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Innate lymphoid cells (ILCs) are a critical element of the innate immune system

and are potent producers of pro-inflammatory cytokines. Recently, however,

the production of the anti-inflammatory cytokine IL-10 has been observed in

all ILC subtypes (ILC1s, ILC2s, and ILC3s) suggesting their ability to adopt a

regulatory phenotype that serves to maintain lung and gut homeostasis. Other

studies advocate a potential therapeutic role of these IL-10-expressing ILCs in

allergic diseases such as asthma, colitis, and pancreatic islet allograft rejection.

Herein, we review IL-10 producing ILCs, discussing their development,

function, regulation, and immunotherapeutic potential through suppressing

harmful inflammatory responses. Furthermore, we address inconsistencies in

the literature regarding these regulatory IL-10 producing ILCs, as well as

directions for future research.
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Introduction

Innate lymphoid cells (ILCs) are an immune cell type that have cytokine production

features of T lymphocytes but lack rearranged antigen receptors. As a result, ILCs lack

antigen specificity and instead respond to alarmins released predominantly, but not

exclusively, by epithelial and endothelial cells in response to damage caused by infection,

injury, or disease. Currently, three groups of ILCs have been discovered and defined. Group

1 innate lymphoid cells (ILC1s), the counterpart to CD4+ T helper (Th) type 1 cells, produce

interferon gamma (IFN-g) and express the transcription factor T-bet (1, 2). Group 2 Innate

Lymphoid cells (ILC2s), analogous to CD4+ Th2 cells, produce interleukin (IL)-5, IL-9, and

IL-13, and express the transcription factor GATA binding protein 3 (GATA-3) (3–5). Group

3 innate lymphoid cells (ILC3s), that parallel CD4+ Th17 cells, produce IL-17 and IL-22, and

express the transcription factor retinoid-related orphan receptor gamma t (RORgt) (6–9).
In the field of allergy, ILC2s are a primary focal point due to their double-edged

sword nature in both the pathogenesis, and possibly prevention, of allergic disease. In the

respiratory and gastrointestinal tracts, epithelial cells can be challenged by infectious
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agents or allergens that contain pathogen- or damage- associated

molecular patterns, resulting in epithelial cell release of alarmins:

IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), which

activate ILC2s (10–12). ILC2s respond by migrating to the

challenged site where they proliferate and release the pro-

inflammatory cytokines mentioned earlier at an amount that is

10-fold greater, on a per cell basis, than that released by their

CD4+ Th2 counterpart (13). As a result, ILC2s can participate in

host protective roles, such as the eradication of helminthic

parasites through IL-5-induced eosinophil recruitment and IL-

13-induced goblet hyperplasia and peristalsis (14–16). However,

when ILC2s are activated by alarmins in the setting of asthma,

the IL-5 they produce can lead to eosinophil activation

whose products damage the airway and exacerbate

bronchoconstriction. IL-13 is a central mediator of asthma by

promoting bronchial hyperresponsiveness and airway

remodeling, as shown in Figure 1 (17). Additionally, IL-13

disrupts the integrity of the epithelial barrier by breaking

down tight junctions (18) and promoting TSLP release,

leading to corticosteroid resistance in ILC2s (19).
Frontiers in Immunology 02
To promote immunologic tolerance, T regulatory cells (Tregs)

derived in the thymus or extrathymically from CD4+ naïve T cells

release the anti-inflammatory cytokines transforming growth factor

beta (TGF-b) and IL-10 (20, 21). Interestingly, recent studies reveal
a unique ability for ILCs to adopt a regulatory phenotype, similar to

Tregs, through production of IL-10. Herein we review the

development, function, regulation, pathogenic and potential

immunotherapeutic roles of IL-10-producing ILCs, as well as

address controversies and directions for future research.
Regulatory innate lymphoid
cells (ILCregs)

Using IL-10-green fluorescent protein (GFP) reporter mice, a

small subset of Lin- CD45+ CD127+ IL-10+ ILCs were identified in

the small intestinal lamina propria (sLP) at baseline. Sample

analysis of human intestinal biopsies using flow cytometry also

confirmed the presence of these IL-10+ ILCs in the sLP of humans

at baseline (22). These cells were named regulatory innate
B

A

FIGURE 1

Development of IL-10+ ILCs in the Lung and Colon of Humans. (A) Alternaria alternata activates airway epithelium 2a) activated airway
epithelium releases TSLP and IL-33 2a) IL-33 activates ILC2s, causing release of IL-5 and IL-13, while TSLP confers corticosteroid resistance 3a)
IL-5 recruits and activates eosinophils 4a) IL-13 causes goblet cell hyperplasia, AHR, and release of RA from airway epithelium 5a) RA promotes
the trans differentiation of ILC2s into ILC210s 6a) ILC210s release IL-10 which inhibits ILC2-mediated type 2 inflammation and maintains barrier
integrity through the inhibition of IL-6 and IL-8 which function to increase barrier permeability, resulting in neutrophil transmigration 7a) Tregs
form and regulate type 2 inflammation through release of TGF-b which blocks ILC210s. (B) In the colon, CD103+ mDCs release RA and IL-23A,
promoting CD127+ ILC1s trans differentiation into ILC3s 2b) Tregs release TGF-b promoting the trans differentiation of ILC3s into ILCregs. AHR,
airway hyperreactivity; ILC, innate lymphoid cell; ILC1, type 1 innate lymphoid cell; ILC2, type 2 innate lymphoid cell; ILC3, type 3 innate
lymphoid cell; ILC210s, IL-10

+ type 2 innate lymphoid cell; ILCreg, regulatory innate lymphoid cell; IL, interleukin; mDC, monocyte-derived
dendritic cell; RA, retinoic acid; TGF-b, transforming growth factor beta; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin. Figure 1
was created using BioRender.com.
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lymphoid cells (ILCregs) due to their absence of ILC1 markers

NK1.1, NKp46, and Tbx21 (encodes T-bet); ILC2 markers ST2,

killer cell lectin-like receptor subfamily Gmember 1 (KLRG1), and

GATA-3; and ILC3markers NKp46, CD4, and RORgt. Thus, these
IL-10+ ILCs were deemed to be a new kind of ILC subset (22).

Interestingly, while ILCregs exhibited similarities to Tregs,

such as their ability to produce IL-10 and TGF-b, they lacked

expression of the Treg transcription factor Foxp3 (23). Unlike

ILC1s, ILC2s, and ILC3s, ILCregs originate from the common

helper-like innate lymphoid precursor (CHILP)-a4b7+Id2high

and express Id3 which is required for their development/

maintenance (1, 22). Due to the constitutive presence of

ILCregs in the intestines and their expansion seen during

dextran sodium sulfate (DSS)-induced colitis in Rag-/- mice

(22), ILCregs have been conjectured to maintain gut tolerance

through production of IL-10. When activated ILC1s and ILC3s

were adoptively transferred into DSS-induced colitis Rag1-/-

Il2rg-/- (ILCreg deficient) mice, severe colitis resulted, an effect

that was attenuated upon ILCreg reconstitution (22). However,

severe colitis resulted upon transferring IL-10Ra-/- ILC1s and

ILC3s into Rag1-/- Il2rg-/- mice reconstituted with WT ILCregs,

revealing that ILCregs protect against colitis through IL-10 (22).

Notably, Tregs isolated from Foxp3-DTR (human diphtheria

toxin receptor)-GFP mice adoptively transferred into ILC1/ILC3

reconstituted Rag1-/- Il2rg-/- mice had no effect on intestinal

inflammation even after the depletion of Foxp3+ Tregs using

diphtheria toxin (DT) treatment (22). However, when

ILCregDTR cells were depleted in the intestines of mice

following DT treatment, severe inflammation ensued (22).

Importantly, these studies distinguish ILCregs as having a

unique protective function in the intestines of mice.

In addition to the sLP, ILCregs have been discovered residing

in the kidney’s interstitium of both humans and mice at baseline.

These ILCregs produce large amounts of IL-10 and TGF-b that
Frontiers in Immunology 03
protect against renal ischemia/reperfusion injury (IRI), an effect

that was abolished by neutralizing IL-10 and TGF-b antibodies

(24). Interestingly, administration of an IL-2/anti-IL-2

monoclonal antibody complex (IL-2c) expanded ILCregs in the

kidney of IRI Rag-/- mice, reducing tubular epithelial cell apoptosis

and improving renal function (24). Importantly, depletion of these

renal ILCregs using PC61 (an anti-CD25 antibody) showed

greater kidney injury in IRI Rag-/- mice, revealing their critical

role in renal protection (24). Adoptive transfer of ILCregs

expanded ex vivo with IL-2c into IRI C57BL/6 mice further

confirmed their protective role by restoring kidney function

through the suppression of ILC1 and neutrophil infiltration and

enhancing M2 macrophage generation (24). Notably, ILCregs in

the kidneys reduced the frequency of ILC1s but not ILC2s or

ILC3s, suggesting a pathogenic role of ILC1s in renal IRI (24) as

well as differences in ILCreg function dependent on anatomical

location (see Table 1).
Regulatory phenotype of ILC2s

There is also evidence that ILC2s have the capacity to

produce IL-10 and may have immunoinhibitory potential. For

instance, the hypoxic microenvironment of pancreatic ductal

adenocarcinoma tumors (PDAC) can promote ILC2s to become

regulatory IL-10+ ILC2s through the upregulation of hypoxia-

inducible factor 1-alpha (HIF-1a) which binds to the Il10

promoter (27). Importantly, reoxygenation or neoadjuvant

chemotherapy caused IL-10+ ILC2s to convert back into

ILC2s, suggesting a regulatory plasticity. Unlike the previously

described ILCregs, IL-10+ ILC2s maintained their ILC2

phenotype through the expression of Il1rl1 (ST2), KLRG1 (26)

and Gata3 (28); thus, they have been termed ILC210s

(see Table 1).
TABLE 1 Differences between mouse and human ILCregs and ILC210s.

Cell Location
(Ref)

Species Phenotype % Of Total IL-10+ ILCs
at Baseline

Express
Id3

Express GATA-3/
KLRG1/ST2?

TGF-b Function

ILCregs

Kidneys
(24)

Human Lin- CD127+

CD161+ IL-10+
~4.4%

Yes No Stimulatory

Suppresses
ILC1s

Mouse Lin- CD127+ IL-10+ ~2.7%

Intestines
(22)

Human Lin- CD45+ CD127+

IL-10+
~15% Suppresses

ILC1s and
ILC3sMouse ~13%

ILC210s

Lungs
(25, 26)

Human Lin- CD45+ CD127+

CD161+ IL-10+
0%

No Yes Inhibitory
Suppresses
ILC2s

Mouse Lin- CD45+ Thy-1.2+

IL-10+
~0.4%
f

GATA-3, GATA binding protein 3; Id3, inhibitor of DNA binding 3; ILCs, innate lymphoid cells; ILC1s, type 1 innate lymphoid cells; ILC2s, type 2 innate lymphoid cells; ILC3s, type 3
innate lymphoid cells; ILC210s, IL-10+ type 2 innate lymphoid cells; ILCregs, regulatory innate lymphoid cells; KLRG1, killer cell lectin-like receptor G1; Ref, reference; sLP, small intestine
lamina propria; ST2, soluble interleukin 1 receptor-like 1; TGF-b, transforming growth factor beta.
rontiersin.org

https://doi.org/10.3389/fimmu.2022.1014774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Thomas and Peebles 10.3389/fimmu.2022.1014774
ILC2s treated with the common Treg polarization factors

TGF-b, vitamin D, or retinoic acid (RA), became ILC210s only in

the presence of RA (25). Notably, administration of a pan-

retinoic acid receptor (RAR) inhibitor blocked ILC210s

generation in a dose-dependent manner, revealing that RA

acts through RAR to induce the ILC210 phenotype (25). In an

in vitro study using air liquid interface (ALI) cultures of primary

bronchial epithelial cells treated with IL-5, IL-13, and IL-33,

from patients with chronic rhinosinusitis with nasal polyps

(CRSwNP), only IL-13 promoted RA generation (25). This

result suggests that IL-13 derived from ILC2s upregulates

ILC210s by promoting RA generation from epithelial cells,

which in turn downregulates the ILC2-induced type 2

inflammatory response through IL-10 release (see Figure 1).

This implies that ILC2s have a mechanism to autoregulate the

inflammation that they induce.

In a model of allergic lung inflammation in mice induced

by either four daily intranasal administrations of IL-33 or

chronic papain exposure, a population of IL-10 producing

Lin- Thy1.1+ ILC2s emerged (26). Interestingly, the same

population of IL-10+ ILC2s was induced by treating ILC2s in

vivo with IL-2c (26). However, ILC2 production of IL-10 is not

restricted to the lungs. When treating small intestinal ILC2s

from naïve mice with IL-2, IL-4, IL-10, IL-27, and neuromedin

U (NMU) together, these ILC2s began producing IL-10 (29).

Interestingly, IL-2 and IL-4 enhanced IL-10 production by

ILC2 when these cytokines were administered individually

in culture (29). As a result, these experiments collectively

suggest that ILC2 trans-differentiation into ILC210s is a self-

amplifying process instructed by their cytokine milieu

and environment.
Regulation of IL-10 producing
ILCregs and ILC2s

Immune suppression is not always beneficial, as in the case

of PDAC tumors where IL-10+ ILCs promote tumor growth

(27). As a result, regulation of IL-10 by ILCs is crucial. A study

conducted on ILC2 from WT and C3a receptor knockout

(C3ar-/-) mice reported that genetic deletion of the C3a

receptor resulted in significantly less IL-13, IL-5, and

granulocyte-macrophage colony-stimulating factor (GM-CSF)

production, while C3a signaling inhibited IL-33-induced IL-10

production from ILC210s (30). Thus, the anaphylatoxin C3a

combined with IL-33 stimulation enhanced the pro-

inflammatory ILC2 phenotype through inhibiting Il10

transcription and promoted ILC2 antigen-presentation to

CD4+ T cells, resulting in Th2 differentiation (30).

Additionally, tumor necrosis factor-like cytokine 1A (TL1A)

strongly abrogated IL-10 production in ILC210s while increasing

IL-5 and IL-13 production (29). Collectively, these results reveal
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that the regulatory phenotype adopted by ILC2s is reversible and

influenced by environmental conditions.

Cytokines can also downregulate IL-10-expressing ILCs. In

human ILC210s from patients with systemic sclerosis (SSc),

treatment with TGF-b dramatically decreased the production

of IL-10 and reduced KLRG1 expression, an ILC2 surface

marker found to be required for IL-10 production (29, 31, 32).

However, unlike ILC210s, ILCregs rely on TGF-b signaling for

their survival and expansion (see Table 1), as seen through the

effects of deleting TGF-b receptors on ILCs using Tgfbr2flox/flox;

CreERT2 mice (22, 33). This finding reveals differences between

ILCregs and ILC210s, potentially revealing the presence of two

regulatory ILC subtypes.
Regulatory phenotype of ILC3s and
ex-ILC1s

Several pieces of evidence suggest that ILC3s are plastic and

can become ILCregs. A study investigating colorectal cancer

(CRC) tumor infiltrating ILCs from azoxymethane/dextran

sodium sulfate (AOM/DSS)-induced colitis models revealed

that ILC3 numbers decreased, while ILCreg numbers

increased, during CRC tumor progression (34). At the late-

stage of CRC tumors, fate mapping using Rosa26-STOP-

tdTomato;Rorc-Cre;IL-10-GFP lineage tracing mice followed

by AOM/DSS treatment revealed former ILC3s (exILC3s)

producing IL-10 and expressing Id3 (34). Using TGF-b
receptor knockout mice treated with AOM/DSS, ILCreg

numbers decreased while ILC3 numbers increased, causing

tumor growth suppression (34). Furthermore, ILC3 treatment

with a TGF-b inhibitor prevented the conversion of ILC3s to

ILCregs, a result that was consistent in both the AOM/DSS-

induced CRC mice and patient derived xenograft (PDX) tumors

(34). Collectively, TGF-b drives the trans-differentiation of

ILC3s towards ILCregs in both humans and mice. This

important finding reveals that IL-10 production from ILCs is

not limited to KLRG1+ ILC2s, as previously thought (29, 32),

and brings to question whether ILC1s can adopt a

regulatory phenotype.

CD127+ ILC1s that lost their ability to proliferate contained

the capacity to reversibly differentiate into ILC3s (exILC1s) in

the presence of IL-2, IL-23, and IL-1b when administered

together (35). Further analysis revealed that exILC1s lost their

T-bet expression and IFN-g production, but began expressing

RORgt and producing IL-22, committing to an ILC3 phenotype

(35). Notably, in the presence of IL-2 and IL-12, ILC3s and

exILC1s lost their RORgt and IL-22 expression while

upregulating T-bet expression and IFN-g production,

committing to an ILC1 phenotype (35). In addition to the

mentioned cytokines, RA signals through its receptors (RARA,

RARG, and RXRG) present on CD127+ ILC1s to accelerate the
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differentiation of ILC1s into ILC3s (35, 36). Human monocyte

derived dendritic cells (mDCs) treated with RA upregulated

CD103 expression and began producing RA and IL-23A under

basal conditions and lipopolysaccharide (LPS) stimulation,

revealing a role CD103+ mDCs play in CD127+ ILC1s

differentiation toward ILC3s (35). As a result, it is possible

ILC1s can become ILCregs through their commitment to an

ILC3 phenotype in the presence of CD103+ mDCs (Figure 1).

However, ex vivo stimulation with IL-12/IL-15 markedly

increased IL-10 production in human ILC1s revealing their

direct ability to adopt a regulatory phenotype (33). These

findings reveal a regulatory plasticity within all ILC subtypes,

and potential crosstalk between DCs and ILCs which should be

further investigated in future research.
Immunotherapeutic potential of
IL-10 producing ILCs through
stimulation or inhibition

Through in vivo generation and stimulation in the lungs,

ILC210s show promise as potential therapeutics for allergic

airway inflammation. Using CRSwNP patient nasal epithelial

cells, ALI cultures co-cultured with ILC210s and challenged with

grass-pollen allergen revealed that the addition of the ILC210s

prevented allergen-induced epithelial barrier disintegration, an

effect that was diminished upon the addition of anti-IL-10

neutralizing antibodies (32). Elevation of IL-10R surface

expression on epithelial cells occurred upon allergen exposure,

enhancing the ILC210-induced epithelial barrier restoration (32).

As a result of this restoration, grass-pollen sublingual allergen

immunotherapy (GP-SLIT) was investigated in allergic

individuals. In groups treated with GP-SLIT, frequencies of

ILC210s increased compared to the placebo-treated group,

negatively correlating with clinical symptoms (32). This result

shows promise in using GP-SLIT to induce ILC210s in atopic

individuals, which function to restore barrier integrity and

attenuate type 2 inflammation through IL-10 production.

Furthermore, an in vitro study on nasal epithelium from allergic

individuals co-cultured with ILC210s revealed that IL-10 served to

maintain epithelial and endothelial barrier integrity by blocking IL-

6 and IL-8, both of which promote neutrophil translocation by

increasing barrier permeability as shown in Figure 1 (37, 38). In

mice, IL-10 attenuatedTh2-mediated allergic airway inflammation

by downregulating Th2 survival through restoring granzyme B

expression in CD4+ IL-10-/- cells (39).

To further investigate the immunosuppressive role of

ILC210s in allergic diseases such as asthma, ILC210s and ILC2s

in a 1:1 mix were adoptively transferred into Rag-/- gc-/- (T-cell,
B-cell, and NK cell deficient) mice intranasally challenged with

IL-33. In doing so, ILC2-dependent allergic airway

hyperreactivity (AHR) was downregulated, a result that was
Frontiers in Immunology 05
abrogated upon the intraperitoneal administration of anti-IL-

10R (40). ILC210s-induced AHR attenuation was further

confirmed in mice challenged with Alternaria alternata that

were adoptively transferred the same 1:1 ILC210s/ILC2s mix.

The role of IL-10 was confirmed when administration of anti-IL-

10R antibodies abrogated this effect (40). Collectively, in vivo

generation of ILC210s in the lungs attenuates type 2 allergic

responses through IL-10 production.

Another potential therapeutic role of ILC210s is the

promotion of islet allograft survival in mice as measured

through improved glucose tolerance (41). ILC210s were

delivered to recipient mice either intravenously or through co-

transplantation with the graft. Interestingly, allograft survival

was increased in only the co-transplantation group, revealing a

need for ILC210s to be within the graft to achieve maximal graft

protection (41). Further investigation is needed to determine

how these findings translate into clinical practice.
ILCregs and ILC210s – The same cell
or are they different?

In this review we discussed ILCregs as those cells that express

Id3, are stimulated by TGF-b, and arise from the a4b7+Id2high

CHILPs or from ILC3s in the presence of TGF-b. Separately, we
defined IL-10+ ILC2s as ILC210s as a consequence of their sustained

expression of GATA-3 and suppression by TGF-b (see Table 1).

However, whether these cells are the same or different remains to be

fully defined. Notably, ILCregs arose in the gut and kidneys at

steady state and during inflammation (22), while ILC210s arose in

both the gut and lungs in the presence of inflammation only (25,

27). As such, further studies should be directed towards the

molecular comparison of ILCregs and ILC210s to determine if

their GATA-3 expression and response to TGF-ß is cell type

specific or influenced by their environment/location.

As previously discussed, ILCregs devoid of all ILC markers

were expressed in the sLPofmice (22).However,upon repeatof this

experiment by a different group, no such cell populationwas found

(29). Interestingly, this group discovered that only Lin- CD127+

Thy1- ILC2s expressed IL-10 in the small intestine (29). This

finding revealed inconsistencies surrounding the presence and

identification of ILCregs in the sLP. One reason for the

inconsistent result was suggested to be caused by genetics and/or

environmental factors. However, even controlling for these factors

by purchasing C57BL/6 mice from three different vendors, no

ILCregswere identified (29). As a result, the existence of ILCregs in

mice are non-generalizable. Further studies need to investigate the

contributions of other environmental influences such as

inflammation or autoimmunity on the presence of ILCregs, in

both the intestines of mice and humans.

Through studying the suppressive function of ILCregs in a

mouse model of colitis, IL-10 inhibited the activation of both
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ILC1s and ILC3s, as previously discussed. However, in an in

vitro study investigating the suppressive role of TGF-b and IL-10
in human ILC subsets, IL-10 inhibited cytokine production from

pre-stimulated ILC2s while having no effect on pre-stimulated

ILC1s (33). As a result, further studies are needed to determine

the differential role of ILCregs in repressing the function of

ILC1s, ILC2s, and ILC3s between mice and humans, and to

determine whether this difference is influenced by the

inflammatory environment.

Other roles of ILC210s remains to be investigated, such as its

ability to suppress lung eosinophilia. Through treating Rag-/-

mice with IL-33 and IL-2c, a significant reduction in IL-33-

induced lung eosinophilia occurred with extensive generation of

ILC210s (26). However, no inhibitory studies using anti-IL-10

antibodies or IL-10-/- ILC2s were performed to prove the role of

ILC210s in attenuating eosinophil migration to the lungs. As a

result, in vivo delivery of IL-2c should be further investigated in

its efficacy as an immune-targeted therapy that could reduce

eosinophilia in atopic patients as well as protect against renal

IRI, colitis, allergic airway inflammation, and allograft rejection

due to its ability to generate ILC210s both in vivo and in vitro.

Interestingly, a cross-sectional study comparing grass-pollen

allergic (GPA) and house dust mite-allergic (HDMA)

individuals to a non-atopic healthy control (NAC) revealed

that ILC2s from atopic individuals fail to adopt an IL-10-

producing regulatory phenotype (32). This finding reveals a

possible limitation in treating allergic disease through ILC210
generation. As a result, the regulation of the IL-10 promoter in

ILC2s from GPA and HDMA patients should be investigated as

it could further explain the lack of immune regulation seen in

atopic patients.
Conclusion

There is increasing evidence that the IL-10 produced by ILCs

suppresses immune responses and could be helpful, such as in

allergic disease, or harmful, such as in the setting of cancer, to

patients. However, due to the limitations regarding the specific
Frontiers in Immunology 06
deletion of IL-10+ ILCs in vivo, these cells remain an enigma as

their exact role in human or mouse disease remains unknown.

For instance, there are no specific surface markers for ILCregs

for which antibody depletion could target to determine their role

in regulating inflammatory processes. This is an emerging field

that is certainly ripe for further investigation to understand the

full nature and importance of these suppressive ILCs in

human health.
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