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Abstract

GWAS has facilitated greatly the discovery of risk SNPs associated with complex diseases. Traditional methods analyze SNP
individually and are limited by low power and reproducibility since correction for multiple comparisons is necessary. Several
methods have been proposed based on grouping SNPs into SNP sets using biological knowledge and/or genomic features.
In this article, we compare the linear kernel machine based test (LKM) and principal components analysis based approach
(PCA) using simulated datasets under the scenarios of 0 to 3 causal SNPs, as well as simple and complex linkage
disequilibrium (LD) structures of the simulated regions. Our simulation study demonstrates that both LKM and PCA can
control the type I error at the significance level of 0.05. If the causal SNP is in strong LD with the genotyped SNPs, both the
PCA with a small number of principal components (PCs) and the LKM with kernel of linear or identical-by-state function are
valid tests. However, if the LD structure is complex, such as several LD blocks in the SNP set, or when the causal SNP is not in
the LD block in which most of the genotyped SNPs reside, more PCs should be included to capture the information of the
causal SNP. Simulation studies also demonstrate the ability of LKM and PCA to combine information from multiple causal
SNPs and to provide increased power over individual SNP analysis. We also apply LKM and PCA to analyze two SNP sets
extracted from an actual GWAS dataset on non-small cell lung cancer.
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Introduction

Rapid progress in high throughput genotyping technology has

facilitated greatly the discovery of risk single-nucleotide polymor-

phisms (SNPs) associated with complex disease [1,2]. At present,

the population-based case control study is one of the most

commonly used designs in genome-wide association studies

(GWAS), with millions of SNPs being genotyped simultaneously

from more than one thousand cases and controls. A standard

approach to analyze GWAS data is to regress the phenotype on

each genotyped SNP. However, due to the large number of SNPs,

correction for multiple comparisons is necessary. As an example,

for a GWAS with 1M SNPs, each SNP should be tested at the level

of 5e-8 to maintain the overall a level at 0.05 [3], which may be

too stringent to reach.

It is possible that joint tests of multiple SNPs in linkage

disequilibrium (LD) are more powerful than testing each SNP

individually. There are several reasons for the superiority. Firstly,

the number of tests is reduced if SNPs are tested by group rather

than individually. Secondly, as the true causal SNP may not be

genotyped directly, combining the information from multiple

genotyped SNPs in LD with the causal SNP may be more effective

than testing each SNP individually [4]. Meanwhile, a joint test can

also examine whether a batch of biologically important SNPs are

associated with the phenotype.

Several SNP set analysis methods have been proposed. The

simplest way to determine the p-value of a SNP set is the

individual SNP analysis. This method uses the smallest p-value

of all SNPs, corrected for the number of effective tests, as the p-

value for the entire SNP set [3]. The number of effective tests

can be determined based on an upper bound for the overall

type I error probability and pairwise correlations among SNPs.

However, this method may not be optimal as it does not make

full use of the LD structure among the genotyped SNPs.

Gauderman et al. proposed a principal components analysis

based approach (PCA), by which principal components (PCs)

are computed from the SNP set and included in the regression

model to test for the association [5]. Wu et al. proposed a

powerful logistic kernel machine based test (LKM) to examine

the association between the disease outcome and a SNP set [6].

Their simulations indicated that LKM has greater power than

individual SNP analysis. On the basis of LKM, Wu et al.

further proposed the sequence kernel association test (SKAT)

which can test for the association between common or rare

genetic variations in a region and a disease outcome [7].

In this article, we compare the performance of LKM and PCA

by using simulated datasets. The structure of this article is as

follows. The procedures of LKM and PCA will be briefly

described. Results of several simulation studies are provided to

compare test power and type I error rate between the two
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methods. We then demonstrate the application of these two

methods to two SNP sets extracted from a Lung Cancer GWAS

dataset, and finally discuss the implications of our results.

Methods

For a SNP set includes p SNPs from n individuals, let

zi~ zi1,zi2, . . . ,zip

� �T
denote the ith individual’s genotypes. The

disease outcome is denoted by D(1 = affected, 0 = unaffected).

Logistic Kernel Machine Based Test
For the ith individual, LKM takes the form of

logitP Di~1ð Þ~a0za1xi1za2xi2z � � �zamximzh zið Þ

In the above equation, a0 is the intercept, xi1, xi2,…, xim denote

m covariates to be adjusted for and a1 …, am are their coefficients.

The association between the SNP set and the outcome is modeled

by a function h(.), which is defined by h zið Þ~
Xn

i0~1
ciK zi,zi0ð Þ for

some c1, c2,…, cn. K(.,.) is a kernel function which measures the

similarity between zi and zi’. Some choices for K(.,.) include the

linear, identical-by-state (IBS), weighted linear and weighted IBS

[6]. The linear kernel, K zi,zi0ð Þ~
Xp

j~1
zijzi0j , is the usual inner

product between the vectors from 2 subjects. The IBS kernel

measures the distance between individuals on the basis of the

number of alleles shared identical by state (IBS) by a pair. Wu et

al. suggested the use of the linear kernel if no epistatic effects are

expected and the IBS otherwise. The weighted kernels impose

weights to SNPs based on their allele frequencies or biological

information.

Liu et al. described the connection between LKM and

generalized linear mixed model (GLMM) [8]. They showed that

h(.) could be regarded as a subject-specific random effect with a

mean of zero and a variance of tK. Thus a score test on t = 0

could be used to test the null hypothesis of no association.

Principal Component Analysis Based Analysis
We first standardize each of the genotype by re-scaling it to have

a mean of 0 and a standard deviation of 1. The variance-

covariance matrix of the standardized SNP set is denoted as Vp6p.

Let Ep|p~ e1,e2, . . . ,ep

� �
denote the p p-dimension eigenvectors

of Vp6p, and Lp~ l1,l2, . . . ,lp

� �
denotes the p corresponding

eigenvalues, in which l1.l2.…. lp. For the ith individual, the

principal components are

PCi1~eT

1
zi~e11zi1ze12zi2z � � �ze1pzip

PCi2~eT
2 zi~e21zi1ze22zi2z � � �ze2pzip

..

.

PCip~eT
p zi~ep1zi1zep2zi2z � � �zeppzip

By definition, el is selected to maximize the variance of PCl with

the constraint that el
Tel~1. The covariance between PCl and PCl’

is zero for l?l’. ll measures the variation explained by PCl. As

SNPs in the set are always highly correlated with each other, the

first few eigenvalues will be much greater than the others. This

makes it possible to use the first few PCs to capture most of the

variation in the SNP set. To do this, we only need to select the first

k PCs with cumulative contribution
Xk

l~1
ll

.Xp

l~1
ll greater

than some threshold (eg. 80%). Instead of using the p SNPs, we will

use the first k PCs in the multiple logistic model by:

logitP Di~1ð Þ~a0za1xi1za2xi2z � � �zamximz
Pk

l~1 dlPCil

A k-df likelihood ratio test can be used to test the significance of

the SNP set. For simplicity, we will use PCA(Z%) to denote the

PCA with the PCs explaining at least Z% of the total variation. As

example, if the top 2, 3 and 4 PCs explain 63%, 75% and 80% of

Table 1. Parameter settings of all simulations.

the simulated SNP Set Scenario Number of causal SNPs Locations of the causal SNPs Designed RR

CLPTM1L(31 SNPs) A1 0 – 1.0

5p13.33 A2 1 1 of 31 in turn 1.1

A3 1 1 of 31 in turn 1.2

A4 2 15 and 22 1.1

A5 2 11 and 22 1.1

A6 2 7 and 14 1.1

A7 2 11 and 30 1.1

A8 2 6 and 29 1.1

A9 2 11 and 26 1.1

A10 2 11 and 29 1.1

A11 3 All three-SNP combinations of
6,7,11,14,15,22,26,29,30

1.1

ASAH1 (154 SNPs) B1 0 – 1.0

8p22 B2 1 1 of 154 in turn 1.2

B3 2 26 and 81 1.1

B4 2 81 and 126 1.1

doi:10.1371/journal.pone.0044978.t001
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the total variation, the corresponding ks for PCA(60%), PCA(70%)

and PCA(80%) are 2, 3 and 4, respectively.

Simulations
We use simulated datasets to evaluate the performances of

LKM and PCA. Measurements for comparison include empirical

type I error rate and test power. All the causal SNPs are assumed

to improve the risk. We assume the disease model is

logitP Di~1ð Þ~a0z
PC

j~1 bjzij

Here, C is the number of causal SNPs, bj is the log genetic

relative risk (RR) of the jth causal SNP. We use a log-additive

inheritance model in our simulation by imposing the assumption

that risk multiplies with each additional allele. We let C = 0 to 3 in

our simulations, denoting null, single causal SNP, two or three

causal SNPs model.

Simulations based on the CLPTM1L gene. Datasets are

simulated on the basis of the CLPTM1L gene, a 27.35kb-long-gene

located at 5p13.33. It encodes cleft lip and palate trans-membrane

protein 1-like protein. Two SNPs in this gene, rs31489 and

rs401681, were reported to be associated with non-small cell lung

cancer (NSCLC) [9,10]. We download the phased haplotypes of

CEU (CEPH [Utah residents with ancestry from northern and

western Europe]) samples from the website of the International

HapMap Project (Phase 2, release 22). Thirty one SNPs, located

within the range of 20kb upstream and downstream of the

CLPTM1L gene, are used as the template of the simulated

sequence. We use HAPGEN (version 2) to generate the simulated

datasets [11,12].

We conduct 11 scenarios of simulations based on the CLPTM1L

gene (scenarios A1–A11). Parameters of the simulations are

described by Table 1. Scenario A1 is simulated to evaluate the

performances of the two methods on controlling type I error. We

generate 1,000 cases and 1,000 controls under the null disease

model (C = 0), in which the outcome is independent of the loci.

The empirical type I error rate is calculated as the proportion of

rejecting the null hypothesis in the 5,000 simulated datasets.

Scenarios A2 and A3 are simulated to compare the powers of

LKM and PCA when there is only one causal SNP in the region.

We set the genetic RR as 1.1 and 1.2 at scenarios A2 and A3,

respectively. In both scenarios, each of the 31 SNPs in the

CLPTM1L gene is set to be the causal SNP in turn. For each causal

SNP, 1,000 datasets are simulated. The test power is calculated as

the proportion of p-values less than 0.05. To make the simulations

more realistic, only 8 of the 31 SNPs are used by LKM and PCA,

which are directly genotyped by the Illumina 610k Quad chip.

We also examine the ability of these methods on utilizing

information from multiple loci assuming that there are 2 or 3

causal SNPs with RR = 1.1 (scenarios A4 to A11). Both of the two

causal SNPs are genotyped in scenario A4. In scenarios A5–A8,

only one of the two causal SNPs is genotyped. No causal SNPs are

genotyped in scenarios A9 and A10. Besides the number of

genotyped causal SNPs, the difference among scenarios A4–A10 is

reflected by the different median R2 between the causal SNP and

the genotyped SNPs. Details of these scenarios are presented in the

first 6 columns of Table 2. In scenario A11, we assume that there

are 3 causal SNPs. For each of the three-SNP combinations (84 in

total) from the 9 causal SNPs used in scenarios A4–A10 (Table 1),

1,000 datasets are simulated.

Simulations based on the ASAH1 gene. ASAH1, acid

ceramidase 1, is a 28.5-kb-long gene located at 8p22. It was

reported to be associated with prostate cancer and Farber disease

[13,14]. The reference haplotype downloaded from HapMap

includes 154 SNPs, with a more complex LD structure than the

CLPTM1L gene. Four scenarios are simulated, in which scenario

B1 evaluates the type I error and B2 to B4 evaluate the test power.

In scenario B1, 5,000 datasets are simulated with no association

between the disease outcome and the SNPs. In scenario B2, each

of the 154 SNPs is set to be the causal SNP with a RR of 1.2 in

turn. There are 1,000 simulated replicates for each of the causal

SNP. Again, although the simulated datasets are generated using

the overall 154 SNPs, only 39 genotyped SNPs are used in the

analyses. Scenarios B3 and B4 both assume 2 causal SNPs with

RR = 1.1. Both of the two causal SNPs are in strong LD with the

genotyped loci in B3, while one causal SNP is in weak LD with the

genotyped loci in B4. The causal SNPs in scenarios B3 and B4 are

all common SNPs (MAF<40%). The aim of these two scenarios is

to evaluate the performance of LKM and PCA when causal SNPs

are in the same or different LD blocks in a relatively large SNP set.

Application of LKM and PCA to two SNP Sets from a
GWAS Dataset

We apply the two methods to test the significance of 2

regions extracted from a GWAS dataset studying the genetic

susceptibility of non-small cell lung cancer (NSCLC). Details of

participant recruitment for the study have been described

previously [15]. This dataset includes 984 NSCLC cases and

970 controls recruited from Massachusetts General Hospital.

DNA was extracted from the whole blood and genotyped using

the Illumina 610k Quad chip. A total of 543,697 SNPs pass the

general quality control (QC) procedure [16]. The first region

Table 3. Empirical type I error rates at the significant level of 0.05 for LKM and PCA.

LKM PCA

Scenario gene a Individual SNP Analysis Linear IBS Linear weighted IBS weighted 80% 60% 40% 20%

A1 CLPTM1L 0.05 0.029 0.050 0.048 0.052 0.051 0.050 0.051 0.050 0.050

0.01 0.005 0.011 0.010 0.012 0.011 0.010 0.010 0.009 0.009

0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001

B1 ASAH1 0.05 0.026 0.051 0.050 0.044 0.049 0.056 0.054 0.050 0.051

0.01 0.006 0.010 0.011 0.008 0.010 0.012 0.011 0.011 0.009

0.001 0.000 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.002

The type-I error rates significantly different from the nominal type-I error level are highlighted by using italics font.
doi:10.1371/journal.pone.0044978.t003
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includes 8 SNPs within a range including 620kb of the

CLPTM1L gene. The second one is an 116kb region, which

includes 21 SNPs in 15q24-25. Genes in this region include the

CHRNA3, CHRNA5 and CHRNB4. These 3 genes were reported

to be associated with nicotine addiction, smoking behavior and

NSCLC [17–19]. Covariates adjusted in the analysis include

age, gender(male/female) and smoking status (never/ever). The

top 4 axes of variation generated by the EIGENSTRAT

analysis are also included in the models to control for the

confounding effect of population stratification [20,21].

R package (version 2.13) is used to analyze both of the simulated

and actual datasets. The SKAT package (version 0.73) is used to

conduct LKM analysis. For the weighted kernel functions, we use

the default weight of
ffiffiffiffi
w
p

~Beta MAF ; a1,a2ð Þ, in which MAF is

the SNP’s minor allele frequency, a1 = 1 and a2 = 25, Beta() is the

density function of a b distribution. We also perform individual

Figure 1. Power, the causal SNP and the genotyped SNPs in scenarios A2 and A3 based on the CLPTM1L gene. The top 2 plots show the
power (y-axis) of each method over the locations (x-axis) of the causal SNPs. The triangles in the plot are the locations of the genotyped SNPs. The
bar-plot shows the MAFs of all SNPs. The LD structure of the 31 SNPs is shown by the heat plot in the bottom of the figure, in which the gray scale
indicates the value of R2 (1 = black, 0 = white).
doi:10.1371/journal.pone.0044978.g001
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SNP analysis for each SNP set. To determine the p-value of a SNP

set, a logistic regression model is fitted for each locus. The p-value

of the set is then determined by the minimum p-value of all the

loci, corrected by the effective number of tests [3].

Results

Empirical Type I Error Rate
The empirical type I error rate of LKM, PCA and individual

SNP analysis are presented by Table 3. Both LKM and PCA

control the type I error at the significant level of 0.05, 0.01 or

0.001. For the CLPTM1L gene, the mean numbers of PCs to

explain at least 80%, 60%, 40% and 20% of the total variation are

3.00, 2.00, 1.00 and 1.00, respectively. For the ASAH1 gene, the

corresponding mean numbers of PCs are 6.85, 3.06, 1.92 and

1.00, respectively. The result indicates that type I error rate is

independent of the number of PCs included in the model. The

individual SNP analysis is conservative in both scenarios. Table S1

gives the standard errors of the type I error rate estimates.

Empirical Test Power Based on the CLPTM1L Gene with
Single Causal SNP

Results from scenarios A2 and A3 are presented by Figure 1. In

general, both of LKM and PCA have power when the causal SNP

is in high LD with the genotyped ones, which demonstrates their

ability of ‘‘borrowing’’ information to increase the statistical

power. Among the 4 LKM models, the one with linear kernel has

the greatest power in most occasions. For PCA, we present the

powers of PCA using PCs explaining at least 80%, 60% and 40%

of the total variation, respectively. As the CLPTM1L gene is a small

gene with a simple LD structure, only a very small number of PCs

are needed to explain a large proportion (.40%) of the total

Figure 2. The relationship between the test power and the median R2 between the causal SNP and the genotyped SNPs in scenarios
A2, A3 and B2. The causal SNP on the x-axis has been ordered by the median R2 in ascending. The test power of each causal SNP is plotted on the
order of median R2 between the corresponding SNP and the genotyped ones. The 2 bar plots in the figure represent the MAFs of SNPs in the
CLPTM1L and ASAH1 genes, respectively.
doi:10.1371/journal.pone.0044978.g002
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variation. Thus the results from PCA(40%) and PCA(20%) are

exactly the same. PCA(40%) is more powerful than the other

PCAs when the causal SNP is at one of the 5th, 6th, 10th–13th and

15th–28th loci, as shown in Figure 1. Its power is very close to, or

even greater than that of the LKM with linear kernel at some loci.

This may due to the fact that when PCs in the model have already

explained the difference between cases and controls, including

more PCs will not improve the model, but instead exhaust more

degrees of freedom and decrease the test power. However, if the

causal SNP is in linkage equilibrium (LE) or is in weak LD with the

genotyped SNPs, or located in a small LD block other than the

one in which most of the genotyped SNPs reside in, including

more PCs will improve the test power. This is confirmed by the

causal SNP at one of the 1st–4th and 29th–31st loci, where

PCA(80%) is dominant than LKM and the other PCAs. It is worth

noting that although LKMs with linear or IBS weighted kernel do

not have good performance in general, they are more powerful

than the others when the MAF of the causal SNP is low (the 7th,

8th or 14th SNP in Figure 1).

The top 2 panels in Figure 2 illustrate the relationship between

the test power and the LD between the causal SNP and the

genotyped SNPs. As we expected, the test power for either of

LKM and PCA increases as a function of the median R2. As

displayed in the left portion of this plot where the causal SNP is in

LE or weak LD with the genotyped SNPs, PCA(80%) is more

powerful than LKM and the other PCAs since more PCs are

needed to ‘‘capture’’ the information that differentiates cases and

controls. This is true except when the causal SNPs have low

MAFs. It is not surprising that PCA(40%) and LKM with linear

kernel have better performance than the others, shown at the right

part of these 2 plots.

When compared to the individual SNP analysis, PCA and LKM

are more powerful in most situations. However, when the causal

SNP is in the 2nd, 29th or 30th locus with a RR of 1.2, the

individual SNP analysis has greater power than the others. We

believe this is not surprising because the inclusion of un-associated

SNPs may ‘‘dilute’’ the effect of the causal.

Figure 3. Power, the causal SNP and the genotyped SNPs in scenario B2 based on the ASAH1 gene. The top plot shows the power (y-axis)
of each method over the locations (x-axis) of the causal SNPs. The triangles in the plot are the locations of the genotyped SNPs. The bar-plot in the
middle shows the MAFs of all SNPs. The bottom plot shows the LD structure of the 154 SNPs downloaded from the HapMap project.
doi:10.1371/journal.pone.0044978.g003
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Empirical Test Power Based on the ASAH1 Gene
Results of scenario B2 are shown by Figure 3. Because the LD

structure of the ASAH1 gene is more complex than that of the

CLPTM1L gene, we also show the results from PCA(20%). The

LD plot at the bottom of Figure 3 indicates that there are two LD

blocks in the SNP set (the 1st to the 119th and the 120th to the

154th). In the first block, the power from LKM with linear kernel

and PCA(20%) is dominant than the others. Whereas in the

second block, it is interesting to find that the power from

PCA(60%) < PCA(40%).PCA(80%).PCA(20%). PCA(60%)

and PCA(40%) are also more powerful than LKMs. The influence

of MAF, LD structure and number of PCs in the model on test

power is also demonstrated by the bottom panel of Figure 2.

Empirical Test Power Based on Genes with More than
One Causal SNP

Results from scenarios A4 to A11 are presented by Tables 2 and

S2. Once again, test power is affected by the strength of LD

between the causal and genotyped SNPs. When both of the two

causal SNPs are in strong LD with the genotyped ones (scenarios

A4, A5 and A9), the power from LKM with linear or IBS kernel,

as well as PCA(40%), is over 80%. The test power is dramatically

reduced when at least one of the causal SNPs is in weak LD with

the genotyped SNPs (scenarios A6–A8 and A10). When both of

the causal SNPs are in weak LD with the genotyped SNPs

(scenarios A6), PCA(80%) and PCA(60%) are more powerful than

the other PCAs as a large number of PCs are necessary to capture

the causal SNPs. For scenario A7, the powers generated from the 3

PCAs are very similar. Although PCA(80%) exhausts more

degrees of freedom than PCA(40%), it may capture the

information from the second causal SNP as a compensation by

including more PCs. Due to the low MAFs, LKMs with weighted

kernel functions are more superior to the other methods in

scenario A6. The comparison of results from scenarios A4–A10 to

those from A2, in which RR is also 1.1, demonstrates the

advantage of LKM and PCA on combining information from

several SNPs. Simulations based on the ASAH1 gene from

scenarios B3 and B4 generate similar results (Tables 4 and S3).

Scenario A11 in which there are 3 causal SNPs in the

CLPTM1L gene yields similar conclusion that tests combing

multiple SNPs tend to have higher power and the power increases

with the strength of LD between causal and genotyped SNPs

(Figure S1).

Application on Harvard Lung Cancer GWAS
The results of the analysis are shown in Table 5. For SNP set 1,

rs31489 from the CLPTM1L gene yields the least p-value of 1.96E-

6 (1.23E-5 after the Bonferroni correction for the effective number

of tests). The p-value of the LKM with linear kernel is 3.16E-6, the

least of all LKMs. The least p-value of PCA (6.83E-6) happens

when the PCs in the model explain 20% or 40% of the total

variation. For SNP set 2, PCA (60%) is dominant than the other

methods. LKMs with weighted kernels are less powerful than the

other methods due to the fact that the possible associated SNPs are

common ones (rs31489:38.56%; rs1051730:39.64%).

To understand how PCA utilizes the information from multiple

SNPs, we also examine the coefficient of each SNP in the top PCs.

For each SNP set, we regress the disease outcome on the top PCs.

The 1st PC from SNP set 1 and the 2nd PC from SNP set 2, which

are significant, are then presented by Figure 4. The significant PCs

tend to have heavy loading on the ‘‘important’’ SNPs. As an

example, for SNP set 1, the 1st PC has heavy loadings on rs31489T
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(OR = 0.72, p-value = 1.96E-6) and rs401681 (OR = 0.73, p-

value = 5.80E-6).

Discussion

In this article, we compare the performance of logistic kernel

machine based test and principal component analysis based test

for the analysis of GWAS. Both of these two methods have the

ability to test the association between a continuous or discrete

outcome and a set of SNPs grouped by biological knowledge or

genomic characteristics. We conduct extensive simulation studies

using datasets generated based on the haplotypes downloaded

from the International HapMap Project. We also apply these two

methods to two SNP sets extracted from a GWAS data on

NSCLC. The results demonstrate that both methods can correctly

control the type I error. If the causal SNP(s) is/are in strong LD

with the genotyped SNPs, both methods are superior to individual

SNP analysis due to the ability of borrowing information from the

genotyped SNPs in LD with the causal SNP(s). Furthermore, if

there are two or more causal SNPs in a SNP set, LKM and PCA

can combine their information and provide higher test power than

individual SNP analysis.

Linear kernel performs well in most occasions in our simulation

studies. Although slightly inferior to linear kernel, IBS kernel is

claimed to have better performance when there is epistatic effect in

the SNP set [6]. LKMs with weighted kernels are superior if the

causal SNP has low MAF, as demonstrated by the results from

scenario A6 (in which both causal SNPs have MAF ,20%, as well

as causal SNPs with low MAFs in scenarios A2 and A3 (the 7th, 8th

and 14th SNPs).Thus LKM with weighted kernel may be a good

choice when there is evidence that the MAF of the causal SNP is

low. Meanwhile, when analyzing the same SNP set, if the weighted

LKM generates a positive result while the un-weighted LKM does

not, it is possible that the causal SNP in the region may have low

MAF. Recent studies also indicate LKMs with weighted kernels

has good performance when the disease is associated with rare

variations [7]. The SKAT package in R also provides flexible

weight specification options, which makes it possible to detect the

association between disease and rare variations by giving the

variations appropriate weights. This makes LKM a powerful and

flexible tool in the coming age of next generation sequencing.

Test power from PCA is affected by the number of PCs

included in the analysis. Simulation indicates that if the number of

PCs is correctly specified, PCA may have even better performance

Table 5. Results of LKM and PCA on the Analysis of the SNP sets from the Harvard Lung Cancer Susceptibility Study.

SNP
set Individual SNP Analysis LKM PCA

The least p-value in the
SNP set

p-values for the
SNP set Linear IBS

Linear
weighted

IBS
weighted 80% 60% 40% 20%

1 1.96E-6 1.23E-5 3.16E-6 6.96E-6 4.70E-2 1.01E-2 3.67E-5 2.56E-5 6.83E-6 6.83E-6

2 5.61E-6 6.74E-5 3.07E-4 1.78E-4 3.15E-1 1.44E-1 3.48E-6 8.67E-7 9.31E-1 9.31E-1

doi:10.1371/journal.pone.0044978.t005

Figure 4. Loadings of the significant PCs on each of the SNP in the SNP sets from 5p13.33 and 15q24-25. The diameters of the circles in
the plots are proportional to –log10(p-value).
doi:10.1371/journal.pone.0044978.g004
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than LKM. However, choosing the appropriate number of PCs in

PCA may not be an easy task. In our simulation, we use PCA with

different numbers of PCs to analyze SNP sets with simple or

complex LD structure. For the simulation based on the CLPTM1L

gene, if the causal SNP resides in the region in high LD with most

of the genotyped SNPs, only the 1st PC is needed to capture the

information of the causal SNP. Including more PCs will decrease

the power. While in the simulation based on the ASAH1 gene,

more PCs should be included in the model to increase the power if

the causal SNP resides in the right side of the SNP set (as shown in

the second LD block in Figure 3), in which only about 1/3 of the

genotyped SNPs reside.

Thus it is critical to examine the LD structure of the SNP set

before performing a LKM or PCA analysis. We suggest the SNP

set to include SNPs in a LD block. In this situation, LKM and

PCA with only a few top PCs may have good performance.

However, if the SNP set covers a wide region containing several

LD blocks, we suggest using PCA with PCs explaining a large

proportion of variation to capture the information of the causal

SNP(s). Chen et al. proposed a supervised PCA procedure for

pathway-based analysis, in which only SNPs mostly associated

with the disease outcome are used to extract PCs [22]. They used

an approximate sampling distribution of the test statistics with a

simulation-based standardization procedure to correct for the

effect of pathway size. However, they used only the 1st PC in the

analysis, which has the risk of missing the causal SNP(s) if the LD

structure of the SNP set is complex. A possible way to improve the

power of PCA is to exclude the PCs independent of the causal

SNPs. Although we can perform a feature selection procedure on

PCs, such as only including significant PCs in the model, we risk

increasing the type I error rate as the feature-selection procedure is

ignored by the likelihood ratio test. A permutation procedure

could be used to build the sampling distribution of the test statistic

for the PCs after the feature-selection. However, this procedure is

not efficient as one may need thousands of permutation samples to

get a p-value small enough. More theoretical research should be

taken for a solution to build a corresponding asymptotic

distribution to improve the efficiency.

Both of LKM and PCA are capable of handling epistasis. PCA

can also easily handle gene-environmental interactions, while it is

still an issue for LKM. A possible limitation of PCA is the difficulty

in interpretation of the results. However, just like LKM, a

significant SNP set in PCA can be followed by a fine mapping or

deep sequencing to identify the true causal SNP as the causal one

should reside in the region in or close to the significant SNP set.

Meanwhile, by checking the loading of the significant PCs on each

SNP, we can identify which SNPs are more associated with the

disease. By combining LKM or PCA with a moving window

strategy, it is possible that we can have more precise information

on where the causal SNP resides.

We acknowledge that our study has several limitations. Firstly,

only LKM and PCA are evaluated, although there are several

other SNP set based methods. In the LKM’s original paper [6],

the comparison between LKM and other methods suggests that

LKM is a powerful method. On the basis of their study, we further

demonstrate that PCA, a traditional multivariate method, is

comparable on many perspectives to LKM. Secondly, more

complicated situations, such as rare variations and gene-gene

interaction, are not included in the study. Further investigations

are needed to address these issues.
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Figure S1 The relationship between the test power and
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SNPs in scenario A11. The x-axis in the top plot denotes the 84
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between the corresponding causal and the genotyped SNPs. The y-
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