in articular chondrocytes could be several thousand fold, and warrants future 

investigation.

As with most experimental research, our studies produced several results whose explanation 

is beyond the scope of our current understanding. Most notably are the sharp loss of the 

LAGT effect at doses 3-fold and 1.5-fold above the peak for 311nm and 320nm UV 

respectively. As this was not due to a commensurate increase in cytotoxicity, this biphasic 

response to short wavelength UVA suggests that there may be negative cellular feedback 

mechanisms that are triggered prior to cell death. Our other enigmatic observation that begs 

further investigation is the observation that greater cytotoxicity and DNA damage was 

observed at 320nm compared to 311nm and 330nm. This suggests that a yet to be identified 

cellular chromophore with a narrow excitation spectrum between 316nm and 325nm exists.

Collectively, our results clearly indicated that the 311nm UVA system is the most ideal light 

source for LAGT that we have tested to date, based on its ability to generate high levels of 
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ROS with minimal DNA damage, and cause more than a 800-fold increase in transgene 

expression in C3H cells. Moreover, we find this 311nm system to be a clinically relevant 

option, due to the 311nm peak in the emission spectrum of Hg lamps, which are an 

inexpensive and widely used light source. Thus, future studies with this system to assess 

LAGT therapy in vivo are warranted to assess the true potential of this technology.

Conclusions

311nm UV is the optimal wavelength for LAGT based on its remarkably high peak effect 

(800-fold), its low cytotoxicity, and its inability to induce DNA damage at effective doses. 

In vivo, 311nm UV can significant increase (6.6-fold) rAAV transduction efficiency in 

articular chondrocytes without evidence of cytotoxicity. These 311nm UV effects correlated 

with its potent ability to induce intracellular ROS, confirm that this biochemistry is central 

to the mechanism by which it activates DNA polymerases to facilitate rAAV second-strand 

synthesis.

Methods

Cell lines and viral stock

Human embryonic kidney HEK 293A (Invitrogen, R705-07) and mouse embryonic 

C3H10T1/2 (ATCC, CCL-226) adherent cell lines were cultured in standard medium 

(Dulbecco’s modified eagle medium/10% fetal bovine serum/penicillin-streptomycin) and 

plated in 96-well and 24-well culture plates. The assays were performed at 90% confluence.

The rAAV-Luc vector (rAAV type 2.5 carrying luciferase gene under the cytomegalovirus 

promoter) was obtained from Gene therapy vector core facility at the University of North 

Carolina at Chapel Hill.

UV sources

288, 311, 320 and 330nm—A xenon short arc light source (Hamamatsu Photonics, 

Japan, LC8 150 W) was customized to produce a continuous output of specific wavelength 

ranges of ultraviolet light for irradiation of cultured cells. A bandpass filter was placed in the 

beam path after the internal shutter to select the specific wavelengths used in this study. The 

bandpass filter spectra were measured using a Newport OSM 100 UV/VIS Spectrometer that 

had a 0.1 nm resolution in the 200–1100 nm spectral region and a wavelength accuracy of +/

− 0.08 nm at 349nm. The bandpass filters obtained from Asahi Spectra provided a peak 

transmission of 65%, with a 10 nm full width at half maximum bandpass centered at the 

following wavelengths: 288, 311, 320, and 330 nm. These filters were effective in the 

ultraviolet spectral region, but passed wavelengths longer than 500 nm with little 

attenuation. A Hoya U340 ultraviolet transmitting filter was added as a shortpass filter to 

eliminate all output except for the intended bandpass UV emission during the power 

calibration measurement. Table 1 provides the performance of this illumination source at 

full output power. The full bandpass power in the UV was then calculated using the known 

U340 transmission provided in Table 1. All experiments were performed using the Asahi 

UV bandpass filter only, as the wavelengths > 500 nm were not deemed to produce any 

adverse effects on the cell cultures. The LC8 provides a power adjustment (1% increments) 
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and internal shutter (0.1 second resolution) that allowed precisely timed exposures of the 

cell culture samples. The filtered ultraviolet light output is coupled to a 5 mm diameter 

multifiber bundle, which had a 1 meter length and an 11 degree half angle beam divergence.

349nm—The 349 nm ultraviolet exposure system used a diode-pumped Nd:YLF laser 

system, which was frequency shifted to 349 nm (0.1 nm 50% bandwidth) and provided 0–24 

× 10-6J pulses at a repetition rate of 5,000 pulses per second. The ultraviolet light was 

simultaneously coupled through a 200 micron core multimode fiber along with a continuous 

532 nm 2 mW alignment laser. A maximum dose of 282 J/m2/s was obtained for a 19 mm 

diameter exposure area at full diode pumping current.

365nm—A Hamamatsu LCL1 model L9613-200 UV LED spot curing light source was 

used to produce a peak centered at 365nm. This source employed a 200 mW, 365 nm (10 nm 

50% bandwidth) LED and provided an exposure area of 10 mm diameter at the output of the 

exposure aperture. The output fluence was adjustable through the control of the percentage 

of full diode current (1–100%), along with the 0.1 second time duration control (0 to > 1000 

seconds) provided by an internal shutter. The maximum fluence produced by this unit was 1 

kJ/m2/s.

UV irradiation

The exposure dosage was derived from the values listed in Table 1. The cell culture plate 

was positioned under the vertically held fiber optic cable. The gap between the fiber and cell 

plate was adjusted to illuminate either 1 or 4 wells in 96 well plate or 1 well in 24 well plate. 

The fluence was then calculated from the listed full UV bandpass power, using the specific 

beam area and the exposure time: F = P/A × T × 10 (units J/m2), where P is the UV power 

from Table 1, A is the area of the UV beam at the cell layer position in cm2, T is exposure 

time in seconds and 10 corrects for the unit conversion from mW/cm2 to J/m2. The desired 

doses of specific wavelength ranges were delivered to cells by setting the fiber output at the 

specified distance and specifying the exposure time that varied from 0.5 seconds to 10 

minutes.

Efficacy of light-activated gene transduction (LAGT)

For irradiation, the 90% confluent cultured adherent cells in transparent polystyrene 96 well 

plates were kept warm on a 37°C heating plate covered with white paper, the medium was 

replaced with 37°C phosphate buffered saline (PBS). The cells were irradiated with 

specified wavelength ranges and doses. Each condition was done in 4 replicates. The PBS 

was replaced with the fresh 37°C warm medium containing the rAAV-Luc virus, to obtain 

the multiplicity of infection of 1000 virus genomes per cell. Twenty four hour later, the 

medium was removed, the cells were washed twice with PBS and homogenized in culture 

plates by intensive orbital shaking (40 rpm at 7 mm diameter) with 25 ul of Cell Lysis 

Buffer (Promega) and 8 beads in each well (Circonia-Silica, 1 mm, Biospec Products, 

Bartlesville, OK) for 10 minutes. The lysates were transferred to 96 well black plates, 100 ul 

of Luciferase Substrate (Promega) was added immediately and quick using Eppendorf 

repeater, the luminescence was read using Modulus microplate reader (Promega, Sunnyvale 

CA), 0.5 sec each read, each plate was read 3 times. Statistical analysis of the results shown 

Myakishev-Rempel et al. Page 8

Gene Ther. Author manuscript; available in PMC 2012 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in figures 2–6 was performed using one-way analysis of variance with GraphPad InStat 

(www.graphpad.com).

Cytotoxicity by trypan blue staining

Selective staining of dead cells by trypan blue was used 1 hour after UV irradiation as a 

measure cytotoxic effects in 90% confluent cells in situ29. Staining in-situ was used to avoid 

detachment of cells with trypsin which causes additional damage thus raising the 

background as observed in “no light” controls. The number of floating cells was controlled 

with hemocytometer counting and found insignificant even after highly toxic doses of UV. 

The cells were cultured in 24 well plates, irradiated, incubated for 30 min., covered with a 

solution of 0.4% trypan blue (Invitrogen) for 30 seconds, the trypan blue solution was 

aspirated, the cells were immediately photographed with Nikon D40 camera attached to 

Olympus microscope. Blue and colorless cells were later counted using ImageJ.

Quantification of DNA damage by Comet assay

DNA damage was quantified using single cell gel electrophoresis assay, also known as 

Comet assay, using the Comet assay kit (Cat. 4250-050-K by Trevigen, Gaithersburg, MD) 

in accordance with the manufacturer’s protocols. In brief, 293 and C3H cells were irradiated 

in 96 well culture plates through a layer of PBS, immediately scraped, resuspended, 

embedded in low-melting agarose on the surface of a microscope slide and lysed by 

submerging into a lysis buffer. Following 15 min alkaline lysis, the cells were subjected to 

electrophoresis in alkaline conditions such that the DNA fragmented by UV and alkaline 

treatments would leave the original location of the cell and migrate in agarose forming a tail. 

The microscope slides were subjected to electrophoresis under approximately 1–2 mm layer 

of buffer at 1 V/cm voltage for 25 min. The obtained comets (the remaining DNA in the 

cells and the tails) were visualized by SYBR green staining and fluorescent microscopy with 

Olympus microscope. Digital images were obtained with such resolution that an average cell 

had a diameter of about 150 pixels. The intensities and sizes of the obtained “comet heads” 

and “tails” were quantified using a free Cometscore program v.1.5 by Tritek, Sumerduck, 

VA. Fifty or more cell traces per treatment were analyzed. Tail moment calculated by 

Cometscore program was used for plotting the values as it is a function of both intensity of 

the tail (amount of migrating DNA) and its relative size (size of DNA fragments). This Tail 

Moment, commonly named “Olive Tail Moment” 30 is a product of tail length and its 

relative intensity, where tail relative intensity is calculated relative to total cell intensity and 

tail length is defined as the distance in pixels between center of the tail and the center of the 

comet head and represents a measure of DNA damage.

Pyrimidine dimers

The 90% confluent cells in 24 well plates were irradiated with UV light via a layer of PBS. 

The PBS was replaced with 500ul of lysis buffer containing 100 mM Tris-HCl (pH 8.0), 5 

mM EDTA (pH 8.0), 200 mM NaCl, 0.2% SDS and 100ug/ml Proteinase K and incubated at 

55°C overnight. DNA was sedimented in rolled tubes with 0.5 ml isopropanol and 200ug of 

glycogen for 4 hours, centrifuged, dissolved in TE at 55°C for 1 hour, quantified with 

Nanodrop spectrophotometer (ThermoFisher, Waltham MA) and agarose electrophoresis 
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and fragmented with EcoRI enzyme for ease of pipetting. Pyrimidine dimers were quantified 

using Southern-Western dot-blot assay31 with a polyclonal antibody raised against UV-

treated DNA (Thymine dimers antibody, Abcam, ab10347). 30ng of DNA from 288nm 

treatment and 600ng of DNA from 311, 320 and 330nm treatments were denatured by 

heating 10 min in TE buffer and cooling, loaded on Hybond N+ membrane (GE Healthcare, 

Piscataway, NJ), baked for 12 min at 80°C, blocked in 5% dry milk, hybridized to the 

primary antibody, 1:500 dilution, washed, hybridized to the secondary horse-radish 

peroxidase-conjugated antibody at 1:500 dilution (antimouse HRP, Thermo Scientific, 

thermoscientific.com), and developed using ECL plus assay (GE Healthcare) and variable 

time exposures with BioMax film (Kodak, Rochester, NY). Serial dilutions of 254nm UV-

treated DNA were used to determine the exposure with linear dynamic range of gray color. 

The film was scanned and relative spot intensity was measured.

Reactive oxygen species (ROS) assay

Formation of ROS was assayed with a fluorescent probe 2′,7′-dichlorofluorescein-diacetate 

(DCFH-DA) (Invitrogen, Molecular Probes, Eugene, OR) and flow cytometry as previously 

described16 with minor modifications. DCFH-DA was prepared in dim light as 5mM stock 

in methanol of and stored at −20°C. The 90% confluent cells in 24 well plates were 

irradiated with UV light via a layer of warm (37°C) phosphate buffered saline (PBS). Under 

dim light, PBS was replaced with a fresh warm (37°C) 200uM DCFH-DA solution in 

DMEM without serum, the plates were kept in CO2 incubator for 30 min, cells were washed 

with PBS, covered with 100ul of 0.5% Trypsin (Invitrogen) for 7 min, resuspended in 1.5ml 

PBS and analyzed with Accuri flow cytometer (Accuri, Ann Arbor, MI) using 450nm 

excitation and 530nm emission fluorescence measurement.

Effects of UV on light-activated gene transduction in vivo

The effects of 313 nm UV light-activated gene transduction on articular chondrocytes in 

vivo were evaluated in the patellar trochlea defect rabbit model as previously 

described16,19. Female New Zealand White rabbits (4.5 to 4.7 kg) were studied following 

protocol approval by the University of Rochester Committee for Animal Resources. 

Anesthesia was provided by a single intramuscular injection of a mixture of ketamine (35 

mg/kg) and xylazine (5 mg/kg). Afterward, a surgical plane of anesthesia was maintained 

with isoflurane gas (2% to 2.5%). The defect was generated with a 2 millimeter punch after 

exposing the articular cartilage of the patellar trochlea through an anteromedial parapatellar 

arthrotomy and lateral luxation of the patella. The defect was exposed to escalating doses of 

313 nm UV light delivered to a 6 mm diameter spot centered at the defect via fiberoptic light 

guide positioned 4 mm above the surface. Previously, we demonstrated that rAAV infection 

is very efficient, reaching its peak after only ten minutes of direct interaction between the 

virus and the cells.32 Thus, to deliver the vector to the chondrocytes at the edge of the 

defect, 109 viral genomes of rAAV-eGFP in 80 μL of Hyalgan (sodium hyaluran) gel was 

gently applied over all open cartilage surface of approximately 1.3 cm2 with a sterile non-

absorbing applicator. The knee capsule and skin were closed in layers. For pain 

management, the rabbits received 1.1 mg/kg of intravenous Banamine (flunixin meglumine) 

preoperatively, followed by 1.1 mg/kg of Banamine administered intramuscularly or 

subcutaneously once a day for two days postoperatively if indicated by clinical signs. The 
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rabbits were euthanized with pentobarbital 48 hours after LAGT treatment. Both the 

experimental knee and the uninvolved, contralateral control knee were harvested, decalcified 

in Formical (Decal Chemical, Tallman, NY), embedded in paraffin, and sectioned into 3-

mm sections perpendicular to the articular surface. Immunohistochemical staining was done 

with goat anti-GFP antibody (Abcam, ab6673) in sections pretreated with Peroxidase I 

blocking reagent and Background Sniper. Visualization was done with Goat HRP-polymer 

Detection Kit and Romulin AEC Chromogen (all reagents from Biocare Medical, Concord, 

CA). The relative content of lacunae and eGFP-positive cells was quantified with use of 

stereotactic histomorphometry by three reviewers (MMR, FB and EB) who were blinded to 

the treatment. The reviewers counted the total number of articular chondrocytes, the number 

of eGFP-positive chondrocytes, and the number of empty lacunae in 40x objective fields in 

50 micrometer deep superficial layer of cartilage at 1.5–3mm distance range from the center 

of the defect. The means of the three scores were used for ANOVA analysis of variance.
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Figure 1. Spectral output of the UV light sources
The relative spectral output from the filtered xenon lamp, Nd:YLF laser, and the UV LED 

system, are presented at the indicated wavelengths. Note that there is no significant overlap 

between the UVB system focused at 288nm with the three UVA filtered emissions, while 

there is significant overlap between the filtered UV focused at 311nm, 320nm, and 330nm. 

The data are presented as the mean + SE in arbitrary units (a.u.)
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Figure 2. Efficacy of LAGT at the UVB-UVA transition
C3H and 293 cells were cultured in 96-well plates and subjected to LAGT with rAAV-Luc 

at MOI = 1,000. The wavelength and doses of UV light were varied between treatment 

groups as indicated. Each treatment was done in quadruplicate. The optimal dose ranges for 

each wavelength were selected based on preliminary experiments (not shown). Luciferase 

activity was assayed after culturing the cells for 24 h after the LAGT treatment, and the data 

from a representative experiment (n=4) are presented as the fold-change (mean + SE) 

compared to the no light (NL) treatment group (*p<0.05 and **p<0.01 vs. 0 J/m2 UV 

control, NL).
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Figure 3. Spectral effects of UV on cell viability
C3H and 293 cells were cultured in 24-well plates and exposed to the indicated fluence of 

UV in quadruplicate. The cells were then cultured for one hour before Trypan blue staining 

to assess viability. The percentages (mean + SE) of the stained (dead) cells from a 

representative experiment (n=4) are presented (*p<0.05 and **p<0.01 vs. no light (NL) 

control).
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Figure 4. Spectral effects of UV on macroscopic DNA damage (Comet assay)
C3H and 293 cells were cultured in 96-well plates and exposed to the indicated fluence of 

UV. Single cells were embedded in agarose immediately after UV irradiation, 

electrophoresed and photographed using a fluorescent microscope to determine the “Olive 

tail moment” of each cell/comet (representing the extent of DNA damage). (A) 

Representative photographs of cells from 288 nm (3KJ/m2) treatment and from 311 nm 

(10KJ/m2) treatment. (B) UV action spectrum for “Olive tail moment” in arbitrary units 

(a.u.). The data are presented as the mean + SE of >50 cells scored for each treatment 

(**p<0.01 vs. no light (NL) control).
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Figure 5. Spectral effects of UV on pyrimidine dimer formation
C3H and 293 cells were cultured in 24-well plates and exposed to the indicated fluence of 

UV in quadruplicate. Total DNA was isolated from the exposed cells, and pyrimidine dimer 

levels were determined via dot-blot South-Western assay31. The data from a representative 

experiment (n=4) are presented in arbitrary units (a.u.) as the mean + SE (*p<0.05; 

***p<0.001 vs. no light (NL) control).
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Figure 6. Spectral effects of UV on intracellular ROS generation
C3H and 293 cells were cultured in 24-well plates and exposed to the indicated fluence of 

UV. Then the cells were incubated with 50uM DCFH-DA in the dark, trypsinized, and the 

mean fluorescence intensity (MFI) of the culture was determined by flow cytometry. 

Representative histograms of the 288nm vs. 311nm samples are shown to illustrate the 

differences observed between these groups. Each bar in the graph represents the mean 

fluorescence intensity + SE from a representative experiment (n=4; *p<0.05 vs. no light 

(NL) control).
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Figure 7. In vivo 311nm UV-induces LAGT in rabbit articular cartilage
Rabbits received defects in their femoral chondyles via open arthrotomy, and the articular 

surface was irradiated with either 0 (left knee, “No UV”) or 6 KJ/m2 (right knee) of 313 nm 

UV. Afterwards, the defect was filled with 109 viral genomes of rAAV-eGFP in hyalgan gel, 

and the incision was sutured. The chondyles were harvested 48hrs later, and processed for 

immunohistochemistry with anti-GFP antibody. A representative section of the LAGT 

treated (UV) and non-LAGT treated (No UV) area of cartilage outside (0.5 mm away) from 

the defect are presented at 10x magnification to illustrate the dramatic difference in the 

number of transduced cells (reddish-brown staining).
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Table 1

Bandpass filter center 
λ (nm)

Power from 5 mm 
fiber (mW)

Hoya U340 Transmission 
%

Full UV bandpass 
output power (mW)

Fluence at 5* mm fiber 
output (J/m2/s)

288 5.1 61.3 8.3 424

311 12.9 78 16.5 844

320 16.9 79 21.4 1090

330 13.4 80 16.8 857
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