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ABSTRACT: We present an atomistic level computational investigation of
the dynamics of a signaling protein, monocyte chemoattractant protein-1
(MCP-1), that explores how simulation geometry and solution ionic strength
affect the calculated diffusion coefficient. Using a simple extension of noncubic
finite size diffusion correction expressions, it is possible to calculate
experimentally comparable diffusion coefficients that are fully consistent with
those determined from cubic box simulations. Additionally, increasing the
concentration of salt in the solvent environment leads to changes in protein
dynamics that are not explainable through changes in solvent viscosity alone.
This work in accurate computational determination of protein diffusion
coefficients led us to investigate molecular-weight-based predictors for biomolecular diffusion. By introducing protein volume-
and protein surface-area-based extensions of traditional statistical relations connecting particle molecular weight to diffusion, we
find that protein solvent-excluded surface area rather than volume works as a better geometric property for estimating
biomolecule Stokes radii. This work highlights the considerations necessary for accurate computational determination of
biomolecule diffusivity and presents insight into molecular weight relations for diffusion that could lead to new routes for
estimating protein diffusion beyond the traditional approaches.

■ INTRODUCTION

How proteins and other biomolecules move establishes a rate
limit for function in living systems. No single molecule can
perform all functions in and around cells, so diffusion of partner
molecular species is necessary for given particles to play a role
in a complex system. The primary role of signaling proteins is
to do exactly this, translate through their environment and
interact with other larger biomolecular structures in order to
enact a more complex action.
Most studies on protein translation and function have been

performed in experimental laboratories rather than through
computational methods. Before the first structures of proteins
were determined, diffusion analysis via ultracentrifugation
sedimentation studies was one of the primary methods for
assessing the shape and establishing the identity of these
macromolecules.1−4 Early such analyses in protein dynamics
motivated the awarding of the 1926 Nobel Prize in Chemistry
to Theodor Svedberg for his pioneering efforts in the practical
development and implementation of experimental techniques
in protein dynamics and separation. Protein diffusion studies
tend to be challenging from a computational perspective,
because the translational dynamics of multi-kDa mass particles
that are greater than an order-of-magnitude larger than the
particles in their surrounding solvent environment necessitate
the use of reasonably large system sizes simulated over
relatively long times, often multiple microseconds in length.

Complicating matters, molecular simulations are performed
on finite-sized systems. While use of periodic boundary
conditions and extended interaction correction techniques are
mostly standardized for modeling condensed phase molecular
systems, some calculated properties need to be corrected to
account for the size of the simulation cell.5 For example, while
the shear viscosity is relatively insensitive to simulated system
size,6,7 the apparent three-dimensional diffusion coefficient will
be slower in smaller systems and faster in larger ones, and
corrections have been developed to account for these variations
with system size.6−13 We are interested in calculating diffusion
coefficients that are quantitatively comparable with experi-
ments, and some of the more complex models need to be
simulated with noncubic simulation boxes. It would be
beneficial to evaluate the accuracy of current strategies for
converting apparent simulation calculated diffusion coefficients
into viscosity corrected infinitely dilute diffusion coefficients.
Converting a single simulation value would eliminate the need
to perform multiple simulations in order to project out to the
infinitely dilute value.
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Here, we explore protein diffusion from atomistic level
molecular dynamics simulations of a small signaling protein,
monocyte chemoattractant protein-1 (MCP-1). The goals of
this effort are severalfold and include (1) determining the steps
and simulation scope necessary for calculation of experimen-
tally comparable diffusion coefficients, (2) assessing how finite
size corrections can be applied to single cubic and tetragonal
simulations to determine similarly accurate diffusion coef-
ficients, and (3) exploring how changes in the ionic strength of
the surrounding environment affect translational diffusion of a
protein. Performing this work led us to investigate protein-
mass-based estimation of diffusion coefficients to evaluate how
one might potentially make accurate estimations of protein
diffusion without prior experimental knowledge of biomolecule
dynamics.

■ METHODS

As a model system and for the purpose of comparison with
experimental estimates, molecular dynamics simulations of pure
water, water solvated monocyte chemoattractant protein-1
(MCP-1: PDB code 1DOL), and MCP-1 in increasingly
concentrated aqueous NaCl solutions were performed at a
target temperature and pressure of 310.15 K and 1 atm. In
addition to these molecular dynamics simulations and
companion analyses, we performed a surface area and
volumetric investigation of a set of proteins of increasing
mass in order to construct alternate mass-to-geometry relations
for general estimation of biomolecule diffusivity.
In all molecular dynamics simulation systems, cubic

simulation box geometries were used to form accurate finite
size correction estimations for the diffusion coefficient
calculations.6−8 In the pure water and water solvated MCP-1
molecular simulation systems, additional tetragonal simulation
box geometries were chosen to explore simple extensions of
these finite size corrections beyond the typical cubic simulation
box constraint. We have an interest in simulating the dynamics
of proteins in the presence of collagen or other periodically
replicated molecules, and these tetragonal simulations were
used to test how accurate such extensions are in correcting
diffusion calculations for large singular biomolecules.8−13

Figure 1 details the system geometry series used in
calculating experimentally comparable diffusion coefficients.
The pure water systems ranged from 3 to 6 nm short edge-
length simulation box sizes, approximately 2700 to 21 500
atoms, respectively, while the water solvated protein systems
ranged from 5 to 9 nm, corresponding to 12 400 to 72 500
atoms, respectively. The smaller tetragonal systems were up to
twice the size of the corresponding cubic systems given the
longer Lx edge-length. The pure water systems were both a
verification test of finite size correction parameters detailed in
previous studies8,9 and necessary for determination of solvent
viscosity η at the target temperature and pressure, needed for
both finite size corrections and solvent model viscosity
corrections in making experimental comparisons.7,8 Specifically,
for cubic systems with potentially charged molecules, Yeh and
Hummer proposed the adapted cubic system finite size
correction
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where kB is the Boltzmann constant, T is the simulation
temperature, L is the simulation box edge-length, η is the

solvent viscosity, ξEW ≈ 2.837298 is a unitless simple cubic
lattice self-term,14 and α is an empirical free fitting parameter
introduced to account for deviations from previous correction
expressions, potentially introduced from charged solute
interactions.8 This expression gives a route to calculating the
infinitely dilute diffusion coefficient, D0, from the apparent
diffusion coefficient, Dapp, as calculated from a molecule’s mean-
square displacement over time. The resulting D0 is not
necessarily yet an experimentally comparable value, particularly
if the solvent environment in the simulation does not
reproduce the experimental environment and properties well.
Multiplying the simulation D0 by the ratio of simulation and
experimental viscosities can correct for these differences.
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While insensitive to simulation system sizes, ηTIP3P will be
strongly temperature and salt concentration dependent, and it
needs to be estimated for each given simulation composition
and state point.
Calculating a D0 using eq 1 is potentially convenient

assuming the necessary parameters, η and α, are easily
determined or somewhat universal. In the case of α, this is
not entirely clear given its empirical origins. For a short net −2e
RNA strand, Yeh and Hummer estimate this correction factor α
≈ 0.76, which was considered reasonable given a value
somewhat close to unity.8 Potentially more concerning is the
requirement of eq 1 for perfectly cubic simulation geometries.
When this is not possible, determining experimentally
comparable diffusion coefficients becomes problematic. Re-
cently, Kikugawa et al. developed fit functions that can be used
to correct diffusion coefficient estimations in the case of
tetragonal distortions of simulation box geometries. In the case
of an elongated tetragonal cell, where Lx ≥ Ly = Lz
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Figure 1. Illustrated series of simulation system geometries used in the
calculation of experimentally comparable diffusion coefficients. The
water-only simulations spanned cubic (top) and tetragonal (bottom)
boxes with a short edge-length (Ly or Lz) ranging from approximately
3 to 6 nm in 0.5 nm increments, while the protein simulations needed
to be larger with a short edge ranging from 5 to 9 nm in 1 nm
increments.
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Here, the Dz,app value represents the calculated one-dimensional
apparent diffusion coefficient in the z-dimension, with similar
Dx,app and Dy,app values for x and y, ax/z = Lx/Lz, and a0 =
2.79336, which is presented as a universal constant determined
from the authors’ extensive study of Lennard−Jones particle
simulations.9 In principle, the modification in parentheses is
simply a fit function that approaches −1 when the ax/z aspect
ratio approaches 1, restoring the unperturbed cubic correction
term. In the case of Dx,app, the function in parentheses is taken
to equal −1. This indicates that diffusion along the long x-axis is
dependent upon the smaller Lz = Ly according to the standard
cubic correction, something observed in their, and other,
Lennard−Jones particle simulations.9,11−13

It should be noted that the tetragonal corrections for
Lennard−Jones particles proposed by Kikugawa et al. have
recently been independently placed on more analytical footing
by Vögele and Hummer,12 versions of which are being further
explored by Simonnin et al.13 The extended expressions use
box lengths rather than aspect ratios and slightly different
numerical fitting constants, these with a focus on retracted
tetragonal cells (Lx < Ly = Lz) that are more appropriate for
membrane simulations. In this particular work, we focus on the
original numerical forms proposed by Kikugawa et al.,9 with any
suggested extensions being fully modular and applicable to
alternate expressions.
In the case of diffusion of charged proteins or similar

macromolecular particles, it would seem a combination of eqs 1
and 3 would provide a route to calculating experimentally
comparable diffusion coefficients. Such an expression array
would take the form
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where again Lx ≥ Ly = Lz, and all the relevant variables are the
same as described previously. This set of D0 relations was tested
first for pure water, where α = 1, and then for MCP-1 using an
α derived from the cubic systems.
The effect of salt concentration on the dynamics of the

MCP-1 protein was also investigated by simulating it in the
presence of additional ions beyond the five Cl− ions needed to
counter the net charge of MCP-1 at pH 7. Cubic simulation
box systems with the same dimensions as the water solvated
MCP-1 systems were prepared by random insertion of ions and
water to target 0.125, 0.25, and 0.5 M NaCl concentrations. In
addition to these buffered protein simulations, simulations of
just NaCl in water at the same concentrations needed to be
performed in order to calculate the solvent viscosity of the
electrolyte solutions. Like the analogous pure water simulations,
determination of solvent viscosity and the apparent diffusion
coefficients of these salt solutions used 3 to 6 nm simulation
box edge-lengths.
Simulation Methods. Molecular dynamics simulations

were performed using GROMACS 4.5.5.15−17 The Am-
ber99SB-ILDN force field was used for modeling of
protein,18,19 while water and ions were modeled using the
TIP3P water model with the associated Amber force field ion
types.20−22 Protein setup involved PDB2GMX processing of
the 1DOL Protein Data Bank structure,23 followed by charge
neutralization with five Cl− ions. All of the previously described

systems were individually prepared using random insertion of
protein, Na+ ions, and Cl− ions, followed by a culled-overlap
insertion of equilibrated water boxes.
For each system size and simulation type, 10 unique starting

configurations were prepared and seeded with random
velocities from a Maxwell−Boltzmann distribution at a target
temperature of 310.15 K following 1000 kJ mol−1 nm−1 force
converged steepest descent minimization. All were equilibrated
for 150 ps of isotropic constant-pressure (1 atm) and constant-
temperature (310.15 K) equilibration with the Parrinello−
Rahman barostat and v-rescale thermostat using time constants
of 10 and 1 ps, respectively.24,25 Integration of the equations of
motion was performed using the leapfrog algorithm with a time
step of 3 fs, LINCS to constrain protein bond vibrations, and
SETTLE to keep TIP3P water molecules rigid.26,27 Smooth
particle-mesh Ewald28 with a real-space cutoff of 1.0 nm, spline
order of 4, and energy tolerance of 10−5 was used for long-
ranged electrostatics corrections. Lennard−Jones interactions
were cut off at 1.0 nm with applied long-range energy and
pressure corrections.29

Molecular dynamics trajectories were recorded for each
simulation immediately following the NPT equilibration. Cubic
system protein containing simulations were each run for 300 ns,
while those without protein were run for 30 ns. In the case of
tetragonal protein containing simulations, simulations were
extended to 450 ns to provide additional sampling, as the Dapp
needed to be decomposed into x-, y-, and z-dimension
components. Given that there were 10 independent simulations
for each system composition and size, each tetragonal protein,
cubic protein, and nonprotein simulation data point involved
4.5 μs, 3 μs, and 300 ns of respective aggregate sampling.
Apparent diffusion coefficients were calculated using the

Einstein mean-square displacement (MSD) as a function of
time relation

= ⟨| − | ⟩
→∞

D
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r t rlim
1

2
( ) (0)

t
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2
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where d is the desired dimension (1, 2, or 3), and the
displacement, r(t) − r(0), is taken only over the dimensions of
interest. The Dapp is simply calculated from the slope of the
linear region of the MSD as a function of the time interval. For
the diffusion of water, the sheer number of water molecules
results in excellent averaging, leading to a linear trend over
most time intervals greater than the subpicosecond mean first
collision time. The regression interval for water Dapp values was
taken over the 1-to-15 ns, and standard errors of these values
were determined over the 10 independent simulation
trajectories. For single molecules, like MCP-1 in this study,
the averaging is much poorer. The regressions to determine
protein Dapp values were taken over the 2.5-to-25 ns, the
observed most linear region. This choice was validated by
subsequent iterative expansion of the regression range to the
point where changes in the calculated Dapp were not
distinguishable from the accumulated error, and the resulting
values overlapped with those from this selected time interval. In
cubic systems, d = 3 in eq 5, while for tetragonal systems, d = 1
and separate Dx,app, Dy,app, and Dz,app values were determined
from particle displacement solely in the respective dimensions.

Mass Relation Analysis. In order to derive general insight
into protein molecular weight (MW) to diffusion coefficient
expressions, surface area and volume calculations were
performed on a set of 40 protein structures of increasing
mass, from 3.7 to 48 kDa.30 All nonstandard components of the
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structures, such as ligands, ions, hemes, and water particles,
were removed from the selected structures in the interest of
placing a protein sequence knowledge-based restriction on the
explored series. Hydrogen atoms were cleared and added in
idealized positions to Protein Data Bank structures for all
proteins (see Table S1 in the Supporting Information for the
list of proteins), and in the case of NMR structures with
multiple deposited conformers, only the first conformer was
used. MSMS 2.6.1 was used to calculate the solvent-accessible
surface area (SASA),31 solvent-excluded surface area (SESA),32

and solvent-excluded surface area volume, all using a probe
radius of 0.14 nm. While the same probe is used for both the
SASA and SESA calculations, the surfaces differ in that the
SESA represents the mostly smooth protein contact surface,
while the SASA is the surface traced out by the center of the
probe sphere and is not smooth. As the SASA originates from
the solvent probe center, it is inflated relative to the SESA and
typically reports larger values (see the table in the Supporting
Information). One could physically describe the SESA as the
protein surface and the SASA as the protein surface modulated
by bound solvent. Regression of all these quantities versus
protein MW provided a slope, and potentially nonzero
intercept if desired, to form a function for estimation of a
hydrodynamic radius, RH, given the approximation that the
SASA, SESA, and/or volume be applied to a sphere. These
regression results were applied as coefficient inputs in the
volume or surface area forms of the following related extensions
of the standard Stokes−Einstein relation

η
=

+
D

C T
C(MW )0

0

1
1/3

(6)

for the MW to RH approximation via general protein volumes,
and

η
=

+
D

C T
CMW0

0

1 (7)

for the MW to RH approximation via general protein surface
areas, either SASAs or SESAs. In both of these equations, C0
and C1 come from the slope and intercept of the protein
geometric quantity versus MW regression, respectively. If the
regression intercept passes through 0 nm2 or nm3 in the surface
area or volume regressions, respectively, the C1 parameter is
eliminated, leaving only C0 as a protein geometry to MW
connection parameter. The performance of these geometry-
only tethered diffusion relations was assessed through
comparisons to experimentally measured values.

■ RESULTS AND DISCUSSION
Model viscosity and experimentally comparable diffusion
coefficients for TIP3P water were initially determined from a
series of increasingly sized cubic system simulations. The
viscosity of the model at 310.15 K is needed for correction of
noncubic system diffusion, water solvated protein diffusion, and
all conversions of D0 to Dη values for experimental
comparisons. The TIP3P water solvent was used in this study
due to its general acceptance in biomolecular simulations more
so than its ability to accurately reproduce the experimental
properties of real water. The large downside to this is that
TIP3P is known to diffuse two to three times faster than real
water, indicating that it has a significantly lower viscosity than
experiment. In agreement with previous findings,7 we observe
this reduced viscosity with respect to experiment, where ηexpt =

6. 88 × 10−4 kg m−1 s−1 at this temperature.33 The top panel of
Figure 2 shows the system size dependence of ηTIP3P, and as

seen in other studies, it is insensitive to changes in simulation
system size. The average value of 2.80 ± 0.02 × 10−4 kg m−1 s−1

is in agreement with the projected temperature trend observed
by Venable et al.,34 and it is expectedly much lower than ηexpt,
resulting in a viscosity correction ratio in eq 2 of 0.408.
From the lower panel of Figure 2, it is clear to see why it is

important to consider correction of the Dapp from individual
molecular simulations. The Dapp values increase linearly with
inverse box edge-length up to a D0 value of 7.11 ± 0.09 × 10−5

cm2 s−1 at infinite box size. When applying eq 1 with a
correction factor α = 1, there is strong agreement with this
infinitely dilute value given that the average 7.120 ± 0.005 ×
10−5 cm2 s−1 overlaps the Dapp regression value within error.
Both of these values are significantly larger than the
Dexpt(310.15 K) value of 3.04 × 10−5 cm2 s−1.33 Correcting
the calculated D0 value with the viscosity correction eq 2 results
in a similar Dη = 2.904 ± 0.003 × 10−5 cm2 s−1, which, while
slightly low, is in significantly better agreement with the
experimental value.

Corrected Diffusion Coefficients for Water from
Noncubic Simulation Boxes Are in Good Agreement
with Cubic Box and Experimental Values. Moving beyond
perfectly cubic simulation cells, the ability to accurately predict
the diffusion coefficient for a molecule from an alternatively
shaped simulation box would be advantageous for modeling
studies of systems where a constraint is applied along one of the
cell dimensions. To evaluate the accuracy of eq 3, we
performed TIP3P water simulations in elongated tetragonal
simulation boxes, where the x-dimension box length Lx was
kept fixed at the maximum cubic box length of 6 nm, and Ly =
Lz was reduced following the same series of smaller box size
dimensions explored in the cubic box correction test above. To
determine an overall Dη value from such noncubic simulations,

Figure 2. Viscosity (upper) and calculated Dapp and corrected D0
values (lower) for TIP3P water at 310.15 K as a function of inverse
box size. The ηTIP3P is insensitive to changes in system size, while the
Dapp is quite strongly dependent on the choice of simulation size. The
linear projection of Dapp to infinite system size and average corrected
value using eq 1 are in agreement at 7.11 ± 0.09 and 7.120 ± 0.005 ×
10−5 cm2 s−1.
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each dimension was corrected independently, and the resulting
independent values were averaged. Table 1 shows a comparison
of resulting Dη values from these simulations alongside the
cubic system results. They agree well as the calculated error
bars just overlap.

These tetragonal system diffusion results used the a0 aspect
ratio constant numerically computed from Lennard−Jones
simulations.9 We found that the resulting Dη values were not
strongly perturbed by moderate changes to this parameter. In
fact, rounding the original a0 = 2.79336 value to a0 = 3 gives an
average Dη result that overlaps within error. While we used the
recommended constant in all tetragonal simulation correction
calculations, it is possible that this empirical correction could be
further refined or simplified.
Corrected MCP-1 Diffusion Coefficients Are Equiv-

alent to Those Determined from Infinitely Dilute
Projections. While the corrective techniques worked well in
pure water simulations, charged biomolecule simulations
potentially pose a greater challenge given the need to introduce
and determine a potentially system specific α correction factor.
Such a correction factor needs to be extracted from a linear
regression of cubic simulation box Dapp values as a function of
increasing inverse box edge-length. A plot of this trend for the
water solvated MCP-1 signaling protein is shown in Figure 3,
with the regression intercept of 0.447 ± 0.027 × 10−5 cm2 s−1.

This intercept was used to set the α correction factor in eq 1 to
α = 0.710, resulting in an identical average D0 value of 0.447 ±
0.005 × 10−5 cm2 s−1. Correcting for the viscosity of the model
solvent results in a Dη of 0.182 ± 0.002 × 10−5 cm2 s−1.
With this α value, we used eq 4 to evaluate the tetragonal

simulation cell diffusion coefficients. Each of the dimension
Di,app values were separately corrected, and the averaged Dη

results over all dimensions are displayed in Table 2. The

averaged noncubic and cubic results overlap within the
accumulated error, indicating that using this extended
correction equation is a reasonable strategy for correcting
charged biomolecule diffusion coefficients from tetragonal
simulation cells. One other general thing to note comes from
comparing the error values in Table 1 with those in Table 2. In
the case of water diffusion, the statistical error gets
progressively smaller with increasing system size, while for
MCP-1 diffusion, there is no such trend. The lack of trend in
the MCP-1 results is expected, because as the system size
increases, the number of water molecules increases, but only a
single protein is present. Since there is no increase in MSD
data, unlike in the case of the pure water trajectories, the trend
in statistical error should be flat with random fluctuations.

Effect of Salt Concentration on Protein Diffusion Is
Only Partly Modeled by Solvent Viscosity Corrections.
Salt or other cosolvents change the viscosity of solution
environments. Incorporation of salt effects on protein dynamics
is thus handled in an implicit fashion through determination or
estimation of a system specific solvent η value. Given that we
model salt ions explicitly in our molecular simulations, we can
test this implicit salt effect by calculating a protein’s diffusion
coefficient as a function of salt concentration. To do this,
TIP3P water simulations with increasing concentrations of
NaCl were performed in order to determine a trend in η for
these electrolyte solutions. While this trend is important for
application in finite size simulation corrections described above,
it is critical for viscosity correction of D0 if experimental
comparisons are expected. Table 3 shows the calculated
viscosities of electrolyte solutions as a function of increasing
salt concentration. In general, a linear trend is observed, as in
experiments,33 though the reported statistical error is generally
somewhat large as these values are averaged over only four
system sizes, excepting the 0 M concentration result which was
calculated from the pure water simulations discussed previously.
These viscosity values were used in the construction of

viscosity correction ratios for computing Dη values from
simulations of an MCP-1 protein monomer in aqueous

Table 1. Calculated Dη Values
a for TIP3P Water at 310.15 K

from Tetragonal and Cubic Simulations of Increasing
System Size

tetragonal cubic

1/⟨Lz⟩ Nwat Dη 1/⟨Lz⟩ Nwat Dη

(nm−1) (10−5 cm2 s−1) (nm−1) (10−5 cm2 s−1)

0.332 1780 2.92(2) 0.333 895 2.91(2)
0.284 2447 2.91(1) 0.286 1410 2.90(1)
0.247 3257 2.90(1) 0.250 2180 2.90(1)
0.221 4017 2.916(8) 0.222 3009 2.912(9)
0.199 4993 2.912(9) 0.200 4142 2.902(8)
0.182 5935 2.904(9) 0.182 5439 2.897(5)
0.167 7161 2.905(4) 0.167 7161 2.905(5)
avg: 2.911(4) 2.904(3)

aWith standard error of the last digits in parentheses. .

Figure 3. Dapp and corrected D0 values for TIP3P solvated MCP-1 at
310.15 K as a function of inverse simulation box size. The α correction
factor in eq 1 was determined to be 0.710 from the intercept of the
Dapp regression, resulting in an average value of D0 = 0.447 ± 0.005 ×
10−5 cm2 s−1.

Table 2. Calculated Dη Values
a for MCP-1 in TIP3P Water

at 310.15 K from Tetragonal and Cubic Simulations of
Increasing System Size

tetragonal cubic

1/⟨Lz⟩ Dη 1/⟨Lz⟩ Dη

(nm−1) (10−5 cm2 s−1) (nm−1) (10−5 cm2 s−1)

0.200 0.191(4) 0.200 0.183(3)
0.166 0.179(3) 0.166 0.185(5)
0.142 0.170(4) 0.142 0.175(6)
0.124 0.173(4) 0.124 0.182(3)
0.111 0.182(2) 0.111 0.186(7)
avg: 0.179(2) 0.182(2)

aWith standard error of the last digits in parentheses.
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environments of increasing ionic strength. To account for
possible changing of the α correction factor in eq 1 with
changes in ionic strength, both α and Dη values were
determined via Dapp regression as a function of system size,
and a new α value was determined for each concentration. The
resulting α values in Table 3 follow a generally decreasing
trend, indicating that this correction factor may not be purely
dependent upon the formal charge of the solute.8 There
appears to be some degree of coupling between the solute
protein and solvent charges at the given cosolvent concen-
trations.
In hindsight, this change in α should not be that unexpected

given how solvent permittivity changes in response to
increasing ionic strength.35 With the introduction of salt,
water is increasingly electrostricted in solvation shells about the
ions, decreasing the static dielectric constant of the environ-
ment. For example, with a +5 net charge protein like MCP-1
here, the experimental Bjerrum length λB, the distance when the
Coulombic potential energy between the solute and an external
formal charge is equal to kBT, is 3.5 nm at 298.15 K. If the static
dielectric constant of the environment decreases from 80 to 70,
λB would increase to 4.0 nm. Even before considering
nonuniform perturbations of the electrostatic environment
about the protein, there is an increasing interaction range with
the decreasing solution permittivity. This increased range can
further emphasize the need for the overly strong interaction
correction that the α parameter provides.
Plotting the explicitly calculated Dη values alongside

projected Dη values due solely to changes in viscosity as a
function of increasing NaCl concentration in Figure 4
highlights a somewhat unexpected trend. Projecting the trend
in diffusion simply through changes in experimental viscosity
with salt concentration shows a modestly sloped decrease in Dη.
Explicit calculation of the diffusion coefficient shows a
significantly more dramatic sudden drop with the addition of
salt ions and a somewhat similar smooth progression beyond
this point. Why is this Dη response so different? Figure 5 shows
the normalized ion probability density function with respect to
distance from the protein surface for both Cl− and Na+ ions
over these salt concentrations. Without the introduction of
NaCl, Cl− counterions distribute preferentially near the surface
of the protein, forming a negatively charged ion cloud. With the
introduction of 0.125 M NaCl, both Cl− and Na+ ions partition
into this cloud in a drive to neutralize the net protein charge
(see illustrations in Figure 5). This increases the effective
concentration of ions in the immediate protein environment,
localizing ions at or near the protein surface to increase both
the protein hydrodynamic radius and the viscosity of the local
solvent environment. This effective cloud of ions moves with
the protein, acting to slow the diffusion of MCP-1 more than
would be expected in a uniform salt environment.

To better illustrate quantitatively how the ions partition
about the MCP-1 signaling protein, we radially integrated
populations of both the Cl− and Na+ ions about the geometric
center of the flexible/dynamic protein. Figure 6 shows the to-
scale results of this ion population analysis as a function of
increasing salt concentration. As the protein is flexible in the
molecular dynamics simulations, it is difficult to tightly resolve
the preferred absolute location of ions relative to protein
features, so we integrated the protein atom density out to the
90% occupancy level to use as an average protein contact
surface. This is shown in the panels of Figure 6 as an orange
background circle with radius rp90. The rs1 and rs2 come from
integrating the Cl− counterion density out to the first and

Table 3. Calculated η Values, Experimental η Values,33 α
Correction Parameter, and Calculated Dη for NaCl in TIP3P
Water at 310.15 K with Increasing NaCl Concentration

[NaCl] ηsim ηexpt α Dη

(M) (10−4 kg m−1 s−1) (10−4 kg m−1 s−1) (10−5 cm2 s−1)

0.0 2.80(2) 6.88 0.710 0.182(2)
0.125 2.84(11) 6.95 0.662 0.166(1)
0.25 2.99(6) 7.04 0.642 0.159(2)
0.5 3.25(10) 7.20 0.606 0.157(1)

Figure 4. Simulation Dη for MCP-1 at 310.15 K as a function of NaCl
concentration (black circles) alongside a simple experimental viscosity-
based prediction of the diffusion coefficient (blue triangles). Of
interest is the deviation of the actual diffusivity from the predicted
trend based solely on change in solvent viscosity. The simulation Dη

values show a stronger dependence upon salt concentration, primarily
through a sudden drop with the initial introduction of NaCl.

Figure 5. Normalized probability density function of ion occupancy as
a function of distance from the MCP-1 protein surface over the
different simulation salt concentrations. In the case of Cl− ions (left),
the counterion cloud at 0 M sees an enhanced occupancy probability
near the protein surface relative to further out in solution as illustrated
below. As the salt concentration increases, there is an influx of both
Cl− and Na+ ions into the inner protein ion cloud in a drive to
neutralize the net protein charge.
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second ion occupancy values, respectively, and these are taken
to represent the first and second ion cloud shells about the
protein. As a metric of the nonuniformity or nonideality of ion
populations in the environment around the protein, we
calculate a nonideality ratio ϕNI

ϕ
ρ

ρ
= =

n n

V V

( / )

( / )NI
ions,s1 ions,s2

s1 s2

ions,s1

ions,s2 (8)

where nions,s# is the integrated number of Cl
− or Na+ ions out to

either the first or second ion cloud shells as indicated, and Vs# is
the volume of the indicated ion cloud shells. A ϕNI value is the
ratio of ion number densities in the inner (ρions,s1) to the outer
(ρions,s2) cloud shell, so a value of 1 indicates a balanced ion
density between the two ion cloud shells. Values greater or less
than 1 indicate increasingly biased ion populations either near
to or away from the protein’s surface, respectively.
The most distinct aspects of the panels in Figure 6 are the

large ϕNI values of the Cl− ion cloud populations versus the
near uniform spatial distribution of Na+ ions and the change in
net charge within the ion cloud environments. The MCP-1
protein has a +5 net charge, so counteranions populate
preferentially nearby in order to neutralize this large formal
charge. With no added salt, the large ϕNI value indicates that
this neutralization pressure is a strong drive, though it is
opposed by counterion distribution entropy. With the addition
of 0.125 M NaCl, there is a sudden drop of the net charge
within the ion cloud environment, indicating that the
introduction of salt makes it easier to locally neutralize the
protein charge, and the ϕNI greater than unity means that this
neutralization is preferentially localized at the immediate
protein surface. Increasing the salt concentration to 0.5 M
leads to near complete neutralization of the protein within this
ion cloud environment.
This ion cloud population behavior has implications for the

protein diffusion coefficient in that the protein does not diffuse
independent of its environment. The ion cloud has an outsized
gain of Cl− ions with even a small addition of salt in the protein
solution environment. This leads to an increased drag, as the
denser ion cloud needs to be pulled with the protein as it
translates. This condition is consistent with the observed
sudden drop in the diffusion coefficient seen in Figure 4 with
addition of 0.125 M NaCl.

Protein Surface Area Connects to Hydrodynamic
Radius More Strongly than Protein Volume. The
calculated diffusion coefficients in the previous work are
internally consistent, with cubic and noncubic simulation
results giving nearly identical values. In the case of pure
water, the Dη values compare well with experimental values.
How do the MCP-1 diffusion coefficients compare with
experimental results?
In the absence of direct experimental diffusion data,

estimations of a given protein’s diffusion coefficient can be
crafted from molecular-weight-based relations. One of the most
common is3

=D
A

MW1/3 (9)

where A is a connection constant that can be determined from
known MW and diffusion data from single or sets of proteins.
For example, using both the MW and D20,w of hemoglobin,

4,36

this constant has been estimated to be 2.82 × 10−5 cm2 s−1 g1/3

mol−1/3.37 Using this coefficient, the diffusion coefficient of
MCP-1 (mass: 8.144 kg mol−1) in pure water at 20 °C would
be Dexpt = 0. 140 × 10−5 cm2 s−1. This is ∼30% off the
calculated value, and this difference mostly seems to come from
inflexibility in altering system temperature and viscosity
conditions in eq 9. If one considers the temperature change

Figure 6. Integrated Cl− (left panels) and Na+ (right panels) ion
populations about the 90% protein particle occupancy surface as a
function of salt concentration. The bottom right of each panel lists the
ϕNI nonideality ratio for ion populations in the ion cloud shells, while
the bottom left of the Cl− panels lists the net charge within the outer
ion cloud sphere. The circled numbers indicate the net charge within
each cloud shell, rounded to the nearest formal charge, and the color
of the Cl− shells indicates the asymmetry in absolute charge between
them. In all Cl− panels, the ϕNI is greater than unity, indicating a
neutralization driven pressure for populating anions at the protein
surface. This is further seen by the sudden drop of the net charge
within the rs2 sphere upon addition of salt going from 0 to 0.125 M
NaCl, with the protein near fully neutralized by 0.5 M NaCl.
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and resulting change in viscosity moving to 37 °C in the
standard Stokes−Einstein relation

πη
=D

k T
R6

B

H (10)

the estimated Dexpt would increase to 0.216 × 10−5 cm2 s−1.
Instead of the calculated MCP-1 value being 30% faster than
this experimental estimate, the calculated value now appears to
be ∼16% slower. A closer look at the data behind the
recommended A coefficient uncovered that the MW of
hemoglobin reported in the cited source is about 5.5% too
large.4 The mass comes from an early study on horse
hemoglobin reported by Svedberg and Pedersen,2 while the
D20,w comes from a different study on human hemoglobin by
Lamm and Polson.38 Correcting this to use the known weight
of human hemoglobin lowers the experimental estimate to
0.210 × 10−5 cm2 s−1, making the calculated MCP-1 Dη only
13% too low. Polson actually recommended an A value of 2.74
× 10−5 cm2 s−1 g1/3 mol−1/3, built from a wider statistical fit to
accepted diffusion coefficients and MWs at that time.3 Using
this A and applying corrections for differences in temperature
and viscosity gives a Dexpt = 0. 194 × 10−5 cm2 s−1, which is
much closer to the calculated value of 0.182 × 10−5 cm2 s−1.
Further corrections for molecular asymmetry and bound water
could potentially lead to even greater agreement,4,34,39−41

though the statistical nature of the fitting process behind the A
value likely incorporates these considerations to some degree.
While it is encouraging that eq 9 can be readily adjusted to

alter results and potentially improve agreement with expected
values, this variability and statistical foundation also hides some
of the reasoning for how and why it works. This particular
mass-to-diffusion relation, like many other similar rela-
tions,42−44 is based on two implicit assumptions: (1) proteins
and other such molecules have uniform densities, and (2) the
hydrodynamic radius, RH, is well approximated by the radius of
a sphere with a volume similar to that from the protein mass
divided by this uniform density. These approximating
assumptions came from before the first crystal structures of
proteins were determined45 and were actually adopted to
estimate molecular weights from measured diffusion coef-
ficients.3

Unlike when many of these relations where first devised, we
now have many known protein structures whose volumes and
surface areas we can directly calculate, and this body of
knowledge provides significantly more detailed information
from which to construct MW to diffusion relations. Is it
possible to form an estimate of the diffusion coefficient from
only a protein’s sequence without statistically building in prior
experimental knowledge of diffusion coefficients? Also, there
have been many studies exploring volume and surface area
relations for estimating the hydrodynamic radii of small
molecules up through protein-sized structures.39,40,44,46−49 Is
the volume or the surface area a better geometric property to
work through in estimating a hydrodynamic radius? Answering
these questions could potentially lead to some additional
insight into the driving forces behind diffusion in biomolecular
systems.
To test this assumption, we calculated the SASA, SESA, and

SESA volume for a set of 40 proteins with MW ranging from
3.7 to 48 kDa.30 In order to base this effort purely upon
sequence information, all nonstandard residue components,
such as ligands, ions, hemes, water, etc., were removed from

this set of structures, as mentioned in the Methods section.
Figure 7 shows the data trends for these calculations as a

function of MW. In all three cases, the trends are linear, though
there is slightly more scatter in the surface area trends than the
volume trend. Inserting the MW into linear fit functions from
these trends would be a quick way to directly estimate a volume
or surface area of a protein in the case that we only know the
protein’s sequence and thus MW. These values could then be
converted directly into the RH needed in the Stokes−Einstein
relation. This is the goal of the proposed volume and surface
area mass-to-diffusion relations in eqs 6 and 7.
The slopes and intercepts of the linear functions in Figure 7

were converted into a form that could be directly inserted into
the two mass-to-diffusion relations. Two sets of parameters
were determined for each of the SASA, SESA, and SESA
volume trends. In one set, the regression is fixed to pass
through the origin, so only the slope, and hence C0 parameter,
is used. In the other set, both the slope and intercept are used
in the form of C0 and C1 parameters. In practice, the C1
parameter acts as a general mass correction, providing some
flexibility to the fitting trend if needed. Table 4 shows the
resulting parameters for each of the fits. In these cases, the Vol0
and Vol1 sets are intended for the volume-based relation, eq 6.
The remaining surface area sets are intended for the surface
area-based relation, eq 7.

Figure 7. Calculated SESA volume, SASA, and SESA for a series of 40
protein structures, plotted as a function of molecular weight. All three
are linear trends, though with differing slopes and differing intercepts if
regression of the data is not set to pass through the origin.

Table 4. Protein MW to Geometry C0 and C1 Parameters
Extracted from Fits to Data in Figure 7 for the Proposed
Volumea or Surface AreabMass-to-Diffusion Relations, Both
alongside the Predicted Dη for MCP-1 at 310.15 K Using the
Listed Parameters in Their Associated Equation

method C0 C1 MCP-1 Dη

(10−4 cm K−1 kg4/3 mol−1/3)c (kg mol−1) (10−5 cm2 s−1)

(10−4 cm K−1 kg3/2 mol−1/2)d

Vol0 1.112 0.000 0.2466(7)
Vol1 1.107 −0.382 0.249(1)
SASA0 1.251 0.000 0.196(4)
SASA1 1.389 5.550 0.167(3)
SESA0 1.334 0.000 0.209(4)
SESA1 1.432 3.648 0.186(4)

aEq 6. bEq 7. cUnits for Vol0 and Vol1. dUnits for SASA0, SASA1,
SESA0, and SESA1.
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Initial testing of these relations was performed on the MCP-1
system to see which of the approaches was able to best
reproduce the explicit simulation results. In them, T = 310.15
K, and the η was set to the experimental viscosity of water at
this temperature, 6.95 × 10−4 kg m−1 s−1. The primary trend in
these results is that the surface-area-based relations outperform
the volume-based relation when it comes to agreeing with the

molecular simulation value of 0.182 × 10
−5 cm2 s−1. Given that

diffusion in molecular systems is primarily affected by collisions
between particles, it is understandable that surface area would
be a more well connected geometric property to the RH. Also,
in these cases, the inclusion of the C1 parameter seemed to
make little if any difference. SESA1 seems to benefit from this
mass correction, but Vol1 and SASA1 show only minor to no
improvement over the Vol0 and SASA0 variants.
It is important to note that the only structurally dependent

input is the MW of MCP-1. The resulting predictions rely upon
the assumption that the MW is connected to volume or surface
area in the same manner as other proteins of similar MW,
specifically the broad set used in developing the MW-to-
geometry relation as depicted in Figure 7. Without specific
considerations of protein flexibility,50 cosolvent characteristics,
and dimerization propensity,51 an MW-based prediction will be
intrinsically limited in accuracy. Of these specific consider-
ations, multimeric propensity would be the easiest to treat. The
predicted diffusion coefficient would simply come from an
ensemble average of the properly weighted predictions from the
multimer state MWs. In the case of MCP-1 here, the
comparisons are to calculated values that by design do not
have any possibility for dimerization.
The above result is only a single protein molecular weight

data point compared with our corrected computational
diffusion coefficients, making it difficult to fully evaluate the
relations. Table 5 shows the results for prediction of D0 using
only sequence MW for a series of proteins provided by
Tanford.4 Again, only the molecular weight of each of these
proteins was used as an input for estimating the diffusion
coefficient. Across this series, it appears that approximating the
RH, and thus the overall diffusion coefficient at a given T and
solvent η, via a MW to volume relation tends to predict slower
diffusion coefficients than experiment, just as in the diffusion
predictions for MCP-1 in Table 4. In the case of the MW to
SASA trend, the predicted diffusion coefficients are faster than
experiment, which also appears consistent with previous results.
SESA sits between these two extremes and better reproduces

the experimental D0 values. It should be noted that while a 19−
21% root-mean-squared deviation is an improvement over
volume and SASA, pinning the trend to a known diffusion
coefficient, as done using the traditional eq 9 relation, will be
about twice as accurate. This is particularly true if the molecules
used for determining the A coefficient are part of the evaluation
set. The interest here is that no previously known diffusion
information was provided. The trend in predicted diffusion
coefficients with increasing MW seems to hold regardless of
using volume or surface area. This indicates that a better
accounting of the solvent-excluded protein contact surface
would potentially lead to more accurate predictions of protein
diffusion than currently possible using knowledge-based
diffusion statistics.

■ CONCLUSIONS
Accurate computational determination of the diffusion
coefficient of biomolecules is a challenging problem. The finite
sizes necessary for performing molecular simulations of
analogous systems pose a significant computational burden,
and even accounting for this, a series of increasingly large
simulations often needs to be performed in order to correct the
dynamical quantities to make them experimentally comparable.
Here, we show that it is possible to determine refined diffusion
coefficients for a small signaling protein, MCP-1, even in
noncubic simulation cells. The approaches used in this work
were validated against experimental values for the diffusion
coefficient and viscosity of water as well as experimentally based
diffusion coefficient estimation from protein molecular weight.
In addition to pure water solvent simulations of counterion

neutralized MCP-1, we explored the effect of salt concentration
by performing similar simulations in the presence of 0.125,
0.25, and 0.5 M NaCl. We find that the ions populate the local
environment around the protein to better counter its net charge
and ion induced solvent charge inhomogeneities. This action,
even at very low ionic strength, works to alter the local solvent
environment around the protein and cause it to slow down
more than expected from simple uniform viscosity changes due
to the presence of salt.
Finally, this computational study of biomolecular diffusion

motivated us to present a geometric investigation of molecular-
weight-based relations for prediction of diffusion coefficients.
Using only the connection between a protein’s mass and the
volume, SASA, or SESA, we show that it is possible to predict
the diffusion coefficients of proteins without previous input
knowledge of their diffusivity. While the predictions using the

Table 5. Volume-a and Surface-Area-Basedb D0 Predictions Using Only MW Knowledge of a Protein Sequence Compared with
Experimental Protein D0 Values

4

protein MW expt. Vol0 Vol1 SASA0 SASA1 SESA0 SESA1

(kDa) (10−5 cm2 s−1)

ribonuclease 13.7 0.1190 0.1360(4) 0.1366(5) 0.099(2) 0.093(2) 0.105(2) 0.101(2)
lysozyme 14.3 0.1040 0.1340(4) 0.1345(5) 0.097(2) 0.091(2) 0.103(2) 0.099(2)
chymotrypsinogen 23.4 0.0950 0.1137(3) 0.1137(5) 0.076(2) 0.075(2) 0.081(2) 0.080(2)
β-lactoglobulin 35.2 0.0782 0.0993(3) 0.0991(4) 0.062(1) 0.064(1) 0.066(1) 0.067(1)
ovalbumin 41.9 0.0776 0.0937(3) 0.0935(4) 0.057(1) 0.059(1) 0.060(1) 0.062(1)
hemoglobin 64.5 0.0690 0.0812(2) 0.0809(3) 0.0456(9) 0.049(1) 0.049(1) 0.051(1)
serum albumin 66.3 0.0594 0.0822(2) 0.0820(3) 0.0465(9) 0.049(1) 0.050(1) 0.052(1)
catalase 227.1 0.0410 0.0533(2) 0.0531(2) 0.0243(5) 0.0266(5) 0.0259(5) 0.0276(6)
MUE 0.25 0.24 0.24 0.22 0.19 0.18
RMSD 0.26 0.26 0.26 0.23 0.21 0.19

aEq 6. bEq 7.
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proposed relations are not as accurate as those that use
statistical fitting to known protein diffusion data, this effort
provides an initial foundation for exploring alternate routes to
general independent predictions of biomolecule dynamics.
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