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Abstract

Histone methylation is an epigenetic modification of chromatin undergoing dynamic changes and balancing tissue-specific
demands of proliferation and differentiation. In cancer, aberrant histone methylation can facilitate oncogenic and tumor
suppression programs by modulating gene expression. Histone remodelers such as lysine methyltransferases and lysine
demethylases are seemingly opposite or contrary forces but may be part of an interconnected network complementing
each other. We identify several layers of molecular communication where epigenetic master regulators engage in crosstalk
between tumor metabolism and histone remodeling. Epigenetic master regulators have the ability to cooperate with mem-
bers of the transcriptional machinery, DNA methyltransferases, as well as other histone modifiers. High-throughput
sequencing and omics data in combination with cancer systems biology analysis have the power to prioritize regulatory

events epigenome-wide.
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Introduction

One of the great mysteries of biology is how the human genome
is programmed in each cell to activate only the relevant genes.
Eukaryotic chromatin is structurally organized in nucleosome
particles, which are composed of a histone octamer core around
which 147 base pairs of DNA are wrapped in 1.65 turns of a tight
superhelix [1, 2]. Chromatin is not an inert structure, but rather
an instructive DNA scaffold that can respond to external cues to
regulate the many uses of DNA. The methylation of histone pro-
teins at specific residues plays a major role in the maintenance
of active and silent states of gene expression in developmental
processes and disease (Figure 1). Pioneering experiments by
Allfrey and Mirsky >50 years ago identified methylation and
acetylation of histones by isotope incorporation and showed

that histone modification can influence whether RNA synthesis
of genes is switched on or off [3].

Histone methylation mainly occurs on the side chains of
solvent-accessible lysines and arginines of termini of histone
H3 and H4. Unlike acetylation and phosphorylation, however,
histone methylation does not alter the charge of the histone
protein but its hydrophobicity. Hydrophobic CH3- groups may
be sequentially added and result in mono-, di- or trimethylated
¢-lysine (Figure 1A) or mono- or symmetrically or asymmetric-
ally dimethylated arginine [4]. Such distinct patterns of covalent
histone marks introduced the idea of a histone code, a language
edited and read by proteins and communicated in addition to
four-letter base code of DNA [5, 6]. Epigenetic control via histone
modification is largely operated by lysine methyltransferases
(KMTs) [7] and lysine demethylases (KDMs) [8-10], which were
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Figure 1. Structural properties and functional impact of epigenetic histone lysine modification on the nucleosome octamer. (A) Methylation of lysine residues on
solvent-accessible histone tails increases hydrophobicity and compaction of nucleosome assembly. (B) Epigenetic transitions of histone lysine methylation pattern
mediated by histone KMT and histone KDM families. Methylation of sites K9, K27 and K36 (red) is associated with transcriptional repression, while demethylation of
these sites leads to transcriptional activation (blue). Methylation of other histone lysine residues (gray) is associated with promoter activation, DNA recombination,

replication, repair, and enhancer functions.

discovered to take key roles in gene expression (Figure 1B, Table
1) [11]. An important aspect of epigenetic regulation is that the
process leading to transcriptional changes in a tissue does not
rely on an isolated event governed by a solitary enzyme modify-
ing a monomolecular substrate. A network of different histone-
modifying enzymes writes, erases and reads epigenetic marks
(Figure 1B). Epigenetics focuses on factors and processes that
regulate how and when certain genes are turned on and off,
whereas epigenomics refers to analysis of global epigenetic
changes across many genes, made possible by high-throughput
sequencing methods. In particular, chromatin immunoprecipi-
tation with next-generation sequencing (ChIP-Seq) provided
breakthroughs to globally detect and characterize protein-DNA
interactions and epigenetic modifications [12-14]. Aberrant
methylation of histones, in particular hypermethylation, is
thought to influence the pathobiology of cancer by disrupting
the same pathways as are affected by deleterious mutations
and promoter cytosine-phosphate-guanine (CpG) site DNA
hypermethylation [15, 16].

Epigenetic master regulators use reversible chemical
modifications of chromatin, histone or nucleotide marks,
and affect gene activity without altering the core DNA se-
quence. In cancer, such epigenetic master regulators are
found at the top of regulatory hierarchies, particularly in
pathways related to cellular proliferation, survival, fate and
differentiation. For the manifestation of a genomic or non-
genomic aberration of an epigenetic master regulator, it is a
necessity that its own activity is affected by somatic muta-
tion, copy number alteration, expression levels, protein co-
factors or methylation status. Epigenetic master regulators
often accomplish target specificity of their phenotypic pro-
gram by cooperation with members of the transcriptional
machinery and therefore may depend on tissue-specific ex-
pression of such auxiliary factors. In cancer, an epigenetic
master regulator populates an extreme state and is either
permanently switched on or off. An epigenetic master regula-
tor will become a cancer driver, if it is not functionally neu-
tral but contributes to tumorigenesis or disease progression
in its hyperactive or deactivated state. A defined challenge in
the field of epigenetic master regulators is to identify cancer-
specific vulnerabilities in gene targets and biological path-
ways that are frequently and consistently perturbed under
the control of an epigenetic driver.

Looking at the distribution of somatic alterations of epigen-
etic modifiers in cancer, trends of protein up- or down-
regulation are not clearly established. The idea that aberrant
histone methylation can throw tissue homeostasis off balance
is a simple resolution to this conundrum (Figure 2). Comparable
with Yin and Yang, where complementary forces keep each
other in check, activity of histone modifiers has to be main-
tained in dynamic steadiness and otherwise result in fatal tran-
scriptional outcomes [10, 17]. On the one hand, hyperactive
KMT or inactive KDM can cause repression of tumor suppressor
genes owing to accumulation of histone lysinemethylation
marks [18]. On the other hand, inactive KMTs or hyperactive
KDMs can contribute to transcriptional activation of oncogenes.
The idea of balanced epigenetic homeostasis explains why ex-
treme, epigenome-wide histone hypo- or hypermethylation
have been observed in cancer (Table 1) [19].

Recent multiomics data have shown that the H3K27-KMT6
family member, EZH2, is hyperactivated in many cancers
including prostate cancer, lymphomas and melanomas with
poor prognosis owing to immune evasion and repression of
tumor suppressors [20, 21]. In synergy with EZH2, the counter-
acting demethylases KDM6A and KDM6B show frequent loss-of-
function mutations as well as gene deletions resulting in accu-
mulation of repressive H3K27 marks [17, 22-24]. KDM3 and
KMT1 family members focused on remodeling of H3K9 marks
display a great range of dysregulation in cancer. In prostate can-
cer, sarcoma, lung cancer and melanoma, copy number and
transcriptional upregulation of KDM3A take a predominant role
as amplifier by transcriptionally activating oncogenic target
genes [9, 25]. Other KDM3 family members, KDM4C and KDM4D,
are equally up- and downregulated in cancer specimen and
may have diverse targets in oncogenic or tumor suppressor
functions [10, 26-28]. The H3K9-KMT1 family member SETDB1
has been identified in malignant melanoma to be amplified and
to increase the aggressiveness of the disease [29]. SETDB1 forms
a multimeric complex with SUV39H1 and other H3K9 methyl-
transferases to maintain gene silencing of tumor suppressor
genes [30]. Taken together, precision medicine in combination
with cancer systems biology has the ability to elucidate
genome- and epigenome-wide alterations and identifies molec-
ular pathways suitable for rational drug targeting [31].

In addition to being carbon sources for covalent histone
modifications, metabolites play key roles as signaling molecules
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Figure 2. Yin and Yang of histone demethylases and methyltransferases in cancer—epigenetic control of oncogenes and tumor suppressors. Consequences of hyper-
activation or loss of histone modifiers is shown at the example of H3K9 regulators, KDM3/KTM1 and H3K27 modifiers, KDM6/KTM6=EZH2. Both regulatory events,
transcriptional activation of oncogenes or transcriptional repression of tumor suppressor genes can contribute to tumor initiation and progression.

in the regulation of epigenetics (Figure 3). KDMs are tightly
linked to tricarboxylic acid cycle metabolites by their cofactor
requirements and ability to bind organic ketoacids.
Demethylation by jumonji-domain containing dioxygenase en-
zymes requires oxygen and 2-oxoglutarate (20G) as substrates;
complexed iron(Il) and ascorbate as enzyme-cofactors; and gen-
erates formaldehyde and succinate as products. Following the
oxidative decarboxylation of 20G to succinate, a highly reactive
ferryloxo species is generated that hydroxylates the
methyllysine protein substrate. Because the intermediate, car-
binolamine, is unstable, subsequent release of formaldehyde
from the reaction intermediate produces demethylated lysine.
The metabolic requirements for the 20G-dependent dioxyge-
nase cycle provide clues as to the physiological conditions that
might affect KDM activity. Another complication arises in can-
cer cells where somatic active site mutations cause isocitrate
dehydrogenase to increase an enzymatic sleeper-activity and to
produce predominantly the oncometabolite 2-hydroxyglutarate
(2HG) [32, 33]. Numerous organic acids, in particular 2-oxoketoa-
cids including 2HG, pyruvate, oxaloacetate, malate, fumarate or
succinate, have the ability to populate the enzymatic pocket of
KDMs and act as competitive inhibitors (Figure 3A). Several
metabolic conditions such as mitochondrial dysfunction, nutri-
ent limitation, oxidative stress or hypoxia typical for cancer
cells can modulate the activity of KDMs [34, 35]. Metabolic regu-
lation of histone methylation is induced by low 20G as a result
of glutamine depletion, ascorbate or iron deprivation, high suc-
cinate, high fumarate or high 2HG, and potentially leads to glo-
bally altered histone lysine methylation. Importantly, such
direct metabolic regulation impacts a wide range of effectors
and is not restricted to a specific transcriptional program or a
distinct histone lysine demethylation activity. Enzymes
involved in cytosine demethylation or synthesis of signaling
transmitters, carnitine and collagen have protein domains simi-
lar to jumonji dioxygenases and will be responsive to the same
metabolic cues. Active KDMs have numerous metabolic

enzymes as part of their target gene repertoire shown by their
binding and demethylase activity in matched ChIP-Seq assays
[25]. Activation of metabolic pathways supporting glycolysis,
amino acid, organic acid and lipid synthesis ultimately leads to
proliferative advantages of cancer cells (Figure 3B). Further, the
ability of KMTs and KDMs to cooperate with the transcriptional
machinery can amplify or mute specific transcriptional re-
sponses (Figure 3C). In the case of nuclear hormone receptors,
targets of transcriptional cooperation include steroid biosynthe-
sis as well as lipogenesis and enforces therapy resistance and
steroid-dependent signaling in adenocarcinomas [25, 36].
However, an unambiguous mode of interaction is not identified
and ranges from coexpression, protein contacts, to synergy in
local chromatin environment, or even posttranslational modifi-
cation. Indeed, non-histone protein modification by histone
demethylases adds complexity to the regulatory ability of
demethylases. Protein demethylation of TP53 suppressed
proapoptotic functions by inhibiting its transcriptional activity
[37-39]. Presence of regulatory POLYCOMB, COMPASS or
COREST protein complexes can control, stabilize or shift the epi-
genetic balance [40]. Interestingly, KDMs cooperate with a net-
work of transcription factors rather than an isolated partner,
while maintaining and accomplishing gene target and DNA se-
quence specificity. Prominent players in cooperation with the
epigenomic landscape of histone lysine methylation are MYC
oncogene, androgen receptor, estrogen receptor, TP53 tumor
suppressor protein, and hypoxia inducible factors, HIFs. HIF-
hydroxylases are closely related to KDM dioxygenases and re-
sponsive to changes in physiological oxygen concentration.
Even though these hydroxylases are cellular oxygen sensors, it
is unknown whether 20G-dependent dioxygenases like KDMs
are similarly sensitive. KDMs are operated downstream of HIFs
and direct gene targets of the transcription factors [41]. Such a
synergistic relationship is counterintuitive, as hypoxia would
expect to abolish KDM function. However, whether the KDM
dioxygenase cycle is blocked in hypoxia is yet to be shown.
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Figure 3. Crosstalk between tumor metabolism and epigenetic master regulators. Epigenetic histone lysine modifiers regulate and interact with metabolism on at least
three distinct levels: (A) Nutrient limitations of oxygen, glutamine and alpha ketoglutarate concentrations or oncometabolites such as 2-HG reduce KDM activity and shift
the histone code toward a hypermethylated state. (B) Hyperactivity of histone modifiers by mutation, somatic copy number amplification or transcriptional regulation can
target specific oncogenes and contribute to rewiring of central carbon metabolism. (C) Cooperation with transcription factors amplifies the transcriptional program underly-
ing the specific response and network. It takes a cancer systems biology approach to decipher regulatory loops and signaling mechanisms comprising all involved levels.

Although cancer and stem cells can be challenged by enzyme
inhibition [42-46], mechanistic details of factors and 2-oxoacid me-
tabolites that are relevant under physiological conditions in the de-
velopment of disease are yet to be defined. With both fields
maturing, it is evident that further synergy between epigenetic and
metabolomics will deliver new therapeutic agents as well as funda-
mental insights into how cellular chemistry regulates gene expres-
sion essential for tissue homeostasis.

Key Points

* Histone methylation is part of the central histone code.
Histone remodelers such as lysine methyltransferases
(KMTs) and lysine demethylases (KDMs) are complemen-
tary but interconnected forces in the network of different
histone-modifying enzymes that write, erase and read
epigenetic marks. Histone methylation of distinct epigen-
etic marks leads to condensed, transcriptionally silent
heterochromatin, whereas distinct loss of epigenetic
marks by histone demethylation causes local formation
of transcriptionally active euchromatin.

Epigenetic master regulators are at the top of cellular
hierarchies and control a distinct phenotypic program
via chromatin modification without altering the core
DNA sequence. Epigenetic oncogenes or tumor sup-
pressors can arise when an epigenetic master regula-
tor is somatically activated or lost and contributes to
cancer initiation and progression.

Deregulation of KMTs and KDMs turns epigenetic
master regulators into cancer drivers (Table 1): histone
hypomethylation can cause transcriptional activation
of oncogenes; histone hypermethylation can cause
transcriptional repression of tumor suppressor genes.
Histone methylation and DNA methylation are tightly
linked and rely mechanistically on each other. Lysine
methylation initiates, targets or maintains DNA methy-
lation, and vice versa. In addition, there is a strong co-
operation of epigenetic factors with the transcriptional

complex. Cooperation with transcription factors or
other members of the epigenetic machinery can target,
amplify or mute specific transcriptional responses.
High-throughput technology in combination with
multiomics systems biology is necessary to decipher
the dynamic interplay between epigenomics and func-
tional output in biological and biomedical settings. In
particular, a solid bridge between next-generation
sequencing platforms such and metabolomics has not
yet been established and remains a future challenge.
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